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1 Introduction

Given an oriented, compact, smooth surface R of genus > 1, divide all com-
plex structures on R into equivalence classes so that two structures are in the
same class if and only if there is a conformal homeomorphism between them
which is homotopic to the identity. Teichmiiller’s theorem says that for any two
complex structures S; and S, on R, among all quasiconformal homeomorphisms
homotopic to the identity, there is an unique homeomorphism which minimizes
the conformal distortion with respect to S, and >, and this extremal quasicon-
formal homeomorphism can be characterized in terms of certain holomorphic
qQuadratic differentials [2]. The maximal dilatation of extremal quasiconformal
homeomorphism measures how different the class [$:1] is from the class [S,].
Since these fundamental results have been established, Teichmiiller space, the
space of all equivalence classes, became one of the most important objects of
research in complex analysis. Comprehensive literatures on Teichmiiller theory
include Abikoff’s [1], Zhong Li’s [13] and Nag’s [16].

Lempert proposed an analogous problem in the setting of Cauchy-Riemann
(CR) manifolds as follows [12]. Given two CR structures on a 3-dimensional
contact manifold, describe the quasiconformal homeomorphisms that have the
least conformal distortion with respect to these two CR structures. These homeo-
morphisms, if exist, are said extremal. Their maximal dilatation measures the
nonisomorphism of the two CR structures. A Teichmiiller type distance between
the two CR manifolds is defined by the infimum of the logarithms of the maxi-
mal dilatations of all quasiconformal homeomorphisms between them. This can
be regarded as a variational approach to the embeddability of an abstract CR
Structure. If the distance between an abstract CR structure and an embeddable
CR structure is zero and is also realized, then the abstract CR structure is confor-
mally equivalent to the embedded one. We were able to prove that with a very
weak regularity assumption conformal equivalence implies CR equivalence for
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embeddable CR structures, and we conjecture this holds for general CR struc-
tures. Otherwise, one would like to know how far this CR structure is from the
space of all embeddable structures.

The concept of quasiconformality is classically given on Riemann surfaces
and Riemannian manifolds. It is a major machinery applied in Teichmiiller theory.
Mostow introduced it for symmetric spaces of real rank one, which include
the Heisenberg groups [15]. Later Koranyi and Reimann generalized notion of
quasiconformality to strongly pseudoconvex CR manifolds [9].

We will study extremal quasiconformal homeomorphisms between smooth,
compact, strongly pseudoconvex CR manifolds of dimension 3. In this paper,
we shall mostly consider CR manifolds that admit a transversal CR action of
S', in particular, the 3-sphere S* with the standard circle action. We remark that
these CR structures are always embeddable ([6] [11]); if the underlying contact
manifold is 3, they can even be embedded into C2 as circular hypersurfaces [6].

There are two basic questions here. The first question is whether an extremal
quasiconformal homeomorphism between two S '-invariant CR structures is S !-
equivariant. The second question is what is the characterization of equivariant
quasiconformal homeomorphisms.

The space of S'-orbits of an invariant CR manifold is a surface with a com-
plex structure induced from the CR structure. An equivariant homeomorphism
between two S'-invariant CR manifolds defines a quotient homeomorphism bet-
ween the corresponding Riemann surfaces. In this paper we prove that an equiva-
riant K -quasiconformal homeomorphism is characterized by an area-preserving
property and K -quasiconformality of its quotient homeomorphism (Theorem 3.5,
3.7). This answers the second question. We also develop the first and second va-
riation of the conformal distortion on 3 (Proposition 5.1, 5.3). The method
to compute the variation on S works on any CR 3-manifolds. Then we con-
struct a family of smooth S!-invariant CR structures on S so that no extremal
quasiconformal homeomorphism between these CR structures and the standard
CR structure is S'-equivariant (Theorem 6.1). Thus we show that circular sym-
metry is broken for extremal quasiconformal homeomorphisms between these
S'-invariant CR structures.

Recently we found that in certain situations an extremal quasiconformal
homeomorphism in a homotopy class must be equivariant. There the extremal ho-
meomorphisms have behaviors analogous to Teichmiiller mappings on Riemann
surfaces. Details will appear in a forthcoming paper.

2 Quasiconformal homeomorphisms and contact flows

Let M be a 3-dimensional, connected, smooth, contact manifold with a smooth
non-degenerate contact form 7. Denote the contact bundle by HM 2 Ker 7. Let
Jo : HM — HM be a smooth endomorphism such that JZ = —id. Thus J is a
smooth complex structure on HM which defines a strongly pseudoconvex CR
structure on M. The corresponding CR manifold is denoted by M.
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Call the orientation of M given by dn A7 # 0 positive and the orientation of
HM given by dn|uy positive. Note if 7’ = An with a function A # 0 is another
contact form, the orientation of M given by dn/ A7y = A2dn A n is positive. The
orientation of HM given by dn/|yy = Adn|uy is either positive when A > 0 or
negative when \ < 0.

Let X # 0 be a local section of HM , then X and JoX are linearly independent.
dn is nondegenerate on HM, so (dn,X A JoX ) #0. We say the CR structure of
M, is positively (or negatively) oriented with respect to 7 if (dn,X AJoX) >0
(or < 0). Note

{dn An, X AJoX AJoX,X1) = ((dn, X AJoX))? > 0. 2.1

Hence X, JoX, [JoX,X] is always a positively oriented frame no matter the CR
structure is positively oriented or not.

