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1 Introduction

Let I denote the mapping class group of the n-punctured sphere, (where n > 3)
and let p be a prime. Our main aim in this paper is to find the p-adic component
in K*(BI™) (ordinary topological K -theory). Note that for these surfaces, all the
cohomology groups are finite [3], and hence the reduced K -theory is profinite. I
had earlier hoped (see [8]) that it might be torsion-free, and hence simply a sum
of p-adic groups, but this is untrue; a counter-example is given in an appendix.
As we shall see, the set of primes p which can give rise to p-adic summands for
any given n is quite restricted.

We start from a formula of A. Adem [1]. This, in its local version, describes
the p-adic K -theory (coefficients in the p-adic closure C, of Q) of BI" when I
has finite virtual cohomological dimension (ved). Under these conditions there
is an extension

(1 l1-I">5TI'—>G—1
with I'” torsion-free and G finite. In such a situation, Adem’s formula reads:

o) KrBIN®C,= P (K;BUI'ncHm)™ oC,
-7e(7')(/')

where I'(p) is the set of elements of p-power order in I', and for any vyeI,
(7) denotes its conjugacy class, C (7) its centralizer, and H., the finite group
CO/(C(y) N I"). In our case, I" is the subgroup K" of maps fixing the n
points (‘pure mapping class group’), and G is the symmetric group X,. K" is
the group which is denoted K, in [3]; it is a quotient of the pure braid group on n
strings. Because in this case K *(BI™) is profinite, f(,,*(B I') mod torsion is a sum

of copies of Z,,. The number of copies is simply the rank of I?,,*(BF ") ® C, as
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determined by formula (2). Hence the computation of K *(B I'™) is, up to torsion,
given by the formula.

Our programme is: first, to identify the terms in Adem’s formula for each 7,
p in terms of invariant submodules of suitable groups K *(BK"), and second, to
use the character theory of the symmetric groups to compute the ranks of these
submodules. The general results, stated in sections 2, 3, are rather cumbersome,
but there are particular cases where they can be easily computed. We give some
examples — in particular the cases n = 3,...,10 — in section 3.6.

2 Computing Adem’s formula
2.1 The elements of finite order

We begin by finding I (p), the set of elements of p-power order in the mapping
class group. As a guide, we have the result of Harvey and McLachlan [7]:
Fact 1. If vy e I'™" has order r, then r divides one of n, n — 1, n — 2.

The reason for this fact is quite geometrical; it follows from another basic
result, which we shall use constantly:

Fact 2 (adapted from [3]). If v is any element of I of order r, then there is a
representative diffeomorphism f in the class y which is a rotation through 2’"77'
where (m,r)=1.

From this, it is clear that all of the n distinguished points which are not on
the axis of rotation of f can be divided into cycles of r points permuted by f.
Either 0,1 or 2 of the n points are at the poles of the rotation; hence r divides
one of n, n — 1, n — 2. As a further help in picturing the action of f we shall
suppose (reasonably, it is clear as far as the p-part is concerned) that:

(i) n—a=gqp*, where a'is 0,1 or 2, and p fq.

(ii) gp* of the n distinguished points are evenly spaced around the equator, and
the other o points, if any, are at the poles.

(iii) f which represents a class 7 of order p*, acts as a rotation through an angle

2";’,", where (m,p) =1, and s < k.

Clearly, under these conditions, a fundamental region for f can be taken to
be a sector bounded by two meridians, of angle i—’,r, which contains gp*~* of the
distinguished points on the equator.

Note. If p is odd, then at most one value of « is possible (if p = 3, exactly one).
However, we shall try, so as to be general, to consider the more complicated
case of p = 2 simultaneously.

We must now determine the conjugacy classes of such elements.If o is 0 or
2, there is a rotation which exchanges the poles and preserves the set of n points.
Its class is therefore in ™. Hence the dihedral group Dy C I'™ and if 7 is the
class of a rotation as described above, then ¥* is conjugate to v~ for all ¢.
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Proposition 2.1 These are the only conjugacy relations for p-power order ele-
ments in I'". More precisely, let p, n be such that I'* has p-power elements.
Then:

(i) Suppose either p or n is odd. Then there is a unique value of o for which
n — a is divisible by p, say equals qp*. Let f be a rotation through 3—;”‘1 as
above, and v its class in I'". Then, any ' of p-power order is conjugate to a
power of ~y; and two distinct powers of «y are conjugate if and only they are
inverse and o is 0 or 2.

(ii) If p = 2 and n is even, both the choices o = 0 and « = 2 are possible. One
gives k = 1, and an element (say ~,) of order 2; the other gives k > 2 and
a generator (say 7,) of order 2*. Every 2-power element is conjugate to a
power of one of these; two distinct powers of 7y, are conjugate if and only if
they are inverse; and -y, is not conjugate to any power of 7.

