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0 Introduction

The study of the postulation of a zero-dimensional scheme in P” is a classical
problem in Algebraic Geometry. One of the very useful ways of studying curves
in the projective space, is to consider the set of points which arise as a general
hyperplane section of the curve. This is usually called the Castelnuovo method
after the crucial work made by G. Castelnuovo on the problem of the classification
of all the possible genera of a projective curve in P? in terms of its degree (see
[CD.

These ideas have been reconsidered later for example by P. Dubreil in [Du]
and more recently by D. Eisenbud and J. Harris in [EH], where it was definitely
explained how a deep analysis of the postulation of a finite set can give very
strong results in the theory of projective curves. Interesting developments of this
method can be found in [GP], [MR] and [GM].

Unfortunately, most of the work was done for a finite set of points in the
projective plane and only recently sporadic results appeared for points in P",
n > 3 (see [PPR], [R1], [R2], [CCD] and [BGM]).

The impulse to consider zero-dimensional schemes in P", n > 3, came also
from the relevance of this problem to the more general question of the possible
Hilbert Functions of a graded domain. This point of vew, started with the fun-
damental work of Macaulay in [M], found a basic and crucial elaboration in the
beautiful paper of R. Stanley [St1], who first realized strong connections with
problems from combinatorics. Important contributions along this line have been
given in [Hi], [Go] and [Gr].

This paper was motivated by an attempt to extend some of the classical
results on the postulation of a finite set of points in P2, to P", n > 3, where the
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Hilbert-Burch structure theorem, which was so crucial in codimension two, is no
more available.

To do that, we present here a method which is based on a well-known property
of a graded artinian Gorenstein ring which gives a sort of duality between the
Hilbert Function of an ideal and that of its annihilator. The formula has already
appeared elsewhere, see for example [DGO], but the novelty here is to use it for
the study of the postulation of a zero-dimensional scheme X in P", by means of
the degrees of the hypersurfaces of a complete intersection passing through X.

The main result of this paper (Theorem 2.1) gives strong information on the
behaviour of the Hilbert function hx(¢) of X. More precisely, we can control
the tail of the h-vector of X and this enables us to present large classes of zero-
dimensional schemes X in P" for which the h-vector is unimodal or of decreasing
type. These classes include all zero-dimensional schemes in P? or those in P?
which lie on an irreducible quadric or cubic.

As a consequence of the main theorem, we also obtain upper bounds for
the minimal number of generators of homogeneous ideals in the polynomial ring
k[Xy,...,X,] (Theorem 3.2 and 3.4). This extends a classical theorem of Dubreil
to zero-dimensional schemes in P".

1 Basic facts

Let k be any infinite field. By a graded ring A we always mean a standard graded
k-algebra of finite type, that is, A is the quotient of a polynomial ring over k by
an homogeneous ideal. We denote by

hp (t) = diny M,

the Hilbert function of any finitely generated graded A-module M. The gene-
rating function of this numerical function is the formal power series Py (z) :=
2 r>ohm(t)z' . Inthe case M = A, as a consequence of the Hilbert-Serre theorem,
we can write Pa(z) = Ha(z)/(1 — 2)¢, where H,(z) € Z[z] is a polynomial with
integer coefficients such that Hy(1) # 0. The natural number H(1) is the multi-
plicity e(A) of A while the degree of Hy(z) is the socle degree of A. We will write
s(A) to indicate the socle degree of A. From the definition we get that the socle
degree of a graded artinian ring A is s if h4(s) > 0 and ha(s+1) = 0. For example,
the socle degree of an artinian complete intersection k[Xy, ..., X,1/(F1y...,F)
is 30 deg(F;) — n.

In the case A is Cohen-Macaulay with Pa(z) = (35 aiz')/(1 — z)¢, the
vector (ao, - . ., as) is the Hilbert Function of any artinian reduction of A. Hence
(a, . . ., ay) is a sequence of positive integers which, following Stanley, is called
the h-vector of A.

We shall often use the fact (see [St1]) that if A is a graded artinian Gorenstein
ring, then the Hilbert function of A is symmetric, which means that if we let
s :=5(A) then

ha(t) = ha(s — 1)
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for every t =0,...,s.
The basic result for our investigation is the following well-known property
of the Hilbert function of an ideal in a graded artinian Gorenstein ring.