A differentiable curve on M is called Legendrian if its tangent vector at each
point is in the contact bundle HM. Let U C M be an open set, I" be a contact
fibration of U, i.e., I is a smooth fibration of U consisting of smooth Legendrian
curves. A subfamily I of a contact fibration I" of U is said to be of measure
zero if for any smooth surface S which is transversal to each v € I' and any
smooth area form w on S

w=0. 2.2)
{Snylven}

Assume that M is another smooth, strongly pseudoconvex CR manifold with
the same underlying contact manifold M and a complex structure J; on HM.
A homeomorphism f : M; — M, is said to be ACL (absolutely continuous on
lines) if for any open set U C M and contact fibration I" of U , f is absolutely
continuous along all curves in I" except for a subfamily of I" of measure zero.

Forj =0,1, let HM; denote HM endowed with the CR structure J;. Take any
Hermitian metric on HM; with respect to J;. Denote by | - i the corresponding
norm on HM;.

Definition 2.1
(i) A homeomorphism f : My — My is K -quasiconformal if
- fis ACL;

— [ is differentiable almost everywhere and its differential f, preserves the
contact bundle; and

= the maximal dilatation K = K (f) = ess sup K (f )(q) < oo, where

qGMl
X Hnn}a’fxl ]lf*Xlo
_ €H M, |X |, =
X€EH My, |X | =1

is the dilatation of f at q € M,.
(i) A I-quasiconformal homeomorphism f : My — M is called conformal. If
such a conformal homeomorphism exists, M, and My are said to be confor-
mally equivalent.
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Remark 2.2 (1) For any g € M, j =0, 1, dim¢ H;M; = 1, so any two Hermitian
metrics on H,M; are scalar multiples of each other. Hence the value of K (f)(g)
is independent of the choices of the Hermitian metrics.

(2) A C' homeomorphism is conformal if and only if it is CR. When both
M, and M, are smooth and embeddable into CZ, a homeomorphism f : M, — M,
with L} horizontal derivatives is conformal if and only if it is smooth and CR.
A proof to this will be given in a forthcoming paper.

(3) This definition is a generalization of the one given by Koranyi and Rei-
mann in [9]. On Heisenberg groups, Koranyi and Reimann also gave a generalized
analytic definition of quasiconformal homeomorphism in [8]. It is not clear yet
how our definition is related to theirs in this case.

By the non-degeneracy of the contact structure of M, i.e., dn A #0on M,
there is an unique smooth vector field T on M, such that T.dn =0, (n,T) = 1
on M. T is called the characteristic vector field for 7.

Let T'%M, denote the subbundle {X — iJoX |X € HMy} of C ® TM,. Its
elements are called (1,0) vectors on My. T%'My £ TT.0Mj is called (0, 1) tangent
bundle of My. Denote by A%!M, the space of complex linear functionals & on
C®HM so that «(Z) =0,V Z € T'"°My. An a € A®' M, is called a (0, 1) form
on M. Denote also A%TM, by A1OM,.

With two CR structures My and M; on M with the same orientation, we
associate a global section p of T'My ® A%'M, as follows. Let W # 0 be a
smooth (0, 1) vector field on an open set U C M with respect to My, then p is a
section of T"%My ® A%'M, on U so that W, = W — u(W) is a (0,1) vector with
respect to M; on U. Let 9 be a smooth (1,0) form on U with respect to My such
that {1, ¥} is the dual basis to {W, W }. With these conventions, u = vW ® ¥
for a function v on U. The tensor u is globally well defined and is called the
deformation tensor of M, with respect to Mp. |u| (£ |v| on U) is also a globally
defined real valued function. Since My and M; have the same orientation, |u| < 1
everywhere.

Definition 2.3 If f : M; — My is a C' contact mapping which preserves the
orientation of HM , let f ~(Mo) be a new CR structure on M so that T'f ~'(Mo) =
S (T®'My). Define the Beltrami tensor of f by the deformation tensor of f = (Mo)
with respect to M.

Remark 2.4 Locally, since

LW = W LWV + @, (W)W, (24)
we have _
_ (f*w7 W l) -
M = WWI ® Yy, (2.5)

where 1, € A%'M, with (¢, W) = 1. Since f preserves the orientation of HM
and the CR structures My and M; have the same orientations, (f,1, W,) #0 and
|ur| < 1. Hence (2.5) and (2.6) below are meaningful.
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Theorem 2.5 If f : M} — M, is a C! quasiconformal homeomorphism and
preserves the orientation of HM, then for g € M,, the dilatation at the point q is
given by

1+ (q)]
K - . i
D@ =@ 29
In particular, the maximal dilatation is
Lol HSRl]
K(f)=sup —Hl _ M @7

mi 1= lue| 1 —supu|’
M,
The proof of this theorem is simple linear algebra and is the same as the

proof of an analogous fact on C (see [16]).

We now turn our attention to contact flows. First recall that the non-
degeneracy of the contact structure of M shows that the mapping

1. HM — Null(T), X — X.dn 2.8)
is a bundle isomorphism. Here the space
Null(T) = {w € A'M | (w, T) = 0} (2.9)

is a real rank 2 subbundle of A'M. Denote the inverse of 1 by f.

Let V be a vector field on a contact manifold M which generates a smooth
flow of contact transformations. For such a vector field V the real valued function
u=(n,V) is called the contact Hamiltonian function of V.

Theorem 2.6 (Liebermann) Suppose M is a smooth compact contact manifold
with a smooth contact form 0. If V is a smooth vector field which generates a
flow of contact transformations of M, then

V = uT +§((Tu)y — du), (2.10)

here u is the contact Hamiltonian of V.
(ii) Conversely, if V is a vector field defined by (2.10) for a real valued smooth

function u on M, then V generates a flow of contact transformations of M and
the Hamiltonian of V is u.