Proof. The statements about the possible values of  and p are obvious. The fact
that any element of p-power order is conjugate to a power of v follows from the
corollary of [7], p.508, with adjustments for p = 2. (That is, an element of order
m is a power of an element of order n — a, where m divides n — , and there is
exactly one conjugacy class of cyclic subgroups of order n — a..) However, the
statement also contained in [7] that all elements of order n — o are conjugate is
untrue.! In fact, if f is a rotation and h any diffeomorphism of S2 then h~!fh
is also a diffeomorphism with two fixed points. It is an isometry with respect
to the metric ~*(u), and the jacobians at the fixed points of f and its conjugate
must be the same by a standard argument. Hence, if the conjugate is homotopic
to f’, then t = +1.

Notice further that if 4 is a conjugacy of f with f~!, then & must interchange
the poles. But if & = 1, a map which does this cannot be in I™, since one pole
is a puncture and the other isn’t. Thus part (i) is established. All of part (ii) now
follows by the same methods, except for the statement that 71 is conjugate to
no power of ;. This is true since even their images in X, are of different cycle

types, and so not conjugate there. In fact, one fixes two elements, the other fixes
none.

It follows from this proposition that we can count the number of conjugacy
classes of elements -y of order p°. The result is a little complicated owing to the
variety of cases; it is the following.

Proposition 2.2

(i) Ifpisodd, n=qp*+c, and 0 < s < k then there are 1 — Dp*~! classes
of order p* in I'" ifa=0,2, and (p — )p* ' ifa = 1.

(ii) Ifn=q.2*+1and 0 < s < k, then there are 2*~" classes of order 2* in I'"".

{iii) If n = q.2% + o where k > 1 and a = 0,2, then there are two classes of order
2 and 2°=2 classes of order 2° for 1 < s <k.

! This is confirmed by Bill Harvey.
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Proof. This follows immediately from Proposition 2.1, and well-known facts
about elements of p-power order.

2.2 The centralizers

We now have to find the centralizer C(7) in I™ of a rotation f in the isotopy class
v of order p*. Suppose, then, that 4 : 2 — 2 commutes with £, i.e. f oh = hof.
Let G be the cyclic group generated by f; then h defines a diffeomorphism 4 of
the quotient S?/G. We can regard S2/G as a sphere with distinguished points at
the two poles of the sphere. These may be of puncture type (if the pole is already
a distinguished point), or elliptic of order p* (if not). To these we must add the
gp*—* distinguished points of the fundamental region; the result is a sphere §
with gp*=* +2 such points. (For the basics of this theory — and in particular for
a justification of the implied claim that an element in C (y) is represented by a
genuinely commuting map — see Harvey and McLachlan [7])

It is natural to look at the mapping class group of this surface. This is not
exactly the centralizer, as we shall see; but for the moment we concentrate our
attention on the subgroup C(y) N K".

Propositiokn 2.3 The intersection C(y) N K™ can be naturally identified with the
group K% ~"*2 of maps of § fixing the above distinguished points.

Proof. First, given a map h which commutes with f and fixes all n points, the
factored map & must fix all those distinguished points of S which come from S2.
In particular, it fixes all those points which are not at the poles (gp*—* of them).
If o =2, it also fixes both the poles; if a = 1, it fixes one and hence necessarily
the other.

If o = 0, we must examine the possibility of / exchanging the poles of §,
which are of elliptic type. If this happens, choose a sector 7' of S2 as a funda-
mental region containing points (1,2, ...,gp* ™). A map h which exchanges the
poles can be thought of as exchanging right and left sides of this region, moving
the boundary, say, anti-clockwise through a half turn with points on the right
edge moving down and those on the left moving up. It is easily seen that such
a map does not lift to S2, since the right side of one fundamental region is the
left side of the next.

Note moreover that:

(i) any A which fixes these points lifts to an A which commutes with f (and
so defines an element of C(v)); and although several such lifts exist, we
can choose h uniquely so that it fixes all n points on S2. This is standard
covering theory.

(ii) similarly, any isotopy of A’s, relative to the distinguished points, lifts to a
similar isotopy of A’s.

To find the general element of C(7) we need first to ask which maps A of
the gp*~* + 2-punctured sphere lift to maps £ commuting with f. The answer is
given by:
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Proposition 2.4

(i) Suppose p* #2ora=1.Thenamaph :5 — § liftstoan h : S? — §?
commuting with f — and hence defines an element of C(y) — if and only if
h fixes the poles of the quotient sphere §.

(ii) If p* =2 and o # 1, then h defines an element of C(vy) if and only if it either
fixes or exchanges the poles of §; and maps of both kinds exist.

Proof. First, for A to lift to a diffeomorphism of S, it must preserve the orbit
structure (of the orbit space §). In this case, this means that it either preserves
the poles or interchanges them — the latter only being allowed if the poles are
indistinguishable, i.e. a # 1. Now, a map which interchanges the poles does lift
to an h with the same property; but as in the proof of Proposition 2.1., such an &
conjugates f to f ~!, and so does not commute with f unless p* = 2. (Notice that
h descends to § if hof =f* o h for some ¢.) On the other hand, if & fixes the
poles, we can again construct a lift £ by a covering argument which commutes
with rotation through f}—’,’, i.e. with f. This proves part (i).