Theorem 1.1 Let A be a graded artinian Gorenstein ring and let I be an homo-
geneous ideal of A. Then for every t =0, .. ., s(A)

ha(t) = hy 1 (t) + ha 0.0y (s (A) — 1).

A proof for Theorem 1.1 can be found for example in [DGO].

The following consequence of Theorem 1.1 is more or less a well-known
result in the ideal theory of Gorenstein rings.

For an homogeneous ideal I of A let v(/) denote the minimal number of
generators of /. Let 7(A) denote the Cohen-Macaulay type of A, which is by
definition the dimension of the k-vector space 0 : A;. Note that if A is an artinian
graded ring, 7(A) is the dimension of the socle of A.

Corollary 1.2 Let A be a graded artinian Gorenstein ring and I an homogeneous
ideal of A. Then for every t =0,...,s(A)

i a1 (1) = ho.a 00 (5(A) — 1).

In particular
v(l)=7(A/:1))

Proof. By Theorem 1.1 we have hy(t) = hasi(t)+has.0)(s(A) —1), hence hy(t) =
ha/©.1)(s(A) — ). In the same way we get hy,/(t) = has©:a,1)(s(A) — t). Hence

hrja (1) = hayay(s(A) — 1) — hajo.a,1y(s(A) — 1)
This proves the first assertion. Since v(I) = dimy (I /A,I) and
TA/O: 1)) =dim((0: 1) : A1)/ : 1)) = dim (0 : A/ : 1)),

the second assertion follows as well.

2 Hilbert function

The main result of this paper is the following theorem which gives strong infor-
mation on the Hilbert function of the graded ring R/I in terms of the degrees of
the elements of a regular sequence in /.

Theorem 2.1 Let R = k[X,,...,X,) and I be a zero-dimensional homogeneous

ideal of R such that I contains a regular sequence Fy, . .., F, of forms of degrees
d<...<d,. Setd =%  d; —n.
(a) If i is an integer, 1 < i < n, then

hryi(t) 2 hgy(t + 1) +n —i
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ford —di +1 <t <s(R/I).
(b) If i is an integer, 1 <i < n — 1, such that (F\,...,Fi_1)is a prime ideal,
then
hR/[(t) > min{nhk/,(t + 1), hR/](t +1)+2n—i — 2}

ford —d; +1 <t <s(R/I).

We will give a proof of this theorem at the end of this section. We illustrate
first the main applications of the above result.

The most interesting cases of Theorem 2.1 are for i = n,n — 1. In these
cases, we have the following statements on the behaviour of the tail of the
Hilbert function of R/I.

Corollary 2.2 Let I be an ideal as in Theorem 1.1. Then
(a) hgy(t) > hryi(t +1) fort > d — d, + 1. Moreover,
hr/i(d — dy) > hgy(d — dy + 1)

ifand only if for some t < dy+---+d,_;—n+1 we have I, # (Fy,...,F,_1),.
(b) hR/,(t) > hR/,(I + l)ford — d,,_] +1<t< S(R/I)
(c) If (Fy,...,Fy,_3) is a prime ideal, then

hry(t) > hgy(t+1)+n — 1
ford —d,_+1<1t<sR/I).

This corollary covers some interesting results on the postulation of zero-
dimensional schemes.

Let X be a zero-dimensional scheme in P* = P"(k), where k is an algebrai-
cally closed field. We denote by Ax(t) the first difference of the Hilbert function
of X, which is defined as follows:

1 if +=0,

Ax (1) = { hy(t) = hy(@ — 1) if t>0.

Since X is zero-dimensional, Ax(t) = 0 for t >> 0. If A is the homogeneous
coordinate ring of X, then Pa(z) = 3, Ax(1)z* /(1 —-z) and (Ax(0), Ax(1), . ..,
Ax(s)) is the h-vector of A or of X. ‘

Following [St2] and [MR] we say that the h-vector of X is unimodal if for
some j we have

Ax(0) < Ax(1) < ... S Ax() > Ax(G+1) > ... > Ay(s) > 0.
and that it is of decreasing type if for some j we have
Ax(0) < Ax(1) < ... S Ax() > Ax (G + 1) > ... > Ax(s) > 0.