The part (i) is Théoréme 3 in [14], a proof was given there. The sufficiency
(ii) can be proved by straightforward computations.

On the 3-sphere S = {(wy, w2) € C? | |w;|2+|w,|* = 1}, the contact structure
is defined by the contact form

n= —Im(wldm. + 'wgdmg). (2] 1)

The characteristic vector field for 7 is

0 o]
T = =2Im(w, ?"l + urn Bwa)' (2.12)
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Let S be the sphere with the CR structure inherited from the standard com-
plex structure of C>. Let us denote

1o} 0
W = W— —w,— .
D2 S D 5’ (2.13)
Y = wydw, — widw,. (2.14)

Then W, W are (1,0), (0, 1) vector fields on S; respectively, and v, are
(1,0), (0, 1) forms on S; respectively. Moreover {W,W,T} is dual to {v,%,n}.
Direct computations yield the commutator relations among these basis vectors of
CRT1s*

(W,W]=—iT, [T,W]=-2iW, [T,W]=2iW. (2.15)

The vector fields X £ 2ReW, Y £ —2ImW form a basis of the real contact
space HS?. We have

[X,Y]=-2T, [X,T]1=2Y, Y, T]=-2X. (2.16)

The forms ¢ £ Rey,7 £ Imy and n form a basis of the cotangent space
A!S3. The commutator relations (2.16) imply that «(X) = 27,«(Y) = —20, or,
equivalently, §(7) = 3X,#(c) = —1¥. So for any real valued function « on §?

H(Tu)n — du) = (- (Xu)o — (Yu)7) = —%(Yu)X + %(Xu)Y.
Hence we have proved the following corollary of Theorem 2.4.

Corollary 2.7 A vector field on S3 generates a smooth 1-parameter group of
contact transformations if and only if

V= —%(Yu)X + %(Xu)Y +uT, @17

or, equivalently,
V =i(Wu)W — i(Wu)W +uT, (2.18)

Sfor a smooth real valued function u on S3.

Remark 2.8 An equivalent theorem in the setting of the 3-dimensional Heisen-
berg group was given by Koranyi and Reimann ([10], Theorem 5).

3 S'-equivariant quasiconformal homeomorphisms

Let M be a smooth, compact 3-manifold. An §'-action {Uy | ¢ € Rmod 27} on
M is said to be free if no U, ¥ id has a fixed point. M is called a regular contact
manifold if M is contact and has a contact form 7 so that the characteristic vector
field T for n generates a free S'-action {U, | ¢ € Rmod27} on M. Here ¢ is the
parameter of the contact flow. Obviously the action is transversal to the contact
structure. Let ' = M /S! be the space of orbits. Then X is a smooth compact
surface and the natural projection p : M — X is open and smooth.
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Theorem 3.1 If M is a regular contact manifold, then

(i) M is a principal fiber bundle over X with structure group S';
(ii) the contact structure HM defines a connection in this bundle; and
(iii) X has an oriented area form w such that the structure equation of the connec-
tion is given by
dn=p*w.

Later we will simply call such a manifold M a contact circle bundle.
A curve on a smooth compact manifold is said to be rectifiable if it is recti-
fiable with respect to a (hence any) smooth Riemannian metric on the manifold.

Lemma 3.2 Let v : I — X be a rectifiable curve starting at q¢ € X with an
interval I =[0,1) C R, and G € p~'(q). Then there is a unique curve ¥ : I — M
starting at § so that p o 5 = v, ¥ is rectifiable, and the tangent vectors at its
regular points are in HM .

The curve 7 is called the horizontal lift of 7y starting at g.

Proof. If v is C', the lemma follows from Proposition II 3.1 in 7). The following
is a modification of the proof given there.

By the local triviality of the circle bundle, we have a rectifiable curve & :
I — M starting at § so that p o & = . We construct an absolutely continuous
function ¢ : I — IR such that the curve given by

@) = Upy(@a(t)), rel, 3.1
satisfies the requirement. Note that if 7 denotes the generator of the circle action,

() =¢' ()T, + Ugu, (& 1)) (3.2)
This vector is in HM if and only if

0= 1) =¢'(t) + (n, Upq, (& (1)) (3.3)

The expression on the right hand side of the ordinary differential equation in the
initial value problem

¢’ = —(n, Us (& (1))),
#(0) =0, (3.4)

is smooth in ¢ and L' in ¢. So, by Theorem II 3.5 in [17], (3.4) has a unique
solution ¢ on I which is absolutely continuous. Then the curve given by (3.1)
with this ¢ is the horizontal lift starting at g of . O

Let £2 be a simply connected domain on X with a rectifiable boundary v =
992. As a 1-chain 7 has an orientation induced from that of 2 regarded as a
2~chain. For g € 7, € p~'(q), let 7 be the horizontal lift of 7y starting at §. The
end point of 7 is Uy(g) for some ¢ € [0,27). We call ¢ the phase shift from g
t0 Uy4(g). The structure equation in Theorem 3.1 (iii) is the infinitesimal version
of the following.
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Proposition 3.3 The w-area of §2 satisfies / w = —¢mod 2.
”