For part (ii), suppose p* =2 and a # 1. Then we can show as above that a
map h which exchanges the poles lifts to an A which commutes with +. It remains
to show that such maps exist. This is easy; suppose f € 7 is a rotation through an
angle 7 about the polar axis, and let 4 be a rotation in the dihedral group which
permutes the equatorial distinguished points and exchanges the poles. Then A, f
commute so the class of 4 is in C(v).

The lift & which we have constructed is not unique, since it is easy to see that
h of" is another lift, for t = 1,...,p* — 1. On the other hand, an isotopy of &’s
does lift to an isotopy of h’s. These two remarks make it possible to pass to the
next stage, the precise identification of C(y). With this, we can simultaneously
describe the group H. used in Adem’s formula. To simplify notation, let A be
the subgroup of %" 7"#2 which fixes two given points (in our notation, the north
and south poles). We can think of it as the inverse image, in the exact sequence
analogous to (1), of Tt~ C Zgpe—syp. Also, if p* = 2, let A be the subgroup
which fixes the poles as a subset. This is the inverse image of X, -1 x 2.

Proposition 2.5

(i) Suppose either p* #2 or o = 1. Then there is an exact sequence:
(3) 1-Z/p* >C(y)—A—1
This, when we quotient by C(y) N K" gives a sequence of finite groups:

-1

(4) 1 — Z/p‘ — Hn, % Z‘qpk—x

(ii) If p* =2 and o # 1, the same sequences hold; but in (3), A must be replaced
by A, and in (4), X qpt—s must be replaced by X1 X Xy,
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Proof. In fact, the map from C(y) to A is that which sends the isotopy class of
h (in the preceding discussion) to that of 2. We have seen that this is an epi-
morphism, but that to every &, there corresponds a Z/p* of h’s. This establishes
sequence (3); and (4) follows immediately. The proof in the exceptional case is
similar.

It is not too difficult to identify H., as the subgroup of Xgpx consisting of
permutation matrices of form A ® B, where A is a cyclic permutation in Z/p* C
Zps, and B is arbitrary in Xj,—..

2.3 The main result

We are now almost in a position to put everything together; that is, to translate
Adem’s formula (2) into our specific situation, using the descriptions we have
obtained of the terms in it. One final point remains to be noted; that the subgroup
Z/p* C H, acts trivially on the K -theory of the classifying space BK%" *+2. In
fact, the cyclic subgroup is generated by -y, and by definition, its elements com-
mute with those of K%' ~"+2 ¢ C (7). Hence, the action of H., on the classifying
space reduces to that of the quotient, i.e. of Zgpt—s O Ly pe1 X X, at least as
far as the K-theory is concerned. With this in mind, we can state:

Theorem 1 Let I'™, p be as before. Then
K;(BI")®C, =K (BK")*" ®C, @ X
where
(i) Ifp is odd and n = gp* or qp* +2,
] ‘
X= @ -1)p" (K*BK¥ ) Tp—) @ C
@192@ P LK )Z#-)® C,
(ii) If p is arbitrary and n = qp* + 1, X is as in (i) but with each factor doubled
(iii) fp=2andn=q.2% k > 1,
k
x={(® 272 (K; (BK )T
§=2
@(K;(BKQ‘Z""'H)(E,,.zk—I XEz)) ® (Kz*(BKq-zk_l+I)(Eq_2k—l_IXEZ))} ® C,

(iv) Ifp=2andn=q.2%+2,k > 1,
k
A= {(69 2 72 (K3 (BK9? )Tyt ))
=2

GB(K;(BK‘I'Z‘_I+2)(E'I'2'_' X):z)) ® (Kz*(BKq-zk"'+3)(2q.2"-'+l XEz))} ® C,
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(v) X is zero otherwise.

(Note the small but significant difference between cases (iii) and (iv), arising from
the relative placing of the 4k part and the 4k + 2 part.)

The proof of this result is a straightforward application of the results we have
derived in Propositions 2.1 to 2.5 to Adem’s formula (2). The interesting thing
about it is that all of the modules of invariants which enter in the terms we have
called ‘X’ are of the same type: essentially, the invariants of X, _ or its product
with 5 in K*(BK")®C, forn = 3,4, .. .. It is the ranks of these modules which
we shall set out to find in section 3.

Note. The above terms account for the whole reduced K,-theory of BI™, which
is the interesting part. The remaining term K, (BK ")%» is just the unit. In fact,
its rank over Z, is independent of p, and so equals the rank of K*(BK"; Q)*".
Using the spectral sequence from H'(BX,; K/ (BK";Q)) to K*(BI™;Q), and the
fact that the K -theory of BI™ is profinite we find that this rank must be 1. It is
then easy to identify the summand with the unit.