The first notion has been studied mainly from the combinatorial point of view,
but also it is very important in the problem of classification of all the possible
Hilbert Functions of a graded domain (see [St2] and [Hi]). It was conjectured
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that the h-vector of a Gorenstein graded domain is unimodal, but we do not even
know any Cohen-Macaulay graded domain whose h-vector is not unimodal.

The notion of h-vector of decreasing type plays an important role in the cha-
racterization of the general hyperplane sections of a codimension two reduced
irreducible arithmetically Cohen-Macaulay and normal projective variety. See
[Ha], [GP], [MR] , [GM] and [HTV] for a deeper investigation of this notion.
Similar results on the postulation of zero-dimensional schemes on smooth quad-
rics in P? have been recently discovered by Raciti, Paxia and Ragusa (see [R1],
[R2] and [PRR]). The above Theorem and Corollary extend some of these results
to a more general situation.

For example the main Theorem 3.4 in [R1] is our Corollary 2.2, (b) in the case
n = 3. Further, part (a) of Theorem 2.1 for i = n and part (b) for i =n — 1, have
been proved in [R2], Theorem 2.2, under the restrictive assumption that R/I is
an artinian reduction of the homogeneous coordinate ring of a zero-dimensional
subscheme of an irreducible quadric in P3. Finally Theorem 3.1 in [R2] is a
trivial consequence of the second part of (a) in Corollary 2.2.

In the sequel we will denote by a; < a, < ... < qa, the degrees of the
elements of a homogeneous minimal basis of the defining ideal of X, arranged
in non-decreasing order.

Theorem 2.3 Let X be a non-degenerate zero-dimensional scheme in P*. Assume
that X lies on a complete intersection of n—1 hypersurfaces of degree ay, . . . ,a,_,
and moreover that a, > ay+---+a,_, — n. Then the h-vector of X is unimodal.

Proof. Let I(X) be the defining ideal of X in S = k[Xo, ..., X,]. Without restric-
tion we may assume that X is a non-zerodivisor of /(X). Let I denote the artinian
reduction I(X) + (Xo)/(Xo) of I(X) in R = k[X,...,X,]. Then hg/i(t) = Ax(1).
Moreover, there exists in I a regular sequence Fy,...,F, with

d] =degF| =a|,...,d,,_1 =dean—] =an—lydn =d€an 2 ap.

With these notations we have d —d, =a; +...+a,_ — n, hence a, > d — d,.
Further it is clear that for t < a, —1, hgyi(t) = hgyy(t), where J = (Fy, ..., F,_y).
Since R/J is Cohen-Macaulay of positive dimension, hg/,(t) < hgyy(t + 1) for
every t > 0. Hence, ifa, >d —d, +1, thena, — 1 > d — d, so that

hryi(t) = hgyy(t) < hgys(t +1) = hgyy(t + 1)

for every t < d —d, — 1; since by the first part of Corollary 2.2, (a), hgyi(t) is
not increasing for t > d — d, + 1, the conclusion follows.
Ifa,=d —d,, thena, —1=d —d, — 1, so that

hry1(t) = hryy(t) < hgyy(t +1) = hg (t + 1)

for every t < d — d, — 2; by the second part of Corollary 2.2, (a), hgyi(t) is
not increasing for t > d — d,,. As before we are left with a unique gap, so the
conclusion follows.
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In Theorem 2.3 we can replace the condition that X lies on a complete inter-

section of n — 1 hypersurfaces of degree ay,...,a,_; by the stronger condition
that X' lies on an irreducible complete intersection C of n — 2 hypersurfaces of
degree ay, . ..,a,_,. Moreover, the condition a, > ay+---+a,_; —n is satisfied

in the following cases:

=
|
w
2
A
=

Now we will present some cases where the h-vector of X is of decreasing
type. Let us assume that X lies on a complete intersection of n hypersurfaces
of degree aj,...,a,. As in the proof of Theorem 2.3, Ax(t) < Ax(t +1) for
t < a, — 1. Hence we have that the h-vector of X is of decreasing type if Ax(t)
is decreasing for t > a,. Using the statement (b) of Corollary 2.2 we can see
that this is true if d —a,_; +1 < a,. It is easy to check that this condition is
satisfied in the following cases:

n = 2;
n = 3 a=2;

Combining the above observations with Theorem 2.3 and Corollary 2.2 (c)
we obtain the following results on the postulation of zero-dimensional schemes
inP', n=234.