Proof. Without loss of generality, we assume that 2 CC §2’ for a simply connec-
ted open set {2’ C X where the bundle M is trivial. That is, p~'(£2') is S'-
equivariantly diffeomorphic to £’ x S'. Note dw =0 on X, so w = da on £’

for some 1-form «. Then
/w:/a:/p*a. 3.5)
n Y ¥

Here the first equality is due to the Stokes formula for rectifiable v which can be
proved by exhausting {2 with C' bounded domains. Notice the homology group
Hl(p"(.Q’)) = Z. Let 3 be an S'-fiber with the orientation given by T. Then
regarded as a 1-chain, 8 generates H,(p ~!(£2')). If Fo is the oriented trajectory of
T from G to Uy(g), then 5 — 7o is homologous to m 3 for some m € Z. Because

/p*a:/ a=0
B P(B)

din—p*a)=dn—-p'da=dn-p*w=0, (3.6)

/ n—p*a:/ n—p'a:/ 7 =0mod 2. 3.7
=% mB mp

Note also /n = 0 since ¥ is Legendrian and / pra= / a=0. So (3.7)
¥ Yo P(%0)

gives
/n+/p"a=0mod27r,
:7() :Y

/Pw::—l/ n=—¢mod2r. O
n ’:’ll

If we start with an oriented, rectifiable, Legendrian curve 5 with the initial
and end points on the same S'-fiber, then the closed curve v = p(¥) C X may
not bound a simply connected domain, and 4 may not be a single-sheeted cover
of v. However, when +y represents the null element of H;(X) it is easy to see
that Proposition 3.3 can be generalized to

and

or, by (3.5),

Corollary 3.4 If p(¥) = 012 for some 2-chain §2 on X, the w-area of §2 has the
same value as the phase shift from the end point of 4 to its initial point (mod 27).

A CR structure on M is S'-invariant if each Uy in the §'-action is CR with
respect to this CR structure. Assume M, is an S '-invariant CR manifold with the
underlying regular contact manifold M, then the CR structure induces a complex
structure on the surface X' so that p : M — X' is CR. Equipped with this complex
structure, X' becomes a Riemann surface X and T'0 5, = p,(T'°M,).
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Moreover, when the CR structure of M, is positively oriented with respect
to 7, the area form w and the complex structure on X, determine a Riemannian
metric as follows. Let J/ : TX, — T X, be the endomorphism which defines the
complex structure on Xy, then w(X,J'X) > 0 for nonzero X € TX)y. Then for
X,Y € TX,, define a Riemannian metric by (X,Y)=w(X,J'Y). This Rieman-
nian metric has the oriented area form w and induces the complex structure J’
of Xy. Still use Xy to denote the corresponding Riemannian 2-manifold.

Conversely, if there is a Riemannian metric on X whose oriented area form
1s w, we can lift the complex structure determined by this Riemannian metric
to an S'-invariant CR structure on M by declaring Z € C® HM to be a (1,0)
tangent vector if p,(Z) € T'OX. This CR structure is positively oriented with
respect to 7).

A homeomorphism f : M — M is said S !-equivariant if the diagram

Ud,l lu,b (3.8)

commutes for each ¢. Such a homeomorphism will induce a quotient homeo-
morphism F : X' — X' so that the diagram

M—f—>M

pl lp (3.9)

»-f .5

commutes.

Assume M, is another S'-invariant CR manifold with the underlying contact
manifold M. The corresponding quotient surface is X1 =M, /S! which has the
area form w too and the complex structure induced from the CR structure on M,.

Theorem 3.5 Let M % X be a contact circle bundle. Assume My, My are two
S'-invariant CR manifolds with the same underlying contact manifold M, and
f My — My is an S'-equivariant quasiconformal homeomorphism. Then the
quotient map F : Xy — X is a quasiconformal homeomorphism in the classical
sense and F preserves w-area. Moreover K (F)=K(f).

Proof. Choose a region R on the Riemann surface 5 1 corresponding to a rectan-
gle in a conformal coordinate system. Let I” = {7} be the family of all longest
straight line segments in R which are parallel to a fixed side of R. Lifting each
7 C I' to M, horizontally, we obtain a contact fibration p~(I") = {all Legen-
drian lifts of |y € I'} of p~!(R). Let I'y C I' consist of lines v so that f is
absolutely continuous along a lift of v. S'-equivariance tells us if v € I3, then
along each lift of 7Y, f is absolutely continuous. Therefore if v € I, then FY -
is absolutely continuous along it. By the ACL property of f, p~!(I'\ I) is of
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measure zero. Therefore, F is absolutely continuous along almost every straight
line segment v € I'. Since R is arbitrary, F is ACL.

If f is differentiable at a point g, F is differentiable at g = p(g). Hence
F is differentiable almost everywhere on X' since so is f on M. The bounded
distortion inequality for f at § implies that for F with the same dilatation at q
since p is CR. So F is a quasiconformal homeomorphism of £ and K ) = K(F).

For g € Xy, let D, be a disc with radius r centered at g, for each positive
small r. ACL regularity and S'-equivariance of f implies that F is absolutely
continuous along almost all circles dD,, and f is absolutely continuous along all
lifts of these circles. For those discs D, along whose boundary F is absolutely
continuous (equivalently, f is absolutely continuous along each lift of oD,),
F(OD,) is rectifiable. Hence Proposition 3.3 is valid for both such D, and the
corresponding F(D,). Then S'-equivariance of f and Proposition 3.3 show that
F preserves the w-area of almost all discs D,, hence of all discs. So F preserves
the w-area for ¢ is arbitrary. ]

Next we consider the converse to Theorem 3.5. That is, if we are given
a K-quasiconformal homeomorphism F : X — X, which preserves the w-
area, we want to know if we can lift it to an equivariant K-quasiconformal
homeomorphism f : M; — M, in the sense that there exists such f so that F is
the quotient map of f. Let us first give a regularity proposition which implies
that an area-preserving K -quasiconformal mapping is v/K -Lipschitz.