3 The invariants
3.1 Description of the classifying spaces

The main result of this section is a much simpler one than Theorem 1, and can be
immediately stated, now that we know what we are looking for. It is as follows:

Theorem 2 Let r,, s, be the ranks of (K°(BK"))**~2, (K'(BK"))*"~* respec-
tively, where n > 3. Thenr,+s, =n—2; and r, —s, is 0 (n even) and 1 (n odd).
In other words:

(i) Ifn=2m,thenr,=s,=m—1;
(ii) Ifn=2m+1, thenr,=m, s, =m — 1.
Correspondingly, let 7,, 5, be the ranks of the invariants of X,_, x X. Then

= = _[1 ifn=3(mod4)

Tn = n {O otherwise
Fo4E = 2k ifn =4k, 4k + 1, or 4k +2
S 2k +1 ifn=4k+3

In consequence we have:
(iii) If n = 4k, 4k + 1, or 4k +2, then ¥, =k, 5, =k
(iv) Ifn =4k +3, then#, =k + 1, 5, = k.

The method of proof of Theorem 2 is quite standard; we find the fixed point
sets of the elements of X,_, and X,_, x X, on the space BK" and deduce the
Lefschetz numbers. From these the characters of the graded representation space
(K*(BK™)) follow, and they in turn give the rank of the invariant subspace (the
number of copies of the trivial character). The one problem is that the Lefschetz
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formula only gives us the difference of the ranks (and so r, — s, etc.); to find
the sum we have to twist the elements of the symmetric group.

We shall use as a starting point the description of the classifying space BK"
given in [3]. For any topological space X, (we shall consider only X = §2
and X = R?) let F,,(X) denote the configuration space of sequences of n distinct
points of X, (xi,...,x,), topologized as a subspace of the product X". The group
SO(3) acts freely on F,(S?) in particular, and the quotient space F,(S 2)/50(3)
is a model for BK™. The action of X, on this space is the obvious one which
comes from permuting the n points.

Because we are mainly interested in subgroups of X, _,, it is useful to simplify
this particular model by fixing one of the points. In fact, let py be a fixed basepoint
on 52, e.g. the north pole. SO(3) acts transitively on S2, so that any point of
F,(5?%) is SO(3)-equivalent to one of form (xi,...,x,_1,po). Furthermore, the
SO(3)-stabilizer of such a point is clearly SO(2). Identifying S2 \ {po} with R?
by stereographic projection, we obtain:

Proposition 3.1 F,(S%)/SO(3) is homeomorphic to the quotient F, _(R?)/SO(2),
where SO(2) acts in the obvious way, and the subgroup £,_, C X, acts by per-
muting the (n — 1) points.

Note, then, that while we have sacrificed some symmetry in obtaining this
simpler model, we still have the symmetry which is usually needed. This is going
to be useful. (As the referee has pointed out, if we leave the action of X, out
of the picture, F,(S2)/SO(3) has a very simple description. In fact, F,(S2) is
homotopy equivalent to the product of SO (3) with F,,_3(R?\ {0, 1}), and from this
we can deduce a homotopy equivalence from the quotient BK" = F, (52)/SO(3)
to F,_3(R*\ {0, 1}). The cohomology of configuration spaces for R? \ {points}
has been studied, and we can derive the K -theory of BK" from this.)

Note also that the space F,_;(R?) is well-known; it is the classifying space
for the ‘pure braid group’ P,_; [6]. Of course, this relationship is not accidental
- see [3] for more details.

3.2 Fixed point sets for X, _,

We next look at those elements of X,_, C X,_; acting on F,_;(R2)/SO(2)
which have non-empty fixed point sets. Let o accordingly be a permuta-
tion in X, 5, and denote by [x] or [xq,...,x,_;] the SO(2)-orbit of (x) or
(x15.--,Xn—1) € F,_1(R?). Then the action of Xn—2 is given by:

o.lxty . xno1] = oy - - Xom—2)s Xn—1]

If o fixes such an orbit, it must be because there is a rotation p in SO(2) such
that p(x;) = x5y for 1 <i <n —2; and p(x,_1) = x,_;. Hence,

(@) x,—1 =0, or ¢ is the identity and so is p;
(b) p is a rotation of finite order k dividing n — 2;
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(c) o is a product of ";2 disjoint k-cycles.

These conditions of course strictly limit the number of elements of Yo
which can have non-trivial fixed point sets. Our next task is to find what these
sets look like. For this, we need some notation. Let E(g, k) C F’,,_l(Rz)/SO (2) be
the fixed point set of a product of g distinct k-cycles as above, where gk =n-—2.
We call the product of cycles o; since it is unimportant which ¢ we choose in
its conjugacy class, we set:

o=(1,2,...,k)...((qg — Dk +1,...,qk)

and E(q, k) is the set {[x] = [x1,...,xgx] : o(x) = p(x)} where p is some rotation
of order exactly k. Now there are ¢(k) such rotations (Euler’s function); and a
given [x] can only belong to one p. Hence, E(g,k) splits into ¢(k) disjoint
pieces — we shall see they are components — belonging to the different p’s.
Call one such piece E(q, k). We shall also for convenience make the obvious
identifications of R? with C and SO(2) with U (1), so that p is multiplication by
e@, where (m, k) = 1.