Corollary 2.4 (cf. [H]) Let X be a zero-dimensional scheme in P2. Then

(a) The h-vector of X is unimodal.

(b) The h-vector of X is of decreasing type if X lies on a complete intersection
C of wo curves of degrees a < b such that there is no curve of degree < b
passing through X but not C.

The assumption of Corollary 2.4 (b) is satisfied if X arises as an hyperplane
section of a reduced irreducible curve of P3. According to [Sau] and [GM] (see
also [HTV]) any reduced irreducible curve V in' P? lies on a complete intersection
C of two surfaces of degrees @ < b such that there is no surface of degree < b
passing through V but not C.

Corollary 2.5 (cf. [R2], [PRR]) Let X be a non-degenerate zero-dimensional
scheme in P3, Then

(a) The h-vector of X is unimodal if X lies on an irreducible quadric or cubic.

(b) The h-vector of X is of decreasing type if X lies on a complete intersection
C of a quadric with two surfaces of degree a < b such that there is no
surface of degree < b passing through X but not C. Moreover, if the quadric
is irreducible, then Ay (t) > Ax(t) + 2 fort > b.
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By the above remark, the assumption of Corollary 2.5 (b) is satisfied if X is
the intersection of a quadric with a reduced irreducible curve in P3.

Corollary 2.6 Let X be a non-degenerate zero-dimensional scheme in P*.

The h-vector of X is unimodal if X lies on an irreducible complete intersection
of two quadrics.

Now we want to show that from Theorem 2.1 we easily get a strong version
of a classical result which, accordingly to [D], was first noted by Castelnuovo
and reborn a number of times since: see [Hn], [GP], [Hs], [DGM] and especially
[D] where a new and elementary proof is presented. This classical result is a
special case, namely the case n = 2, of the following corollary.

Corollary 2.7 Let R = k[X,,...,X,] and V be a proper subspace of Ry whose
elements generate an ideal of height n. Ift is an integer such thatt > ns—2s —n+1
and codim(R,V) > 0, then

codimy(R,+1V) < codimi (R, V).

Proof. Let I be the ideal generated by a vector base of V. Then Liise1 = RV
and Iy, = R,V. Hence codimy(R,,,V) = hgyi(t +s + 1) and codimy(R,V) =
hg/1(t +5s). The conclusion now follows from Corollary 2.1 (b) because sn — s —
n+1<t+s < s(R/I), where the last inequality follows from the assumption
that codimy(R,V) > 0.

Another easy consequence of Theorem 2.1 is the following result which has
been proved in [DGM, Theorem 2.4] by using an anusual genericity argument.
Here we write, as before, Ahy for the first difference of the Hilbert function of
a graded ring A, which is defined as follows:

N if i=0,
Ahy(i) = { ha(i) — haGi — 1) if i > 0.

Corollary 2.8 Let R =k[X,Y]andJ C I be homogeneous ideals of R such that
J =(F,G) where F,G is a regular sequence of degree a < b. Then
Ahgyy (i) > Ahgy (i)
foreveryi =0,...,s(R/I)+1.
Proof. 1t is well known that

1 if 0<i<a-1
Ahgyyy={ 0 if a<i<b-1
-1 if b<i<a+b-1.

Since hg y1(n+1) — hg/(n) <1 for every n > 0, the conclusion follows imme-
diately in the interval 0 < i < a — 1, while in the interval a <i <sR/I)+1,
it is a trivial consequence of Corollary 2.2.
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The following example shows that this result does not hold if R has dimension
> 2.

Example Let R = k[X,Y,Z),J = (X3,Y*,Z5% and I = (X? X2Y,XZ3,Y*, 25,
Then s(R/1) =7 but Ahg/;(7) = —3 while Ahg;(7) = 2.

