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Introduction

Let X be a non degenerate projective variety in P"=P}, where k is an
algebraically closed field. Let I=1(X) denote the defining ideal of X in the
polynomial ring R :=k[X,, ..., X,] and 4 :=R/I its homogeneous coordi-
nate ring.

The graded R-module 4 has a minimal free resolution

E:0-E,—»--+->E,>R—->A4-0

where h=hdg(A4) and E;=P¥%.; R(—d;)).

Several recent investigations and conjectures relate the numerical invari-
ants of the resolution with the geometrical properties of X.

In this paper we are mainly concerned with the “linear part” of the
resolution. Hence for every i=1, . . ., h, we let a;(X ) =dim, [Tor®(4, k)];+: to
be the multiplicity of the shift i+1 in E,.

Since depth(4) > 1, then h<n so that a;=0if i>n+ 1. Also it is clear that
a; =dimy(I,) and it is well known that if for some integer i we have a;=0 then
a;=0for every j > i. Hence we are interested in projective varieties X which lie
on some quadric and we want to study the syzygies of the quadrics passing
through X.

The main idea coming from the pioneering work of Green (see [G2])
is that a long linear strand in the resolution has a uniform and simple
motivation.

Following this approach we start by proving that a;+0 in the following
geometric situations. Either X is contained on a variety of minimal degree and
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framework of Europroj project
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dimension n—i, or X is contained in the union of two linear subspaces of P" of
dimension k and r where k,r<n and r+k=2n—i—1 (see Proposition 1.2).

A natural question is to what extent the converse of the above result is true.

In Sect. 1 we prove that this is the case if i=1 (trivial) or i=n (see
Proposition 1.5). To achieve this result we need a more sophisticated analysis
of the quadrics passing through X, a theme which will be central in all this
paper.

In Sect. 2 we consider the case i=n— 1 and we restrict ourselves to reduced
schemes which are zero dimensional.

A basic result by Green, the so called Strong Castelnuovo Lemma, says
that for a set X of distinct points in linearly general position in P", we have
a,-1#+0if and only if the points are on a rational normal curve of P (see [G2,
Theorem 3.c.6]).

Here we complete Green’s result by proving that for a set X of distinct
points in P”, such that n—1 are never on a linear subspace of dimension n— 3,
we have a,_, +0 if and only if either the points are on a rational normal curve
of P" or X = P*UP" with k+r=n (see Theorem 2.6).

We conjecture that this result should be true in its complete generality.
However even this weaker form of the conjecture, unables us to solve one of
the problems which motivated our present research. Namely in Sect. 4 we
apply the above theorem to describe in a concrete geometric way the open set
where the Minimal Resolution Conjecture holds for a given set of n+4 points
spanning P" (see Proposition 4.2).

In the case i=n—2 we remark that the analogous of the Strong Castel-
nuovo Lemma does not hold. For example 12 general points in P7 are not on
a rational normal scroll of dimension 2 but have as=4=%0. In Sect. 3 we can
prove that they are on a threefold of minimal degree as a consequence of
a general result which in particular asserts that if n23 and p is an integer
1<p<n-2,theneverysetof 2n+1—p points in linearly general position lies
on a rational normal scroll of dimension n— p—1 (see Theorem 3.7). This
result extends a classical theorem of Bertini who considered the case p=n—2,
i.e. the case of n+ 3 points in P". Finally we want to remark that the proof of
the theorem is entirely constructive, so that, given the coordinates of the
points, one easily gets the matrix whose maximal minors are the defining
equations of the rational normal scroll containing the given set of points.

1 The extremal cases:i=1 and i=n

Let X be a non degenerate projective variety in P" and let I be the defining

ideal of X in the polynomial ring R=k[X,,...,X,]. The homogeneous

coordinate ring A=R/I of X is a graded R-module A =6—)@ 04,. We define
a;(X)=dim,[Tor{(4, k) ];+,

for every i=1,..., h where h=hdg(4). We write a; instead of a;(X) when
there is no confusion.
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We can compute Tor (A4, k) using a resolution of k which can be obtained
by the Koszul complex of X,, .. ., X,.

Let V be a fixed k-vector space of dimension n+1; then the Koszul
resolution of k is given by

nt+1 dns

0> A VRR(—n—1)—> AV R(—n) > - - - »AV ® R(—1)— R
k-0

where the J; are the usual Koszul maps.

For any j=1 we shall denote by K; the Kernel of §; in degree j+2; the
following proposition is a particular case of a crucial result which is easy and
proved in [CRV1, Proposition 1].

Proposition 1.1 Let i be any integer, 1 <i<h. With the above assumptions and

notations, we have
i-1
a,-=dimk|:< A V®12>0K,~;1:|.

From the above result, it follows immediately that if I and J are ideals of
R with initial degree at least 2 and J, < I,, then for every integer i we have

a(J)=a(l) .

By using the above proposition we can prove that, for a given integer i,
a;#0 in two different geometric situations.