Let 2y and Xy be two Riemannian 2-manifolds. For j = 0, 1, denote area,
curve length and distance on X by | - |;, [; and d; respectively. A mapping
F : Xy — X is said to distort area by a factor A > 0 if |[F(D)|o < A |D|, for
all measurable sets D C X). For a constant L > 0, F 1s said to be L-Lipschitz if
there exists a constant € > 0 such that do(f(q1),f (92)) < Ldi(q1,q2) whenever
91,92 € X and di(q1,q2) < €.

Proposition 3.6 Assume that X and X, are two compact smooth Riemannian
2-mani- folds and F : Xy — Xy is K-quasiconformal and distorts area by a
factor A > 0. Then F is \/KA-Lipschitz.

Proof. Since X is compact, there exists a constant € > 0 such that two points
91,92 € Xy withdi(q1,q2) < € can be joined by a length minimizing curve a. For
0 < 6 < €/3, consider the 6-tubular neighborhood Q 2 {g € X, |d(q, @) < 6}.
Divide the boundary dQ of Q into four ordered sides Sj,j =1,2,3,4 so that
Sy ={q € 0Q|di(q,q1) = 6} and S3 = {q € 00 |di(q,q2) = 6}. Then Q
becomes a quadrilateral. Recall the module of the quadrilateral Q is defined by

(inf /Q) 2
I 0
Mod(Q)= sup —— 22T = inf —L—, (3.10)
QEA(Q) fQQ QeA(Q)( lnf /9)2
€T,

where A(Q) = {@ > 0] g is Borel-measurable on Q, 0 < f 0® < +0o} is the
set of allowable measures, Iy is the family of rectifiable curves in Q connecting
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the sides S, and S;, and Fé is the family of rectifiable curves in Q connecting
the sides S; and Sj3. In particular

Cinf /1)2
D€edy < Mod(Q) < _&
|Q|| ( inf /])2
‘vEI‘é ~

Similar definitions and inequalities hold for the quadrilateral F (Q). Since the
homeomorphism F : ¥ — X, is K-quasiconformal,

(3.11)

Mod(Q) < KMod(F(Q)). (3.12)

Combining (3.12) with (3.11) for both Q and F(Q), we have

(inf / 1)?
ey -k [F(Q)lo
e - (_inf lo(m)*

F)

(3.13)

Denote d(6) £ in,f lo(y). This is the distance between the side F (S1) and the
F(Q)

opposite side F(S3) of F(Q). Hence

lim d(6) = do(F(q1), F(g2)). (3.14)

Note also inf / 1 = 26. Note |F(Q)lo < A|Q]; since F distorts area by the

Y€ FQ
factor A > 0. Then (3.13) becomes

d(6) < VKA '(2?—6" (3.15)
Letting § — 0, we obtain
do(F(q1), F(q2)) < VKA L(a) = VKA dy(q1,q5). O (3.16)

Theorem 3.7 LetM 2 S bea compact contact circle bundle with X homeomor-
phic to S2. Forj =0, 1, let Lj be a Riemannian 2-manifold obtained by assigning
to X' a Riemannian metric whose area form is w. In particular, Z; has a com-
plex structure. Let M; be an S'-invariant CR manifold obtained by endowing M
with the CR structure such that p : M; — Xj is CR. Assume F : Xy — Xg is
a quasiconformal homeomorphism which preserves w-area. Then there exists an
equivariant quasiconformal homeomorphism f My — My such that pof = Fop
and K (F) = K (f).
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Proof. Fix a point go € X and a points o € p~'(qo). Define f(Go) to be any
point in the fiber p~'(F(qo)). For any other g € M,, connect go and G by a
rectifiable Legendrian curve 5. We can always do that by a theorem of Chow
[5]. Project # onto a curve v C X}, then map it by F onto the curve F(y) C X,
which is rectifiable by Proposition 3.6. We define f(@) by the end point of the
unique horizontal lift of F(vy) starting at f(o). The existence and uniqueness of
the horizontal lift of F() is given by Lemma 3.2.

Assume ¥ is another rectifiable Legendrian curve connecting gop and g, and
Y1 is its projection. Since X is simply connected, the 1-chain v, — v = 012 for
some 2-chain 2 C X. Corollary 3.4 says that the w-area of {2 is zero mod 2m,
whence the same holds for the w-area of F (£2) since F preserves w-area. By
Proposition 3.3, the horizontal lifts of F (7) and F(v) initiated at f(go) have
the same end points. Therefore the mapping f is well-defined. Moreover, f is
S'-equivariant by an argument similar to the one given above based on Corollary
3.4.