We come now to the proof of Theorem 2.1 and its corollary.

For the proof we need the following crucial lemma where we use this well
known property of regular sequences (see [RV], Lemma 1.3).

Let A be a graded ring and / an homogeneous ideal. If / /1% is a free A/I mo-
dule and {ry,...,r,} are homogeneous elements which form a regular sequence
on A/I, then {ry,...,r} is a regular sequence on A/I” for every p > 1.

Lemma 2.9 Let A be a graded ring of depth g > 1 and embedding dimension n.
If V is a subspace of A, of dimension r > 0, then

dim(A\V)>r+g—1.

Further, if g > 2 and V contains an element which is a non zero divisor in A,
then

dimg(A1V) > min{rn,r +n + g — 3}.

Proof. Let Fy,...,F, be a vector base of V and let X1,...,Xg be a regular
sequence of linear forms in A. Set x := (xq,... +%Xg):

Claim 1 The vector space xV generated by the rg vectors {x;F;},i=1,...,g
and j =1,...,r, cannot be generated by a set of vectors {xiF;} involving only
Xiy.-., X Withm < g.

Assume the contrary. Then we have xgFj € XV C (xy,...,xy) for every j,
hence F; € (xy,...,xn) for every j. Thus xV C (xi,... ,Xm)?, and, for every j,
we get x,F; € xV C (xy,...,x,)%. Since xq,... ,Xg is a regular sequence, this
implies that for every j, F; € (x,...,x,)? so that xV C (x1,...,%n)*. Going
on in this way, we get xV C (xi,...,x,)"*2, which is impossible. This proves
Claim 1.

Now it is clear that x) F,x;F,, ..., x, F, are vectors in xV which are linearly
independent. We can use g — 1 times Claim 1 to find vectors xFi,,...,x,F;, in
xV such that

xlFl,xle, siel s ,xlF,,sz,-z, vee ,ng,'g

are linearly independent. This proves the first part of Lemma 2.9.

As for the second assertion, let xi,...,x, be the linear forms which are a
k-basis of A;. We may assume that F,,xi, ... ,Xg—1 form a regular sequence in
A.

Claim 2 Fix;,Fixy,...,Fix,,Fox,...,F,x are linearly independent vectors in

AV.
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Let n ,
Z /\,‘F].X,' G 2 Z,LL,'F,'X1 =0
i=1 i=2

for some A;, 1; € k. Then we get

F] (Zn:/\ixi) +x (i:/,l,,F,) =0.
i=1 i=2

This implies Zl;z wuiF; € (Fy). Since Fy,...,F, share the same degree and are
linearly independent, we get us,...,u, = 0. Since F, is a non zero divisor in
A, we get 37" A\ix; = 0 and this implies \; = ... = \, = 0 by the linear
independence of xy,...,x,. This proves Claim 2.

Claim 2 implies that we have n +r — 1 vectors in A;V which are linearly
independent. Hence, if r = 1, then n + r — 1 = rn and the conclusion follows.

Claim 3 Letr > 2 and x := (xq,... 1 Xg—1). Then xV cannot be generated by
Fixy, Fixy, ..., Fixg, Faxy,. .., F.x
plus a set of vectors {xiF;} involving only xi,...,x, with m < g—1.

Assume the contrary. Then we have

Xg1Fj € xV C(Fy,xy,...,%),
hence F; € (Fi1,x1,...,xn) for every j. Thus xV C (F\)+ (xq,...,x»)? and, for
every j, we get
xg-1Fj € XV C (F1) + (x1,. .., xm)*.
Since Fy,xi,...,x, is a regular sequence, this implies that for every j, F; €
(F1)+ (x1,...,Xn)* so that xV C (F1) + (x1, ..., xn)*. Going on in this way we
get xV. C (Fi) + (x1,...,x,)*? so that xV C (F;). This implies for example

x1F, = F|L for some linear form L in A. Hence F, = aF,, a contradiction. This
proves Claim 3.

We can use g — 2 times Claim 3 to find vectors x,F; - sXg=1F;

. in xV
such that

g-—1

F;x.,lez, ol & ,F]X,,,ngl, o ,F,x,,sz,'z, e ,xg_|Fig_l
are linearly independent. This proves the second part of Lemma 2.9.