In the following we say that a projective variety V < P" is a variety of
minimal degree, if V is reduced, irreducible and has degree equal to the
codimension plus one.

Varieties of minimal degree have been classified by Bertini and Del Pezzo.
It turns out that they are either the Veronese surface in P* or a quadric
hypersurface or a rational normal scroll (see [DEP, Theorem 3.1]). In any
case they are arithmetically Cohen Macaulay.

Proposition 1.2 Let X be a non degenerate projective variety in P", and i an
integer, 1 <i<n. Let us assume that either X is contained in P"UP* for some
integers r<n, k<n with r+k=2n—i—1, or X lies on a projective variety of
minimal degree and dimension n—i. Then a; 0.

Proof. Let us first assume that X c PPUP* with r+k=2n—i— 1; since X
is non degenerate we may assume, after a suitable change of coordinates,
that P* is the linear space Xo=:'-=X n-k-1=0 and P" the linear
space X, ="' =X, 4—,-1=0. This implies that X, X;el, for
every t=0,...,n—k—1 and j=n—k,...,2n—k—r—1. Now let
a:=eyA---Ne,y_jand f:=e,_, A~ Aeyy_—,—1.Sincei—1=(n—k—1)+
(n—r—1), we have SauASBeA "'V ®I,; but duASf=5(x ASB), hence
du A 8BeK;_,. Since clearly éa A 640, we have a;40 as wanted.

Now let V,_; be a projective variety of minimal degree and dimension n—i
and let B be the artinian reduction of the Cohen Macaulay homogeneous
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coordinate ring of V,_;. The Hilbert function of B is Hp(0)=1, Hg(1)=i,
Hp(j)=0for j = 2. It follows that the socle degree is equal to 1 and in particular
a;=i. If X lies on V,_;, then a(X)=ay(V,-;)=i and so a;=a;(X)+0.

We prove now that the converse of the above proposition holds if i=1 or
l=n.

Ifa, +0, then X lies on a quadric hypersurface, say Q. If Q is irreducible, it
is a variety of minimal degree, otherwise is the union of two hyperplanes so
that X cP"1uPpP"~ 1,

For the case i=n we need some further notations and remarks on the
quadrics passing through X.

Let ep,...,e, be a k-vector base of V; if « is an element in
(AW ® I)nK;_,, we may write

a= ) e A Ae, ®F
=4 - ooy Ji-1}
with F;el, and 6;_(x)=0.

Since X = P" is a non degenerate projective variety, after a suitable change
of coordinates, we may assume that X contains the coordinate points
Po,...,P, where Py:=(1,0,...,0), P, =0,1,0,...,0),...,P,:=
0,0,...,1).

We will refer to the extra points of X for the points of X which are different
from Py, ..., P,.

We have some important remarks.

Remark 1.3 (i) In F; there is no term of the form X 2 for every p=0, ..., n.

It follows from the fact that F; must vanish on the coordinate points.
(i) In F; there is no monomial of the form XpX, with pe{ji, .. . jioq).

If for example a=(e; A--- A e, ®AX; X;)+ - - -, with A0, then 0i—1(a)=
;A" Ne, ,®AX}X,)+ -+ cannot be zero since to cancel
€N Nej , ®AX] X, weneedinaaterm +(e;, A - - - Nej_, Ne,® AX3).
This is impossible by (i).

In the following if j is a k-uple {0<j, < - - - <Jjk=n}, we denote by ¢; the
element e; A --- Ae; of A*V.

Hence if a=Y jl=i-1&6 @ F;e(A"'V ® I,)nK;_,, then in F; we have
only monomials ol1 the form X, X, with p+q and p, ge%,:={0, . . ., ni\{j}.

Thus every element ae(A4 "'V ® I 2)NK;_, can be written as

o= Z €j®Frgj
lil=i-1

where Fgel, is a square free quadratic form in the variables X, he®;.
The following remark will be very useful for our approach.

Remark 1.4 Let =Y ;1=i-18/® Fg, be an element of (A'"'V®I,)n
K;-;. We remark that as j runs among the subsets of i— 1 elements, % runs
among the subsets of n—i+2 elements of {0;.. . ., n}
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We claim that, for every h=f{h,,..., hn—i+3} such that 0<
hi<-+-<h,_;+3=<n, we have

n—i+3
¥, (—l)h'_'HXh,Fh,i..ﬁ,...h,,_.”:O-
r=1
In fact
i—1
0=5i—1(a)=|~|z 1 Zl (_1)'+lef1 AN /\éj’ A .eji—1®F"JXjr
JI=1—= r=

n—i+3
= X 8q®( > (_l)h'—’.'—th,Fhl...h,A..h,,AH,,)

lg|=i-2 r=1
where {hy < - <h,_;43}={0,...,n}\g. The conclusion follows.

In the following we will use this remark very often. Hence, to avoid eavy
notation, we will say that the polynomials {Gi,...,G,} are related if
a=Y":_,(—1)G;=0 for some (cy, . . ., c,)€Z".