Lemma. A point [x] of E(q,k)o is completely determined by the sequence
(&) = (X1, X1y - -, Xig—1yks1)

For k > 1 (the case where o is non-trivial), we can make this determination
unique by further requiring x, to lie on the positive real axis R*.

Proof. The key is in the formula (derived from o(x) = p(x))

s—1 2As—Dmme
Xrkws =P (Xks1) =€ Xy

valid when 0 < r < g, 1 < s < k. From this, it is clear that (%) determines
(x). However, it is more than we need to determine [x], which is a U (1)-orbit
of (x)’s (note that if one of them satisfies o(x) = p(x) they all do). None of
them can be 0, since x,_; is by remark (a) above. We can accordingly choose
x; arbitrarily to be on the positive real axis.

(Arguments of the above type, which one could describe as ‘gauge fixing’
by analogy with the physical procedure, will be frequently used in future, and
I shall not go through a detailed justification in each case.) We can now — for

k > 1 — determine E(q, k) by induction on g. If q = 1, then (%) consists of
only x;, so E(1,k)o = R* is contractible. Given (&) determining (x) and so [x]
in E(q,k)o, we want to find out how many sequences of g + 1 points (§) in
E(g +1,k)o begin with the g points of (). The only choice we can make is that
of the last coordinate Yqk+1; but this is restricted by the condition that it must not
coincide with any of the gk points in (x), or of course with zero. Hence, Vgk+1
lies in C with (gk + 1) points removed, which has the homotopy type of a wedge
of (gk + 1) circles. The consequence of this is:
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Proposition 3.2 For any q > 0, and for k = 2,3,..., there is a fibration up to
homotopy

k+1
5) Vst = B+ 1,k00 - E(g, k)
This has a cross section.

Proof. That the sequence (5) defines a fibration is standard; see [6] for the anal-
ogous result for ‘braid spaces’. We only need to establish the existence of a cross
section. Let, then, (£) = (x, ... »X(g—1)k+1) define a point of E(g, k), as before.
Set

Yake1 = 1+sup{|xps|:r=1,...,g -1} eR

This is clearly continuous, and defines a point not equal to any of the points in

(x).

Corollary. For k = 1,2,3,...,E(q,k) has exactly ¢(k) components. Each is
homotopy equivalent to a finite C W-complex, with Poincaré polynomial equal to

6) I+ +D)..)1+({(g — Dk + 1))

Consequently the Euler characteristic of the whole set E (g,k) is p(k).(—k)a~!
(g — 1)! The important and non-trivial point here is that I have included the case
k =1 in the general scheme. To check that this is valid, note that E(n — 2, 1) is
the whole of F,_;(R?)/SO(2), i.e. of BK". We can use slightly more complicated
geometric arguments than those above to deduce that the formula (6) gives the
Poincaré polynomial of BK" when we set k = 1; or we can borrow the result
from [6], for example (where it is found using braid groups). I shall do the latter,
leaving the former as an interesting exercise.

3.3 The twisted version

As was mentioned above, the results of the previous section need to be supple-
mented by ‘twisted’ fixed point sets which will allow the calculation of the sum
of even and odd invariants. The twisting we have in mind is simple. The group
O(2) acts on F,_;(R?), with SO(2) as normal subgroup.’ Hence the quotient
group, which is cyclic order two, acts on the orbit space F,_1(R?)/SO(2) by an
involution which we shall call 7. The action of 7 is easy to describe; given [x]
as above, represented by (x) = (x;,...,x,_;), 7[x] is obtained by reflecting the
points of (x) in an arbitrary line / through the origin. Different choices of the
line ! give representatives (x) which differ by a rotation, and hence define the
same [x]. Our aim is now, given any ¢ in X,_,, to find the fixed point set of the
composite o7 in F,_;(R?)/SO(2). Alternatively, using 72 = 1, we are looking
for the set of points which satisfy

) olx] =7[x]
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Lemma. The set of points which satisfy (7) is non-empty if and only if 0 is a
product of disjoint 2-cycles.

Proof. Let [x] be any point in the set, and let (x) = (x;,...,x,_;) be a repre-
sentative. From the definition of 7, there is a line / such that Xg(r) 1S Obtained
from x, by reflecting in [, for r = 1,...,n — 1. It follows immediately that o is
of order two, and so a product of disjoint 2-cycles.

If o is the identity, then all the points (x;,...,x,_;) are on the line /. We
can rotate so that [ is the real axis R, but there is still an ambiguity in the choice
of representative, since we could multiply all (n — 1) points by —1. A very
simple analysis similar to the ones we have already done shows that the ordered
sequences of (n — 1) distinct points in R form a space of (n — 1)! contractible
components. Taking account of the ambiguity, we find %(n — 1)! contractible
components for the set of solutions of (7) in this case. (We must suppose n > 2,
but this is always true in applications.)