Proof of Theorem 2.1 Let A :=R/J and T := 1/J, where J = (Fy,...,F,). Using
Theorem 1.1 we get

hry(t) = hyyi(t) = ha(r) — hyo5(d — 1)
ha(t) — ha(d — t) + hyj(d — t) = hyj(d — t)

for every ¢ < d. For convenience we set m = d — t.
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To prove the first assertion of Theorem 2.1 (a) we need to verify that
hozi(m) 2 hoii(m — l) +n—1i

ford — s(R/I) < m < di —1. Set B = R/(F\,...,F;_y)) and Q = (J :
I)/(Fy,...,Fi_1). Form < d;—1, we have J,, = (F1, ..., Fi_1)m so that we may
identify (0: 1), = (J : I /J)m with the subspace Q,, of B,,. Form > d —s(R/I),

we have t < s(R/I) so that
dimgQm—1 = hoj(m — 1) = hg/;(t + 1) > 0.

Therefore we can apply the first part of Lemma 2.9 to Q,,_,. Note that B has
depth n —i +1 > 0. Then we get

> dimQm_1+n—i=hyjm—1)+n—i,

hO:i (m) =dimQ, > dimy Q1 By

which proves Theorem 2.1 (a). The same arguments also show that the second
part of Lemma 2.9 gives Theorem 2.1 (b).

Proof of Corollary 2.2 All the statements of Corollary 2.2 follow from Theorem
2.1 except the second assertion in (a). We need to prove that

hr/i1(d — dy) < hgy(d — d, + 1) *)

if and only if I, = (Fy,...,F,_), forevery t <d —d, + 1.
If we let B =R/(Fy,...,F,_;)and Q = (J : 1)/(Fy,...,F,_y), then as in
the proof of Theorem 2.1, we get

hR/[(d —d,, + 1)=hQ(d,, == 1)

Since it is clear that dim(JB),, = dim(J /(F,, ... vFr_1))a, = 1, from the exact
sequence 0 - JB — Q — (J : 1)/, — 0 we also get

hry1(d — dy) = ho(d,) — 1
so that () is equivalent to
ho(d,) — 1 < hg(d, — 1)

or to
ho(dy) < hg(d, —1).

Since Q is an ideal in a one dimensional Cohen-Macaulay graded ring, we clearl:
have hg(d,) > hg(d, — 1). Hence (x) is equivalent to

ho(dy) = ho(d, — 1).

Let us assume that hy(d,) = hg(d, — 1). If L is any linear form which is a nor
zero divisor in B, this implies Q4, = LQy, ;. Let P be the ideal generated b:
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the forms of degree d, — 1 in Q. Then P C Q, Pg,—1 = Q4,1 and it is easy to
see that P, = L‘_d"“Pdn_l for every t > d, — 1. Since F, € Q4, CP,B/P isan
artinian graded ring . Hence B, = P, for t >> 0. This implies that for t >> 0

e(B) = hp(t) = hp(t) = hp(dy — 1) = hg(d, — 1) < hg(d, — 1) < e(B).

Hence hp/o(d, —1) = 0 and hg(d, — 1) = e(B). We getd,—1>s(B)=d—d,+1
and

0=hg/o(dn — 1) = hgyy.y(dn — 1) = hg/y(d — d, +1) — hg/i(d —dy + 1),

hence d, > d — d, + 1 and li—d41 = Jy_gn1. If, by contradiction, t+ <
d —d, + 1, and there exists a form G € IL,, G ¢ (F,...,F,_}),, then
GLY=4*1 =t € Iy_g,s1, GLA=%*1=1 ¢ (Fy, ..., Fu_\)a—ga1. Since dy > d —d, +1,

Fryeo s Fac)ia—dye1 = Ja—a,+1 and we get a contradiction to the equality
lo—ge1 =Ja—d,+1-
Conversely, since F, € I, F, ¢ (Fi,...,F,_), the assumption I, =

(Fi,...,Fy_y), for every t < d —d, +1, implies d, > d —d, + 1 = s(B).
This means that hg(d,) = hg(d, — 1) and I = (Fy,...,F,_1), = J, for every
t <d —d, +1. By Theorem 1.1 we get

hgjo(@n — 1) = hgyy.1)(dn — 1) = hgyy(d —dy +1) — hgyy(d — dy + 1) =0,
hence hg/o(dy) = 0. From this we get ho(dy) = hg(d, — 1), as wanted.