Next we want to prove that f is Lipschitz with respect to some Riemannian
metrics on M, and M, respectively. For j = 0, 1, there is a unique positive definite
quadratic form on HM; such that Ps, HM; — TX; is isometric. We extend
this quadratic form on HM; to TM; by letting the generator T of the circle action
to be a unit vector field orthogonal to HM;. The distance and curve length with
respect to this Riemannian metric are denoted by 3, and 7, respectively. For any
two points q;,q, € M,, there is a smooth length minimizing curve & : I — M,
to connect them. Here / = [0,r] C R. Let ¢ : I — R be the smooth solution of
(3.4) with this curve &. Then the curve 7 : I — M, — Uyny(a(t)) is either a
single point or a Legendrian curve. We have

L =hp®HE) < (&, (3.17)

by the construction of the Riemannian metric on M,. Note q, is the starting point
of 4. Let g3 be the end point of 4. Denote the curve I — My, t — Uy (gs) by
(. By the definition of the Riemannian metric on M,

h@ = / ¢ (t)| dt
1
= / (Ugwym &' (1) dt, by (3.4),
1
< c/||6/(t)||1dt, for some constant ¢ > 0,
1

cdi(q1,92), (3.18)

where || - ||; is the Riemannian norm on 7M,. Then
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do(f (q1)-f (g2))
< lo(f () +Io(f (3))
=lo(F(p(¥))) + i ([3), since f is equivariant,
< VK(F) h(p() +c di(q,42), by Proposition 3.6 and (3.18),
< (VK(F) +c)di(q1,42), by (3.17). (3.19)

Therefore f is Lipschitz. Hence f is almost everywhere differentiable by Ra-
demacher’s Theorem (Theorem 3, page 250, [18]). At a point of differentiability,
f« preserves the contact structure by the construction of f, in particular, the proof
of Lemma 3.2. Furthermore, f maps all rectifiable Legendrian curves to rectifia-
ble Legendrian curves. Hence it is ACL. Its bounded distortion inequality follows
from that of F, and f, F share the same value of dilatation since the S'-action
is CR. Therefore f is quasiconformal according to Definition 2.1. O

Remark 3.8

(1) The lift f of F constructed in the proof is unique up to composition with U,
for some ¢.

(2) When the base space X' is not simply connected, a quasiconformal homeo-
morphism F on X preserving w can be lifted to a quasiconformal homeo-
morphism f if and only if the monodromy representation of (%) in S’
induced by F is trivial. In this case, the construction of f in the above proof

applies. When X' is homeomorphic to S2, this obstruction to lifting does not
exist.

4 Equivariantly extremal quasiconformal homeomorphisms on S3

Here an equivariantly extremal quasiconformal homeomorphism refers to an equi-
variant quasiconformal homeomorphism with the least maximal dilatation among
all equivariant homeomorphisms.

On §% = {Jw[?+ Jw|? = 1} C C? and the circle action is given by
U : (wy, wp) — (e"wy, e wy), 4.1)

we have the Hopf fibration §' — S — S2 of the 3-sphere. The projection is
given by

p:S3 582 (wy,wy)— 2. 4.2)
wq
On S? the standard spherical metric is
2\|dz|
ds = (4.3)

_ 4dx Ndy
O U+PR
contact form of S* given by (2.11). Then direct computations prove

is the spherical area form, where z = x + yi. Let 7 be the
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1
Proposition 4.1 We have dn= p*(i wo).

Given two smooth Riemannian metrics on S2 which share the spherical area
form, we lift the complex structures they determine to two smooth S '-invariant
CR structures on S so that the projection p in (4.2) is CR. By results in the last
section, if there is an extremal area-preserving quasiconformal homeomorphism
on 52 between these two Riemannian structures, then an S'-equivariant lift of this
homeomorphism is an equivariantly extremal quasiconformal homeomorphism on
S between the two lifted CR structures. This is the guideline for the rest of this
section.

The spherical metric (4.3) on the unit Euclidean sphere SZ is equivalently
given by

ds¢ = d6® +sin® 0d ¢?, (4.4)

where (6, ) are the spherical coordinates (0 < 6 < 7,0 < ¢ < 27). Let A be
a real valued smooth function on S? satisfying 1 < A < A on S2, A = 1 near
the poles where § = 0,7, \ attains its maximal value A > 1 at each point of the
equator E = {6 = 7}, and A < A elsewhere. Define a new metric on S2 by

sin? @

dsf = Xd6? + =

d¢?. 4.5)

S? equipped with the metric (4.5) is denoted by SZ. The metric on S? is obtained
from the metric on S¢ by stretching in the meridian direction by the factor
A and shrinking in the parallel direction by the same factor. ids2 : S — 8¢
is quasiconformal with maximal dilatation A2 which occurs along the equator.
Obviously, S§ and S? have the area element sin 8d8d .

A Jordan curve divides the sphere into two components. If these components
have equal area, we call the curve area-halving curve. An area-halving curve on
S¢ is also an area-halving curve on S2. Let us give a folk lemma first. It is a
very special case of the isoperimetric property on surfaces (Burago and Zalgaller
[4], Theorem 2.2.1.). Our proof is very simple and intuitive.

Lemma 4.2 The great circles on S¢ are the shortest area-halving curves.

Proof. Any two area-halving curves on SO2 must intersect each other. Hence an
area-halving curve intersects its antipodal image, and we conclude that an area-
halving curve contains a pair of antipodal points. But the great semi-circles are
the geodesics to connect two antipodal points. Therefore a Jordan curve is a
shortest area-halving curve if and only if it is a great circle. O

Therefore the length of a shortest area-halving curve on S2 is 2. The con-
struction of ds? shows that on S? the equator is the unique shortest area-halving
curve and its length is 27/ A.