Proposition 1.5 Let X = P" be a non degenerate projective variety.
If a, %0, then X is contained in P"UP* with r+k=n—1.

Proof. Let a+0 be an element in (A" 'V ® I,)nK,_,; as we have seen in
Remark 1.3 we can write
o= Z eo/\'"/\é,’/\"‘/\éj/\"'/\e,,®)~inin
0<i<jsn
for some 4;;ek.

First we claim that if Ao;=0 for every i=1, . .., n, then a=0; in fact for
every 0<j<k=n, the polynomials {X,10;XoX;, X;Aox XoXx, X4y X;X,} are
related by Remark 1.4 so that {Ao;, Aoi, 4%} are related too. This means that
Ax=0 for every 0<j<k<n, hence a=0.

Thus we may assume that 1o, =" =4o,=0 and Ag,+ 4, . . ., Aon*0 for
some 1<r<n-—1. Since for every 1<i<r,r+1<j<n, {Aoir Aoj» Aij} are
related, we get A;;=0.

Then XoX,.., .. > Xo X, XiXjel for every 1<i<r and r+1<j<n,
hence (Xo, ..., X,)n(X,+1,...,X,)<I. This implies that if Y is the P’
defined by X,,;=---=X,=0 and Z is the P" "~ ! defined by Xo="'"'=
X,=0 and Z is the P""""! defined by Xo=---=X,=0, then we get
X c YUZ as desired.

2 The case i=n—1

In this section we restrict ourselves to a finite set of distinct points in P" and we
deal with the following question: when is a,_; +0?

By the previous section, we may assume n2=3.

A very important result on this question is the so called Strong Castel-
nuovo Lemma (SCL for short) proved by Green in [G2]. It says that if X is
a set of points in linearly general position, then a,_ ;40 if and only if the
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points are on a rational normal curve of P". Here we recall that a set of points
in P" is said to be in linearly general position if n+ 1 of the points are never on
an hyperplane. Thus for points in linearly general position the converse of
Proposition 1.2 holds for i=n—1.

Here we want to complete the SCL by considering sets of points which
are not necessarily in linearly general position. We propose the following
conjecture.

For a set of points spanning P", one has a,_, +0 if and only if either the points
are on a rational normal curve or on P*UP" for some positive integers k and
r such that k+r=n.

We cannot prove this conjecture in its wide generality; we need an additional
assumption.

Theorem 2.1 Let X be a set of points spanning P" such that n— 1 points of X are
never on a P"~3.

Then a,—1#0 if and only if either X lies on a rational normal curve or
X = P"UP* for some positive integers k and r with k+r=n.

Proof. We will prove that if the points are not in linearly general position and
not on P"UP* for positive integers k and r with k+r=n, then a,_,=0. By
Proposition 1.2 and the SCL this gives the conclusion.

Let s be the number of points in X. We remark that if X ¢ P"UP* with
k+r=n, then in particular s—2 points of X are never on a P"~ . Hence we
may assume s=n+4.

First we prove the result with a stronger assumption.

Step 1. Let us assume that n points of X are never on a P"~2.
In this case the following conditions are satisfied:

(@) s=n+4

(b) there exist n+ 1 points on a P"~!
(c) s—2 points are never on a P*~!
(d) n points are never on a P"~2

and we need to prove that a,_; =0. . )

Since n+ 1 points are on an hyperplane, they must span it, otherwise we
get n+1 points on a P"~ 2 a contradiction. This means that, after a suitable
change of coordinates, we may assume that X contains the coordinate points
and that the hyperplane X, =0 contains n+ 1 points of X. Hence we can find
an extra point, say Q=(yo, .. ., ¥»—1,0), which lies on this hyperplane. We
remark that y;+0 for every i=0,...,n—1, otherwise, if y;=0, then the
n points Q, Py, ..., P, ..., P,_, would be on a P"2,

Claim 1 Let L, M, P be non zero linear forms involving r variables such that
L and M are linearly independent and r<4. Then

(LP, MP) & 1 .
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By assumption L=M =0 is a P"~? which contains at most n— 1 points of
X. Let k be the number of variables involved in L and M and ¢ the number of
variables involved in P. Then our P"~ 2 contains n+ 1—k coordinate points,
hence at most n—1—(n+1—k)=k—2 extra points. If (LP, MP)<I, the
remaining s—(n+ 1)—(k—2) extra points are on the hyperplane P =0 which
contains also n+1—t coordinate points. All together we have s—k—t+2
points on P=0. Since k+t=r <4 we get s— 2 points on a P"~!, a contradiction.

Let

a= Y &® Fy

ljil=n-2
be an element of (A" 2V ® I,)"K,_ ,, where {0<a<b<c=<n}=%),.
Claim 2 For every a, b<n we have F,=uX,X,+06X,X, for some p, oek.

Infact Fop, = AX, X, + uX, X, +0X, X, with A, u, aek; hence 0 =F;,(Q) = A1y, V.
This implies A=0, as wanted.