We end this section with an application related to the classical Cayley-
Bacharach theorem.

For a zero-dimensional scheme X in P" the Hilbert function hx(t) is strictly
increasing until it reaches the degree deg(X) of X, at which it stabilizes. The
number wy(t) := deg(X) — hy(t) is called the superabundance of the linear
system of hypersurfaces of degree ¢ passing through X. Also wx(t) = h'S‘x(t),
where Sy is the ideal sheaf of X.

Let X be a zero-dimensional scheme in P” which is the complete intersection
of n hypersurfaces of degree di,...,d, and d := i di — n. For a given
subscheme Y of X, let Z be Z be the residual scheme of ¥ on X . Then using
Theorem 3b) in [DGO] one can easily prove for every integer t, 0 <t <d — 1,

wz(t)=hx(d —t—1)—hy(d —t — 1).

As a trivial corollary of this formula, one can proof the classical Cayley-
Bacharach theorem in projective n-space, as commented in [DGO].

Here we present another application of this formula, thus giving a new way
‘0 think about Cayley-Bacharach property.

Corollary 2.10 [B] Let X be a zero-dimensional scheme in P* which is the com-
Plete intersection of n hypersurfaces of degree d,, . .. ,d,. Let d := Yo di —n,
“nd Y a subscheme of X withwy(d —1) >0,thenY =X.
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Proof. By Proposition 3.1 we have wz(0) = hx(d — 1) — hy(d — 1). This implies
IX| = Y] = hz©) = |X| -1 - (Y| —wy(d — 1))

which gives hz(0) = 1 —wy(d — 1) for Z = X \ Y. Thus we get hz(0) = 0, hence
1(Z) = (1) which implies Z =0 and Y = X.

3 Number of generators

In this last section we apply our methods to bound the minimal number of
generators v(/) of a homogeneous ideal / of a polynomial ring R = k[X,, ..., X,].

Our idea is to combine Theorem 1.1 with a simple result of J. Sally [Sa] which
says that the minimal number of generators of any ideal in a one-dimensional
Cohen-Macaulay local (or homogeneous) ring A is bounded above by the multi-
plicity e(A) of A. For this we shall need the following easy lemma.

Lemma 3.1 Let A be a graded ring. Then

rlnga;( v(l) = ljnga“)‘( T(A/J).

Proof. For every homogeneous ideal / we let J to be the ideal A;/. Then we
have

v(I) = dim(I /1) < dimy(J = Ay /T) = 7(A/]).

On the other hand for every homogeneous ideal J in A we have
T(A/)) =dim(J : A /]) < dimy(J : A1 AU : A)) =v( : A)).
Now the conclusion is immediate.

The main result of this section is a generalization of a classical theorem of
Dubreil [Du, Theoreme II] which says that for any homogeneous ideal / of height
2 in k[X;,X;3], v(I) < a +b — s, where a is the least degree of forms in I, b is
the least number such that I contains a regular sequence of two forms of degrec
a and b, and s is the socle degree of k[X;, X,]/I.

Theorem 3.2 Let I be a height n homogeneous ideal of R := k[X;,...,X,], n >
2. Assume that there exists in I a regular sequence F\, ..., F, of forms of degrees
dy < ... < d, such that (Fy,...,F,_,) is a prime ideal. Let d = Y oiay i — s
do =1 and s be the socle degree of R/1. Then

n—2

o) <d —s)[] di +n.

i=0
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Proof. Let A=R/(F,,...,F,) and I =1/(Fy,...,F,). Then s(A) =d and
v(I) <v{d) +n.