Proposition 4.3 The identity map ids: : S} — S has the least maximal dilatation
among all area-preserving quasiconformal homeomorphism from St to S¢.
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Proof. The equator E = {6 = £l e S} is mapped by an area-preserving K -
quasiconformal homeomorphism F : S2 — SZ to a rectifiable curve F(E) accor-
ding to Proposition 3.6. More precisely,

lo(F(E)) < VK Li(E). (4.6)

Here lo and [, stand for the curve lengths on S¢ and S? respectively. Note F(E)
is an area-halving curve on S¢ since E is an area-halving curve on S;. Thus
lo(F(E)) > 27 by Lemma 4.2. Then (4.6) implies K > A? = K (ids2). O

The Riemannian metric on S2 given by (4.5) can be written as

s (A1) N—-1z .,
= d e
! /\2(|z|2+1)2| et A2 +1 Zdzl

. 4.7)

Then on SZ, the (0,1) tangent space is spanned by
8 XN-1z 9
0Z XN+1z798z’

which is annihilated by the (1,0) form

N—-1z _
Z+A2—+l%d2.

(4.8)

Denote A =Xop and W, =W — vW, where W is given by (2.13) and

P | wy Wy
=z ) 49
Y /\2 +1 E|w2 ( )
Then direct computations give
— a N-1z9
(wPW )= — - LT 4.10
P W)=~ T w10

Use S}’ to denote 3 equipped with the CR structure whose (0, 1) vector space
is spanned by W,. By Theorem 3.5, 3.7 and Proposition 4.1, 4.3, we have proved

Theorem 4.4 With the above notation, ids: : St — 8§ is an equivariantly extre-
mal quasiconformal homeomorphism, namely, it has the least maximal dilatation
among all equivariant quasiconformal homeomorphism from S 1o S5,

Remark 4.5

(1) The dilatation of idgs : S} — S; attains its maximum on the covering of the
equator E C §?, i.e., the Clifford torus

1
Te = {(wy,wn) | |w,|* = |wn)? = E}

and its maximal value is A2.

(2) idss : S — S is not the only equivariantly extremal quasiconformal homeo-
morphism. Any small S'-equivariant perturbation of idg+ away from T will
give another equivariantly extremal mapping.
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5 Variation of the conformal distortion

As before, we denote the 3-sphere endowed with the canonical CR structure by
SO3. Assume 513 is the 3-sphere endowed with a new smooth, strongly pseudo-
convex CR structure whose (0, 1) tangent space is spanned by W; = W — (W),
where ;1= vW ® ) is a global section of 71053 ® A%!S3 with a smooth function
v with [v| < 1 on S3.

Let g; be a flow of contact transformations generated by a vector field V
with Hamiltonian function u. Then the maximal dilatation of g, : SP — 83, by
Theorem 2.3, is measured by the magnitude of the Beltrami tensor g,

In this section we will give an asymptotic formula for |teg,] as s — O up to
the first order for a general CR structure on S} and then up to the second order
when the CR structure on S} is S'-invariant and the first variation vanishes.

According to (2.5)

_ (g;¢’W1> _ Vs — vV
s = gy | = [T -0
where
* (g2, W)

(Lvp, W)s + 2 (Ly Ly, W)s? + & (s%)
1+ Ly, W)s + @ (52)

(Ly,W)s + (%(Lvaw,W) — Ly, W) (Ly v, W)) s2+C(sY)
£ as+bs’+C (s, 5.2)

for small s € R. Then on the set where v # 0,

Ilu’gsl
= = v) (1 + 01 + 7207 + O (5Y)) |
| L 1- v 2,12 3.2 —_—
=|v| - ] Re(va)s + T”,((l = [v[9)a]* — 2Re(@*a®) — 2Re(vb))s
+O(s%). (5.3)

Now we compute the coefficients appearing in (5.2) and (5.3).

LyW = [V, W]
= [(Wu)W — i(Wu)W +uT, W] by (2.18)
= —i(WW)W +i(WWu +2u)W, (5.4)

and so
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LyW =i(W2)W — i(WWu + 2u)W. (5.5)
Hence )
a=(LVw,W)=V<1/),W)—(w,LVW)=i(W u). (5.6)
Combining (5.3) with (5.6), we have proved the following proposition about
the first variation of the absolute value of Beltrami tensor.
Proposition 5.1 If g, : S} — S; is a flow of contact transformations generated
by a vector field with Hamiltonian u, then for small s € R

v

lv] + lm(ﬁqu)s + O (s%) where v #0; and (5.7)

g, |
. |v]

i1, | (Wil -|s|+ € (s?)  where v =0. (5.8)

We will go on to compute the second order term in (5.2) and (5.3). By (5.5)

(Lvy, W)

VW),W) - (waLVW)
= i(WWu +2u), (5.9)

(LyLyy, W)

V(Lyy,W) — (Lyy, Ly W)
= (i(Wu)w — (W)W + uT)(inu) by (2.18)

— Ly, —i(W )W +i(WWu +20)W) by (5.4),

= —(Wu)WWu) + (Wu)(W-u) (5.10)
+ wTWu) — (Wu) (W, Wlk) by (5.6),(5.9),

= —(Wu)WWu) + (Wu)(W-u)

+ i TWou)+i(Wou)Tu), by 2.15).

So we finally get the expression of b in (5.2).