Claim 3 If F,,,=0 for every a, b<n then a=0.

If F,,=0 for every a, b<n, then it is clear that
o= Z Ej ® Frgj 5

[il=n=-2
nej

By Remark 1.4, for any 0<a<b<c<n the polynomials
{Xancm XbFacm XcFabm XnFabc}
are related so that X, F,,,=0. It follows that F,,,=0 and so a=0.

Conclusion. By Claim 3 we may assume F,,+0 for some 0<a<b<n. By
Claim 2 we have F,;,=X,L with Le(X,, X,), L+0. Let c+a, b, n. By Remark
1.4 the polynomials

{Xancm XbFncm XcFabm XnFabc}
are related, hence, using again Claim 2 for F,., and F,,, we get
Fap.=X,P+ X,M+ X_.L

for suitable linear forms Me(X,, X,), Pe(X,, X.).

If P=M=0, then (X.L, X,L)< 1, a contradiction to Claim 1. If for
example M +0, then (X, L, X, M) < I, so that by Claim 1, L and M are linearly
dependent. This means that L=1X, and M =pX, for some A, uek*. This
implies  Fp.=X,(P+puX,+AX)=X,T with Te(X,, X,). If T=+0, then
(X.T, X, X,) < I, while if T=0, then P+0 and (X, X,, X, P) < I. In both cases
we get a contradiction again to Claim 1.

Step 2 Let us assume that there exist n points of X on a P"~ 2.

In this case the following conditions are satisfied:

(@) s=n+4
(b) there exist n points on a P"~2
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(¢) n—1 points are never on a P*~3
(d) X £ P"UP* with k+r=n

and we need to prove that a,_1=0.

Since n points are on a P"~2, they must span it, otherwise we get n points
on a P""3, a contradiction. This means that, after a change of coordinates, we
may assume that the coordinate points are on X and that the linear space
defined by X, _, = X, =0, contains n points of X. Hence we can find an extra
point, say Q :=(y,, ..., Yn-2,0,0) which lies on it. It is clear that y:i%0 for
every i=0,...,n—2, otherwise the n—1 points Q,P,, ..., P, .. w5 Py
would be on a P"~3,

Claim 4 Let L, M, N, T be non zero linear forms involving ¢ variables, such

that L, M, N are linearly independent and t<5. Then (TL, TM,TN) ¢ I.
The proof of this claim is the same as that of Claim 1, hence we omit it.
As before let

a= Y  &® Fu

lil=n-2

be an element of (A"~ 2y ® I,)NnK,_,, where {0<a <b<c=n}=4%,. In this
case we can give a complete description of the quadrics which occur in a.

Claim 5 (a) For every a<b<n—?2, we have
Fapw-1=X,- 1Ly and Fapn=X,M,,
with Ly, Me(X,, X,).
(b) For every 0<a<b<c <n—2, the polynomials

{Fabcs XaLbca XbLaca XcLab}
are related.
The same for
{Fabc, XaMbc, XbMac’ X(:Mab} .

(c) Foreveryi=0,...,n —2, there exist Pe(X,_;, X,) and a;ek such that
Fin-1a=(=1)'X;P+aX, ,X,.
(d) For every 0<a<b<n-2, the polynomials
{Lab, My, 45X, 0 X5}
are related.
Claim 6 If W+ W, =0, then =0,

If W, =W, =0, then by Claim 5(d) and (c), we have F; ,_; ,=(—1)'X;P for
every i=0,...,n—2, hence (P)n(Xo, .. s Xa-2) <L Since X ¢ P""1UP1,
we get P=0 which, together with the assumption L, =M, =0 for every
0<a<bsgn-2, implies a=0.

Claim 7 (a) If L,,=+0 and XuLapel, then (L, Ly.)=*(0, 0) for every c<n—2.
(b) If L, +0 then dim, CLais LpjD ida, j2p<2.
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(c) If LypLoeL a0 for some 0<a<b<c<d<n, at least two of them are
monomial in X,,.

If for some ¢ we have L,.=L,,=0, then by Claim 5(b), we have F,. = + X,L
so that {X,L.,XyLa, X.Lyp} 1, a contradiction to Claim 4. This
proves (a).

As for (b), if dimy{Lai, Lp;)i4a, j+»=3 and for example Ly, L, Ly; are
linearly independent, since (X, - 1L ap, X,— 1L 4, X,—1Lp;) =1, we get a contra-
diction to Claim 4.

Finally let us consider the matrix of the coefficients of X,, X,, X., X, in
Lap, Lac, L og Tespectively:

00
0 - 0
00

By (b) this has rank <2. The vanishing of its 3 x 3 minors gives the conclusion.
Claim 8 If W0, then X,W, ¢ I.