By Theorem 1.1 we get hyj(d — 5) = hasi(s) > 0. Hence there exists a form
F € Ry such that the image of F in A is a non-zero element of 0 : 1. By
Corollary 1.2 we may write

vd)=1A/0:1)= 7(B/Q),

where B = R/(F1,...,F,_2,F) and Q = (J : I)B. Since (Fy,...,F,_,) is a
prime ideal and F ¢ (Fy, ..., F,), the sequence F,...,F,_5 F is regular, hence
B is a one-dimensional Cohen-Macaulay ring. Using Lemma 4.1 and Sally’s
bound for the number of generators of ideals in B we get

n—-2
T(B/Q) < eB)=(d -s)[] d:

i=0
which gives the conclusion.

Note that Theorem 3.2 does not hold if we drop the assumption that
(F1,...,Fy_3) is a prime ideal. If d — s > d,_;, one should use instead of
Theorem 3.2 the following trivial application of Sally’s bound.

Lemma 3.3 (cf. [G, Proposition 3.7]) Let I be an homogeneous ideal of R =
k[Xy,...,X,), n > 2. If there exists a regular sequence F,,...,F,_, in I of
degree d,,...,d,_,, then

n—1

v(l)gﬂd,-+n—1.

i=1

Proof. LetB=R/(Fy,...,F,_1)and Q =1/(Fy,...,F,_y). Then u(l) < v(Q)+
n — 1. Since e(B) = H;’: d;, from Sally’s bound we get v(Q) < H::l d;.

Note that for n = 2, Lemma 3.3 gives another classical result of Dubreil [Du,
Theoreme I] (see also [G] and [DGM]). Now we will use Lemma 3.3 to prove a
modified version of Theorem 3.2 which sometimes gives a better bound for v(I).

Theorem 3.4 Let I be a height n homogeneous ideal of R .= k[X,,...,X,], n >
2. Assume that there exists in I a regular sequence Fy, ..., F, of forms of degrees
di < ... < d, such that (F1,...,Fn_2) is a prime ideal. Let d = Z:Ll di —n,
40 =1 and m be the largest degree of the elements of a homogeneous minimal
hasis for I. Then

n—2

vl)<(@d—m)[[di+n+1.
i=0
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Proof. Consider the artinian Gorenstein ring A := R/J where J := (Fy,...,F,).
If m <d,, then

n-2 n-2
(d—M)Hdi+n+1 > (d—d,,)Hdi+n+l
i=0 i=0

n—1 n—2
= (Zd,- —n)Hd;+n+1
i=1 i=0
n-2 n—2 n—1
= 2+(Zd, —n)Hd,- +Hdi +n—1
i=1 i=0 i=0

n—1
Hd,' +n—1,
i=0

IV

Therefore, if m < d,,, the conclusion follows from Lemma 3.3.
Let m >d, and I =1/J. By Corollary 1.2 we have

ho.a,iy/0:0)d —m) = hj4,;(m) > 0.

This means that we can find an element F € R;_,, such that the image f of F
in A belongs to 0: A;J but f ¢ 0: I. Using Corollary 1.2 we also get

vil) < v)+n=7A/0:I)+n
< v(0:I):A)+n=v0:AI)+n.

If m = d, then 0 : A;] = A and the conclusion follows. If m < d, then
since (Fy,...,F,_3) is a prime ideal which does not contain F, we get that
Fy,...,F,_3, F form a regular sequence and the ring B := R/(F\,...,Fy_q,F)
is Gorenstein of dimension 1. Therefore

v0: A ) < wO:AI/f)+1=v(J :RI)/(J,F))+1
n-2

< o R/, Fag, F)+1<d —m) [] di +1,
i=0

where the last inequality follows again by the quoted Sally’s bound for the
number of generators of ideals in B. The proof of Theorem 3.4 is now complete.

Since m < s+ 1 the bound given in Theorem 3.4 is better than the one given
in Theorem 3.2 only.if m = s + 1.

The following example shows that in Theorem 3.2 and Theorem 3.4 we can
not delete the assumption that (Fy, ..., F,_,) is a prime ideal in R.

Example Let R = k[X,Y,Z) and I = (X?,XY?,XZ2 XYZ,Y3,Z*, Y2Z?). Then
d=2,d,=3,d3=4,d=6,5s=4,and m =5. But v(I) = 7, while

d-sydi+2—-1=(d-m)d,+3+1=6.
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