1 — .
b = 5<LVLV1/), W) — Ly, W)(Lyy, W)
1 — =2 1 —3 | R
= ——E(Wu)(WW u)+ E(Wu,)(W u)+ Elu(TW u)
| i — —
+§i(W2u)(Tu)+(W2u)(WWu)+2(W2u)u. (5.11)
If on the set where pu # 0, Im(ﬁqu) = 0, i.e., the first variation of the
absolute value of Beltrami tensor vanishes, then Proposition 5.1 is not enough
'0 analyse the behavior of the perturbation. We will need to study the second

variation of |ug, | in this case.
Next we will compute the second order term in (5.3) on the set where
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Im@W’u)=0 and v 0 (.12)
holds. Note one term in the second order coefficient in 5.3)is
Re@) = Re(-TWuYWW u)+ (W) W) + W u)WWu))
+Re (n(TW'u) + 4o (W)

+Re ((iUqu )T ))

£ 11+12+13. (5]3)
U(qu)
To simplifiy I, let ¢ = O With the assumption (5.12), ¢ is real valued.
I = Re (—F(Wu)W(uc) + T(Wu)W (ve) + ZU(qu)(WWu))
= (W) (Au + Re(ll/(Wu)(Wu) - %(W@(W:;))) . (5.14)

where Au = (WW + WW )u.

For simplicity and for later applications, we will assume in the rest of this
section that the CR structure of S} is S'-invariant. Then S'-invariance of the CR
structure on S} implies that L7 (W — yW) is a multiple of W — vW. But

Lr(W — uvW) [T, W —vW]

2iW + Q2iv — Tv)W, by (2.15). (5.15)

Therefore, we have proved

Proposition 5.2 On S*, p = vW ® ¥ defines an invariant CR structure if and
only if
Lrp=4ip  or Tv=4iv. ) (5.16)

With this simple fact, we have
I, = Re (iuT(UWZu) — iu(T)Wu + 4D(W2u)u)

= uT (Re(iUqu)) +Re (—4uDW2u +4u17W2u) . by (5.16),
= 0, by(5.12). (5.17)

Obviously 73 = 0 by (5.12). Combining this with (5.3), (5.6), (5.13), and
(5.14), we obtain
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Proposition 5.3 If the smooth CR structure on S} is S'-invariant, the Beltrami
tensor of g : S} — S¢ satisfies

1—|v? - o
o] = Iul+%{<1+|u12)|w2u|2—<vw2u)[Au

+Re(%(V_V_u)(Wu) — %(Wu)(Wu))] }s2 +O(sY),  (5.18)

for small s € R on the set where v #0 and Im(TW “u) = 0.

6 Symmetry breaking

In this section, we will use a contact perturbation of the equivariantly extremal
quasiconformal homeomorphism idss : S — S; constructed in Section 4 to show
idss is not extremal among all quasiconformal homeomorphisms between S} and
S3. Namely, we will construct a nonequivariant quasiconformal homeomorphism
near idgs with smaller maximal dilatation. That will prove the following

Theorem 6.1 With S?, S§ denoting the S'-invariant CR manifolds constructed
in section 4, no extremal quasiconformal homeomorphism between S} and Sg is
equivariant.

We call this phenomenon a symmetry breaking of the extremal quasiconfor-
mal homeomorphism between CR structures on S3.

Proof. Assume an extremal quasiconformal homeomorphism f : §} — 7 is
equivariant. By Theorem 4.4, K (f) = K (id). We shall construct a contact flow g,
with a Hamiltonian u which satisfies

Im@W u) = 0, on §3,
1+ |1/|2)|W2u|2 — @Wu)Au < 0, on the torus T¢c.  (6.19)

Here (6.1), by Proposition 5.1, makes the first variation of the absolute value
of Beltrami tensor of g; : S} — S2 zero, and Proposition 5.3 applies. Direct
computations show that Wy = Wr =0 on T¢. So (6.2) gives that the the second
order term in (5.18) is negative. This will contradict the extremality of f, since
K(gs) < K(f) for small s € R.

For (6.2), we consider the equation

(A + v YW —TAu = —-W2y

on Tc. By (4.9) this is equivalent to

Au—-HZ®2w2, g (6.3)
wiwy
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on T¢. where H is the constant value of | I| I on Tc. Hence to satisfy (6.1),

(6.2). it suffices to find u satisfying the system

Au—HRe(w”mW2 ) 0, on T,

wIwy

Re [ =922, 4, on T, (6.4)
wywr

Im | 21422, =0, on S3.
w\wy

If u is independent of w;, the system (6.4) simplifies to

2 ) 32
2
Re ( 8 ) #0, when |w;|? = %, (6.5)
wi
2
Im (wf%) =0, when |w; |2 < 1.
1

In polar coordinates w; = re'?, (6.5) becomes

2

( ZH)— +(- —2r+ H)— +(— H)ZT; =0, whenr=Z
o*u 8u 82
2 _ V2
raE ra—a—ﬁz#o, whenr—%,
2
g—g—r%—=0, when 0 <r <1.
r
(6.6)
Any real function # which is independent of ¥ and satisfies
Ou H i /3
=7 _V2
fu_ ) QH when r = 3 (6.7)
o2~ 27

solves the system (6.6). There are plenty of such real functions. For example,

u—(— — ) —£) fH( —£)2 (6.8)

Therefore the proof is complete. O

Remark 6.2 No contact perturbation of idss : S} — Sg with smooth Hamiltonian
u can reduce the magnitude of its Beltrami tensor on T at the level of the first
variation. This fact becomes clear if polar coordinates w; = re 0w, = pe'? are
used to express :

Im(Uqu) =2

22— . 0%u N 8%u _, 0%u 0%u . ou . 3u>
N1\ 8ra0 " Pp09  "orop  Papep Tt oy )
(69
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In fact, the integral of the right hand side of (6.9) over (¥, ®) € [0,27] x [0,27]
is zero for u = u(¥, ) is doubly 27-periodic in (¥, ®). So Im(ﬁqu) is neither
positive nor negative on Tc. This is the reason we need to consider the second
variation of |vg, | to demonstrate the symmetry breaking.
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