Next, let o consist of k > 0 disjoint 2-cycles; for definiteness say

o=(1,2)...(2k — 1,2k)
Then, rotating so that / is the x-axis again, we have:

(i) xa, is the reflection of x;,_; in the real axis (its complex conjugate, if you
like) for r =1,... ,k;
(ii) x, is in R for r > 2k.

We can now remove the remaining ambiguity by requiring x; to be in the
upper half plane. Let E (k) denote the set of solutions of (7) when o is composed
of k disjoint 2-cycles. Then we have the following description of the E(k)’s:

Proposition 3.3

(i) E(0) consists of %(n — 1)! contractible components.
(ii) If k > O, then E (k) consists of 2*=".(n — 1 — 2k)! components. Each of these
components has the homotopy type of Fi.(R?).

Proof. We have already proved (i). For (ii), note that we have 2¢~! choices
of how to dispose x3,xs,...,x%_; between upper and lower half planes; as
usual, these give us a division of E(k) into 2¥~! homeomorphic subsets. If we
concentrate on the subset where x;,Xx3, ..., Xy are all in the upper half plane,
we see that any point of E (k) is determined uniquely by these k distinct points
and by xog41, - . ., Xn—1 on R. The first k points define an element of 7} (R?) (since
the half plane is homeomorphic to R?), and the last (n — 1 — 2k) give us a space
of (n — 1 — 2k)! contractible components.

There is now an important simplification which can be made, from the point
of view of the Lefschetz number. As before, we can construct the components
Fi(R?) inductively as fibrations with wedges of circles as fibres; indeed this is
done in [6]. However, all we need to know is
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Proposition 3.4 F,(R?) is simply R%, and so contractible: while for k > 1,
Fi(R?) has a factor (1 + t) in its Poincaré polynomial. In particular, its Euler
characteristic is 0.

Proof. See [6].

3.4 The dihedral invariants — untwisted

In this section and the next, we follow through the preceding analysis for the
group X, x X. Here, it is no longer possible in general to simplify by reducing
from S? to R?, since we may have no fixed points. The problem is to determine
the invariant subsets of elements of X,_, x % on BK"~2; and since we have
done this for elements of type (o, 1), it remains to do it for elements of type (o, €),
where € exchanges the last two points x,_;, xn. Given any o € X, _,, then, we
must determine all (SO(3)-equivalence classes of) sequences (xi,...,x,) such
that for some rotation p:

p(xla LR ,x,,) = (xa(l)'r R axa(n—Z);xnaxn—l)

Now, any rotation has an axis and an angle; and its angle determines its order.
Since p exchanges two points, its angle must be 7 and its order 2, so ¢ also has
order 2. In other words, it must again be a product of disjoint two-cycles. Also,
p» which is not the identity, fixes exactly two points and so ¢ cannot fix more
than two of the x;’s.

We now have to separate the cases of n even and odd. If n is odd, say
n —2 =2k +1, then o must be a product of k two-cycles, say o = (1,2)...(2k —
1,2k). Hence, p fixes x,_,. Thinking of S2 as the Riemann sphere, choose (x)
in its SO(3)-orbit so that x,_, = oo, and Xn—1 is on the positive real axis. (p
is accordingly multiplication by (—1) in the plane.) We then, as usual, have to
choose xj,x3,...,x_; in R — {0}, at each stage missing the points already
chosen. This means that x; is in the complement of 3 points (~ wedge of three
spheres), x3 in the complement of 5, and so on. By an argument similar to that
of proposition 3.2., we obtain a fixed point set with only one component, of
Poincaré polynomial

P(t)=(1-3)(1 - 50)...(1 - 2k + 1))

whose Euler characteristic is accordingly x = (=2)k k!

If n is even, we have two possibilities. Either two of the points (x;) are the
poles of p (and so fixed by ), or none are. If n —2 = 2k, the first case corresponds
to o =(1,2)...(2k — 3,2k — 2), the second to o = (1,2)...(2k — 1,2k). In the
first case, we can take xy_; = 0o and xy = 0, with p acting on the plane as
before; and we can then fix the last two points as before on the real axis. By a
similar argument to that above, we have x = (—2)t~1.(k — 1)!

In the second case, we need more care (essentially because we have no obvi-
ous way of choosing between the poles of the rotation). We proceed differently;
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let E(k) be the fixed point set of (1,2)...(2k — 1,2k) in Fx(52)/SO(3), and
consider the maps p; : E(k + 1) — E(k) (fibrations as before) which arise from
leaving out the last pair of points. If k > 1, SO(3) acts freely on Fy(S2) and
we can find the fibre of p; simply by taking the fibre of the corresponding map
of fixed point sets before quotienting by SO(3), i.e. the set of fixed points in
For2(S?) which maps into the point sequence (xi, . . ., x). Such point sequences
are determined by x4, which misses 2k + 2 points (including the two poles of
the rotation), and so the fibre we want is simply a sphere with (2k + 2) deleted
points ~ wedge of (2k + 1) circles.