If, for example, we have L,+0 and X,L.,el, then by Claim 7(a),
(Lacs L) #(0, 0) for every c <n—2. If n > 6 so that n—2 > 4, this implies that at
least three elements in {L,;}g<i<n—2 Orin {Ly;}o<;<n—2 are not zero. Hence by
Claim 7(c), we may assume for example that L,,=1X, L, =uX, for some
A, pek*. By Claim 5(b), the polynomials

{Fabca XaLbca XbLac = /‘XaXbi XcLab = j"Xa‘Xc}

are related, hence F,,.=X,T, where T is a linear form in (X,, X.). Since
AX Xy =X,Lael, and X, X,_1=X,—1Lapy=F, .- 1€l, we get

(XnXm XaXn— 1 XaT) cl.

If T4 0, this is a contradiction by Claim 4. If T=0, then L, = + uXy+1X.+0.
Letd#a, b, c; since L, =AX,+0 is not a monomial in X,, by part (c) we must
have L,,=0. But also L,.= uX,=+0 is not a monomial in X, hence L ;=0 too.
By part (a) this implies X,L,.¢I, as desired.

If 3<n<5, the proof is even easier, hence we omit it.

We recall that by Claim 5(c), we have for every i=0,...,n—2

Fin1.a=(—1)X;P+0,X,_ 1 X,.

Claim 9 (a) If (ao, . . ., ®y—2)=(0, . .., 0) then a=0.
(b) If X, X,¢I, then a=0.

First we prove (a). If ;=0 for every i<n—2, then by Claim 5(d), we get
W, =W, so that X,W, < I. By Claim 8 this implies W, = W, =0 hence a=0 by
Claim 6. This proves (a).

By Claim 6 we may assume that W, + W, =0, hence we let, for example,
W, +0. By Claim 8 there exist a, b<n—2 such that X,L ,¢1.
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Let Q' be a point of X with Xa(Q')+0 and L, (Q')+0; since
0%+X, 1Ly=F,, ,_ €l we have X,-1(Q")=0 and also Q' must be an extra
point, otherwise Q'=P, and L,(Q)=0.

By imposing F; ,_; ,(Q")=0 for every i=0,...,n—2, we get P(Q')=0,
hence P=pX,_, for some pek. If W, +0, by repeating the same procedure we
also obtain Pe(X,) and hence P=0. Since X,_,X,¢I, this implies
(@05 . . ., 0,-2)=(0, . . -,0), hence a=0 by part (@). So let W,=0 and let
i=n—2 be an integer such that @;+0; by Claim 5(d), for every j¥i

{Lijy ain, (Zin}

are related, hence the n—2 vectors {Lij}j+i are linearly independent. This
implies

n—2=dim{L;;»;4; <dim(W,) .
Now we have

Fi,n*l.nz(_ l)ipXan—l +aan—IanXn—l((_l)ipXi+aan)=Xn—lT’

where T=(—1)'p X, +a;X,. Since % +0, T¢ W, hence dim (W, +(T>)=n—1.
Further (X,_,W,, X,-1T)<1, hence X c P1UP"" ! a contradiction.

Conclusion. By Claim 9, we may assume that X,_; X,el and «;+0 for some
0<i<n-2. Since X Wi, X,W,<1I, and X,_1X,el by Claim 4 we get
dim<L;;4+;<1 and dim, {M;;>; ;i <1. If n>5 the set {Li;};+: has at least
three elements; this together with dim;<{L;;>;+;<1 implies that at least two
elements, say L; j» L are monomials in X, perhaps the zero monomial. But by
Claim 5(d)
My, Lij, 0, Xi,0, X}
are related as well as
{Mik, Ly, o X, aiXk} .

This implies that M, j» My are linearly independent, a contradiction to
dim (M54, < 1.

If 3<n<4 the proof is easier, hence we omit it.

We remark thatif n=3, n—1 points of X are never on a P"73,50 that, in
this case, we get a proof of our conjecture.

3 Points on a variety of minimal degree

In this section we are dealing with the case i<n—2. In the above mentioned
paper (see [G2]), Green stated the following problem which can be considered
as the natural generalisation of the Strong Castelnuovo Lemma:

Given a set of points in linearly general position such that a,-,%0is it
true that the points are on a rational normal scroll of dimension two?

The answer to this question is negative as the following example, suggested
to us by Eisenbud, shows. Let us consider a set X of twelve random points in
P’. By using the computer algebra system Macaulay, one can see that
as(X)=4. Now a rational normal scroll § of dimension two in P’ has
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degree 6 so that, as in the proof of Proposition 1.2, we get as(S)= 5. Hence the
points cannot lie on such a surface.

Here we want to find suitable conditions under which a set of points in
linearly general position with a;=+0 for some integer i <n, lies on a rational
normal scroll of dimension n—i.

The following result gives a partial answer for i =2 and it is a considerable
extension of Proposition 3.3 in [CRV2] even if one needs essentially the same
idea.

Proposition 3.1 Let n=3 and X < P" be a set of points in linearly general
position. If dim,(I,) <3 and a, +0, then the points of X are on a rational normal
scroll of dimension n—2.