This argument does not apply to give us E(2). Here we choose the poles
of the rotation to be 0,00, and fix x; on the positive real axis; then x, = —X1.
We are left with a choice of x3 in R? with three deleted points, but we still
have one further symmetry possible arising from interchanging the poles. This
acts on R?\ {0} as inversion. Identify the punctured plane with the wedge of
three circles; it can be seen that the inversion is homotopic to a rotation on two
of them, and to reflection in the axis in the third. Hence the quotient of the
punctured plane by an inversion can, up to homotopy equivalence, be identified
with the connected union of two circles and an arc.

The end result, then, is that in this case the Poincaré polynomial of E(k + 1)
(which is the one we are looking for, the invariants of (o,€) on BK™) is

(1 =201 = 56)(1 = 78)...(1 — 2k + 1))

and the Euler characteristic is —(—2)f~! k!
To sum up the results of this section, we have:

Proposition 3.5

(i) Ifn isodd, n =2k +3, the fixed point set of (0, €) on BK™ is empty unless o is
a product of k disjoint two-cycles. In this case the fixed point set is connected
and its Euler characteristic is (—2)* k!

(ii) If n is even, n = 2k + 2, the fixed point set is empty unless o is a product of
(k — 1) or k disjoint two-cycles. In both cases the fixed point set is connected;
its Euler characteristic is (—2)*~'.(k — 1)! in the first case and —(—2)k~1 k!
in the second.

3.5 The dihedral invariants - twisted

The last fixed point sets which we need to find are the twisted sets for pairs
(0,€), where o and € have the same meaning as in the previous section. The
problem, then, reduces to finding points (up to SO(3) action) (xy,...,x,) such
that for some 7 of determinant —1 in 0(@3),

TX1y -3 Xn) = (Xo(1ys « - - 3 Xo(n=2)s Xny Xn—1)

A first observation is that any such 7 is composed of reflection in some plane T
and rotation through some angle (perhaps zero) about the axis orthogonal to T';
and since 7 has finite order, so does the rotation.
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Lemma. If the angle of rotation of T is not 0, then the axis must have Xn—1,%Xn QS
its poles.

Proof. In fact, 7 fixes x,_; + x,. If the angle of rotation is not 0, then 1 is
not an eigenvalue of 7, so x, = —x,_,. Hence Xn—1,Xn are eigenvectors for the
eigenvalue (—1), and so poles of the rotation. (We include the case of the map
—ldy2, whose angle is 7, and whose poles are arbitrary.)

The lemma implies that we need to consider the cases of zero and nonzero
angle separately. The first we have, in the main, considered already. In fact, 7
and hence o has order two, and we can find the fixed points of (o, €) using the
results of section 3.3. These imply that if o is the identity, then there are (n — 1)!
contractible components, and that if the number of two-cycles in o is > 0, then
x = 0 provided that one of the n points is fixed under o. (This was always true
in section 3.3.) However, if n = 2k +2 is even and o consists of k two-cycles, we
can’tdo any of the ‘gauge fixing’ we used earlier; 7, the reflection in T, exchanges
the points in pairs. For example, in the case of o = (1,2)...,(2k — 1,2k),
T(x2i—1) = x2; and conversely (fori = 1,...,k).

We proceed as follows. Take T to be the equator and x; in the upper
hemisphere. Then each x,;_; determines x,;.There are 2* ways of distribut-
ing x3,Xs,...,x4 between the hemispheres; they give rise as usual to 2*
homeomorphic components of the fixed point set. The component in which
all are in the upper hemisphere is now familiar; it consists of sequences
(X1, .., Xzk41) in the upper hemisphere, quotiented by the action of SO(2). This
is Frs1(R?)/SO(2) = BK**2. Hence its Euler characteristic is X = —(=2)k.(k—1)!

We now consider the case where the angle of rotation of 7 is not zero.
Suppose it is :”‘T”, where (k,m) = 1. Then 7 has order 2m if m is odd, and m
if m is even; but in either case, the restriction of T to the equatorial plane has
order m.

We therefore have the following two possibilities for m and o

(i) m is even and o is a product of disjoint m-cycles
(ii)) m is odd, and o contains either m-cycles (for points on the equator) or
2m-cycles (for points not on the equator) or a mixture.

The last possibility seems unnecesarily complicated. Fortunately, we can dis-
pose of it as follows:

Lemma. In case (ii) above, if o contains both m-cycles and 2m-cycles, then the
Euler characteristic is zero: x((BK")@97) = (,

Proof. Suppose we are looking for the fixed points [x] of a permutation such as
(1,2,....m)m+1,m+2,...,3m)(...)(n — 1,n)

Fix x,_1,x, at the poles; by the preceding remarks, xi, ..., x, must be on the
equator, and if we fix x;, there are no further degrees of freedom. We then find
that x,,.; can be anywhere in one of the hemispheres, except at the poles. Hence,



p-adicK-theory for punctured spheres 625

it can be chosen in a punctured disk, which as usual leads to Euler characteristic
Zero.