Proof. First we remark that all the quadrics passing through the points of
X are irreducible. In fact we have s=Hy(2)=("%?)—dim,(I,)=("%?)
—322n+1 since n=3. Now it is clear that a quadric passing through 2n+1
points in linearly general position must be irreducible.

Since a, +0 we can find a non zero element ae(AV ® I,)nK;. We write
a=)"7_,e:® F; with Fiel, and ).7_ X;F;=0. Since «#0 and dim,(I,)<3,
we may assume that F;+0 and Fe(F,, F,F,) for every i>3.
Hence F,~=Zf=0,l,-ij with 1;ek; this gives Y7  X,Fi=Y’2 X.F+
Z?: 3Xi(2f=oliiFj)=Zj=o(Xj+Z?=3)‘UXI')FJ'=O'

Now let mo:=Xo+) | 40X, m =X;+Y | .41 X; and m, =X,
+Z:’=3ii2X;. It is clear that they form a regular sequence in R, so we must
have Fo=/,m;—¢(im,, Fi=—{ymo+£fomy, Fy=¢,my—{om;, for some
£o,%1,¢2€R;. It follows that our points lie on he locus

moe my ‘mz
Vo—s: k <1;.
" {ran (fo 2 /2>— }
In order to prove that V,_, is a rational normal scroll of dimension n— 2, we
need only to prove that for any (¢, u) % (0, 0) the linear forms tmq + uty, tm; +
ufy, tmy +uf, are linearly independent (see [H, p. 104]).
This can be proved as in [CRV2, Proposition 3.3].

We remark that the assumption of the above proposition is verified if X is
a set of s points in linearly general position in P" such that

n+2 n+2
L e < —_

and X imposes independent conditions on the hypersurfaces of degree two.

Now it is well known, by a classical result of Bertini, that n+ 3 points of P"
in linearly general position are on a rational normal curve. On the other hand,
if pis aninteger,p=1, ..., n—2, let us consider a set X of s=2n+1 — p points
of P" in linearly general position. Green and Lazarsfeld in [GL] proved that
X has a resolution which is linear at least for the first p steps. This implies
a,+1%0 (see Proposition 2.1 and Proposition 2.5 in [CRV2]). Hence one can
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ask the following question: do these points lie on a rational normal scroll of
dimension n—p—17 A positive answer is given by the following theorem.

Theorem 3.2 Let n>3 and p aninteger,p=1,...,n—2. If X CP" is q set of

n—p—1
+1

points of X are on a rational normal scroll of dimension n—p—1.

§ points in linearly general position such that s<2n+1-—p+ , then the

Proof. As usual, without loss of generality, we may assume that X contains
the coordinate points. Also it is clear that it is enough to prove our assertion
for

s=max{telN

n—p—1
t<2n+1—p4—=— "4
" P p+1 }

Hence s>2n+1—p.

Claim 1 Let L and M be non zero linear forms involving k variables. If
k<n—p+1, them LM¢lI.

Let ¢ be the number of variables involved in L an r the number of variables
involved in M so that k=t+r. Since the hyperplane L=0 contains n+1—¢
coordinate points, it can contain at most ¢— | extra points. The remaining
S—(m+1)—(t—1)=s—n—t extra points must be on M =0 which contains
also n+1—r coordinate points. All together we have at least s—n—t+n+1
—r=s—k+1 points on the hyperplane M =0. Since

s—k+1;2n+1—p—(n—p+1)+1=n+1
we get a contradiction.
Claim 2 There exist p+2 linear forms Lo, . . ., L p+1, such that

(a) Loe(Xpss, ..., X)), Lie(X;, Xp+2,...,X,) for every i=1,...,p+1
(®) (Lo, . .., Lys )%, . . .,0)
(¢) XoL;—X;L el for every i=1,...,p+1.

It is clear that if we consider p+2 linear forms as in (a), then for every
i=1,...,p+1, XoL;—X,Lo is a square free quadratic form, hence a quadric
passing through the coordinate points. If we impose that these p+1 quadrics
pass through the s—n—1 extra points, we get an homogeneous system of
(p+1)(s—n—1) equations in (n—p—1)+(p+1)(n—p) unknowns, the coeffi-
cients of Ly, ..., L p+1. By our assumption we have

(p+1)(s—n—1)<(p+1),:2n+1—p+np%jl—n—l]

=(n—p)p+1)+(n—p—1).

The conclusion follows.
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13

Xo(XiLj—XjLi)=Xi(XoLj—XjLo)‘Xj(XoLi—XiLo) >

Claim 3 X is contained on the locus
Xo Xl “ e X +1)
V,—,—1:{rank ¢
ot { (Lo Ly ... Ly

Let 0<i<j<p+1; we have

IIA

hence Xo(X;L;—X;L;)el. Since the points are in linearly general position,
Xo(Q)=+0 for every extra point Q of X, hence X;L;— X;L;el, as desired.
In the following it will be useful to put 4, =0 and for every i=0, .. .,p+1,
to let .
Li:=/1iXi+ Z Z.,-ij
i=p+2
and

M,- :=L,'—A.,'Xi= Z linj.
j=p+2
Claim 4 (a) L;=*0 for every i=0,...,p+1.
(b) M;=+0 for every i=0,...,p+1
(c) If for some r=1 we have 4; = - - =4; =Aek, then M;, ..., M; are
linearly independent.

By Claim 2(b), there exists 0<i<p+ 1 such that L;%0. If L ;=0 for some j =i,
then, by Claim 3, X;L; is a non zero element of I. Since L; involves at most
n—p variables, we get a contradiction to Claim 1. This proves (a).

Now by part (a) we have My=L,+0; if M;=0 for some 1 <i<p+1, then
L;=X4X; with 1;#0 by (a). Hence X,L;—X,L,=X;(4;Xo—Lo)el, where
2:Xo—Lo=+0 and involves n—p variables. The conclusion follows again by
Claim 1

If r=1, (c) follows by (b). So we may assume M;,..., M;  linearly
independent and

r—1
M=} uM,
i=1
for some a;€k. It is clear that the vector space W spanned by M; , .. ., M; _ is
a subspace of dimension r— 1 of the vector space V spanned by X, ,, ..., X,
which has dimension n—p— 1. Since

(n—p—r+1)+r—1=n—p>n—p—1,

however we choose n—p—r+ 1 among these variables, the vector space they
generate must intersect properly W. Hence we can find a linear form, say

r—1

M=} B:M;,
i=1

which is not zero and involves n—p—r+1 variables.
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Now if in the matrix
<X0 Xl oo Xp+ 1)
Lo Ly ... L,,,

we add to the second row the first multiplied by — A we get the matrix

e Xy L LXp L. Xy o

cee My ML M; ...)°
Since M, =y 11 o;M;, by the corresponding elementary operation we get the
matrix

& Xj ...in W %% XJ',—Z:;;“"XJ'.‘ 30 o
M, ..M, 0 )

Finally, if for example B:%0, we can elementarily further operate to get the

matrix
r= r—1
e X LLUYIZIBX L Xp—YioimX, ...

cee M ..M 0 )

Since a determinantal ideal does not change if we make elementary operations
on the matrix, this implies that

r—1
M (X,,— y ain‘> el .
i=1

But M involves n—p—r+ 1 variables and the other hyperplane r variables, so
that we get the conclusion again by Claim 1.

Conclusion. In order to prove that V,_,_, is a rational normal scroll of
dimension n—2 we need only to prove that for any (t,u)=(0, 0) the linear
forms tXo+uL,, tX, +uLy,y . oot X e 1+ulL ., are linearly independent.

If u=0, this is trivial. Let u+0 and remark that tXi+ul;=X;(t +ul;)
+uM,; for every i=0, ... p+1.

We have vectors v;:= Xi(t+ud;)+uM; for every i=0,...,p+1. If
t+u;=0, then A;= —L and v;=uM; so that all the vectors with this property
are linearly independent by Claim 4(c). Further, if we consider the lexi-
cographic order

Xi>X,>- - >X,,

these vectors v;=uM; have maximal terms < X,+2. The other vectors with
t+ul;#0 have different maximal terms which are > X, ;. The conclusion
easily follows.

We remark that the following 9 points in P*:

X={P07 Pl’PZ, P33P4,(25 _1’_33 43 3), (39 2:—13 13—2)9
(1’ 2’ 35 43 _1)1(1) 1’ 1, 1’ 1)} ’
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where Py, . . ., P, are the coordinate points, dont lie on the locus

Xo X3 X
V,:<rank 0 ! S ES|
Ly Ly L,
for every choice of linear forms Lo, Ly, L, as in Theorem 3.2. This means
that we cannot extend our result to a bigger number of points. On the other

hand we can prove that these points are on a rational surface of minimal
degree.

Remark 3.3 It is clear that if a set X of points lies on a rational normal scroll
of dimension r, then X lies also on a rational normal scroll of dimension r + 1.

But it is clear that we can always find n+4 points in linearly general
position such that one of them does not lie on the unique rational normal
curve passing through the others n+3 points. In this case the points are on
a rational normal surface but not on a rational normal curve.

4 Applications

If we have a set X of s points in P" which are generic, then it is clear that they
have maximal Hilbert function, which means that

H x(t)=min {(n :_ t), s} ;

By imposing maximal rank conditions, it is easy to guess the numerical
resolution of such a set. This is known as Minimal Resolution Conjecture
(MRC for short). This conjecture is due to Lorenzini who first worked out
explicitly the expected Betti numbers (see [L]).

The MRC holds if n=2,3 or n+1=<s<n+4 (see [GGR, BG, GEL,
CRV1]).

Recently we have been told by Schreyer that a counterexample can be
given for 12 points in P7.

The question which motivated our present research was to identify
in some concrete geometric way the open set where the MRC holds, if it
holds.

For example a set of n+ 2 points spanning P" verifies MRC if and only if
the points are in linearly general position (see [HSV, Theorem C]).

For a set of n+ 3 points spanning P" we proved in [CRV3] that they verify
MRC if and only if they are in GL position. Here a set of s=2n+1—p points
is said to be in GL position if 2k +2 — p points of X are never on a P* for every
k=p,...,n—1.

This definition has been motivated by the work of Green and Lazarsfeld in
the above mentioned paper [GL].

In the same paper they say that a non degenerate projective variety X < P”
verifies property (N,) for a given integer p= 1, if I(X) is generated by quadrics
and the resolution is linear for the first p steps.
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Here we are dealing with the case s=n +4. For this number of points we
can easily see that MRC holds if and onlyifa,_;=0and X verifies (Nn-3)(see
[CRV2]).

We need the following Lemma.

Lemma 4.1 Let n>5 and X be q set of s points in P". If s—2 points of X are
never on an hyperplane and n— 1 never on a P"~ 3, then for ever Y positive integers
k and r such that k+r=n, X is not contained in P:uP.

Proof. If X = P'UP"" !, since on a P"~! we have at most s—3 points, the
remaining 3 points must be on a P’, 50 that we can find 3+ n—4 = n—1 points
ona P"~3, a contradiction. If X = P2 pP"- ?,since on a P"~ 2 we have at most
s—4 points, the remaining 4 points must be on a P2, so that we can find
4+n—5=n—1 points on a P"73, a contradiction. If X < P'y P"™" with
r=n-—3, since on a P" we have at most r+1 points, the remaining s—r— 1
points must be on a P"", so that we canfinds—r—1+r—1=5—2 points on
a P"" ! a contradiction.

Proposition 4.2 Let n>5 and X be a set of n+4 points spanning P". Then
X verifies the MRC if and only if the following conditions are satisfied:

(@) n+2 points of X are never on q P1

(b) n—1 points of X are never on a P"-3.

(¢) X does not lie on a rational normal curve.

Proof. If X verifies MRC, then a,_,=0 and (N.-3) holds for X. Since
an-1=0, X does not lie on a rational normal curve by Proposition 1.2. Also,
n+2 points of X are never on an hyperplane, otherwise X c P! P 1.
Further since (N, _ ) holds, n—1 points of X are never on a P"~3 by a result of
Nagel (see [N, Corollary 3.5]). Conversely it is clear that if n+2 points of
X are never on a P"~! and n—1 points of X are never on a P"~3 then the
points are in GL position, so that (N, -3) holds by the main result in [CRV4].
Finally a,_ , =0 follows by the above lemma and Theorem 2.1.

We can easily complete the above proposition by considering the case of
7 points in P* and 8 points in P*. We get:

(a) A setof 7 points in P2 verifies the MRC if and only if the points are not
on a rational normal curve and X tPlUP2 :

(b) Aset of 8 points in P* verifies the MRC if and only if the points are not
on a rational normal curve, X ¢ P! UP? X ¢ P2UP? and 3 points of X are
never on a line.

We remark that for 7 points in P3 the above proposition does not hold.
Take for example four points on a plane and three points on a line but out of
the plane. Then it is clear that the conditions of the proposition are satisfied
but since X = P! UP? we have a,+0 and the MRC does not hold. Similar
examples can be given for § points in P*,

We recall now that in [TV]itis proved that given s and n, almost every set
of s points in P" have the last Betti number as predicted by the MRC. This was
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known as the Cohen Macaulay type conjecture. It turns out that if
n+1<s<("%?), we expect to have a,=0.
Our Proposition 1.5 proves that a set X of s<("}?) points in P" has the
expected Cohen Macaulay type if and only X ¢ P’ UP* with k+r=n—1.
We end the paper with the following result, a special case of which we
proved in [CRV3] and [CRV4, Proposition 4.1].

Proposition 4.3 Let X < P" be a set of 2n+1—p points, L Sp<n—1. If the
points are in GL position, then a,=0.

Proof. By Proposition 1.5 it is enough to prove that X is not contained in
PrUPk with r+k=n—1.
Let
m:=max(k+1,2k+1—p)

and let us assume by contradiction that X = P*UP" ¥~ 1. By GL position we
have at most m points on P¥, hence at least 2n+1—p—m points on P* %71,
Again by GL position, on a P"*~! we have at most m’ points, where

m =max(n—k,2(n—k—1)+1—p)=max(n—k,2n—2k—p—1).
Hence we need only to prove that

2n+1—p—m>m’
or also
m+m<2n—p.

This can be done by easy computation.

We remark that the above proposition does not hold for 2n+ 1 points.
Take for example two skew lines in P* and four points on a line and four on
the other. Then it is clear that they are in GL position since seven are never on
a plane and five never on a line. But a; +0 by Proposition 1.5.

Some of the results here were discovered or confirmed with the help of the
computer algebra program CoCoA written by Giovini and Niesi (see [GN]).

Acknowledgement. The authors thank U. Nagel for some helpful discussion on the subject
of this paper.
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