There are therefore (to rephrase our previous statement in the light of the
lemma) three possibilities for o. It is in any case a product of g m-cycles, where
gm =n — 2; but

(i) If m is odd, the angle of rotation is %1’-, and all the points x; are on the
equator;

(ii) If m = 4s, the angle of rotation is
(except at the poles);

(iii) If m =4s + 2, then either the angle is %r—, and the points x; are as in (ii),
or the angle is (g‘—fl) and the points x; are neither at the equator nor at the
poles.

2k

<4 and the points x; can be anywhere

In each case, we have ¢(m) distinct choices for k.

Note. The case m = 2 is special, although it falls nominally under (iii). Here,
the first possibility is of an angle m, i.e. a non-trivial rotation; but the second
has angle zero. This therefore is contained in our earlier discussion, where we
assigned to it the Euler characteristic x = (—2)*~'.(k — 1)! We shall see that this
agrees with the general formula.

We consider these three possibilities in relation to the Euler characteristic of
the fixed point set. In case (i), we are in a familiar situation. We can fix x; to
be, say, at (1,0,0). Then we have arbitrary choices for Xmtly - -2 X(g—Dm+1, all
on the equator. We find that the fixed point set for a given k has m9=!(g — 1)!
contractible components, and the total Euler characteristic is qﬁ(m).mq_‘(q - 1!
This includes m = 1 which we have already considered as a special case.

In case (ii), we can fix x; so that its x-coordinate is positive and its y-
coordinate is 0. Then X, for 1 < r < g is in a sphere with (rm + 2) points
deleted. By the usual argument we find that each component of the fixed point
set has Poincaré polynomial equal to

(I =(@m+De).. )1 = (g — m+ 1))

and the total Euler characteristic is ¢(m).(—m)?~!(g — 1)!

The first of the two situations in case (iii) is just the same as case (ii) and
gives us the same answer, ¢(m).(—m)?~'(g — 1)! for the Euler characteristic. In
the second, each orbit (for example (x1,...,x,)) consists half of points in the
upper hemisphere and half of points in the lower — (25 + 1) of each. We fix x;
as in case (ii); then we must choose x4+ in a disc with (2s +2) points removed,
and generally x4 in a disc with 7(2s + 1) + 1 points removed. Furthermore, for
each of the g orbits we have two possibilities for its hemisphere. So the fixed
point set consists of ¢(m).29 components, each with Poincaré polynomial

I-@2s+Dt)...(1 —(g—D@2s+ 1))

and its Euler characteristic is ¢(m).(29)(—(2s + 1))?~!(g — 1)! which is the same
as 2¢(m).(—m)?~'(g — 1)! Here, we note that the ‘special’ case of m = 2 and
zero angle gives us the same result, as calculated above.
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We summarize all these results as follows:

Proposition 3.6 The invariants of (o, €)r acting on BI, are non-empty only if o
is a product of g m-cycles, where n — 2 = gm and m = 1,2,.... In this case,

d(m).mi~ (g — 1)! if m is odd
X =19 ¢m).(=m)¥~'(qg — 1! ifm =0 (mod 4)
3¢(m).(—m)"“1(q = D! ifm =2 (mod4)

3.6 Lefschetz numbers and characters

We next want to put the information on fixed point sets to work to find infor-
mation on the characters of X, _, on K*(BK"). To simplify matters, we shall
consider rational coefficients Q, where the K -theory and the cohomology are
naturally identified (see [2]). We can easily extend to any field of characteristic
zero, in particular to C, by tensoring. We consider the following situation: X is
a finite complex, and f : X — X is a simplicial homeomorphism, which nec-
essarily has finite order. Subdividing if necessary, we can suppose that for any
simplex s, f(s) meets s in a face, so that the fixed point set X/ is a subcomplex.
We don’t assume that X/ is discrete. The Lefschetz number is defined in one
of two equivalent ways. The K -theoretic version, which is what we eventually
need, is that if

ta(f) = Tr[f* : K*(X) — K*(X)] (@=0,1)
then

(®) L) = 10(f) — 1 (f)

while the equivalent Q-cohomology version, which we shall use for the next
proof, is the usual alternating sum of traces on cochain or cohomology groups.
The result we require is

Proposition 3.7 Under the above conditions, the Lefschetz number L(f) of f
equals the Euler characteristic x(X') of the fixed point set.

Note. This is a well-known result, and is an exercise in Tony Armstrong’s ‘Basic
Topology’. However, it’s no work to supply a proof here, and I can’t find an
accessible one. (In particular, it isn’t easy to unearth in Lefschetz’s book.)

Proof. The map f, being simplicial, induces an endomorphism of the cochain
complexes (Q coefficients) C*(X), C*(X/), C*(X ,X’), and of the short exact
sequence which connects them. However, under these conditions, the Lefschetz
number, like the Euler characteristic, is additive:

©) L(C*(X)) = L(C*(XT)) + L(C*(X, X))
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But now clearly the Lefschetz number is zero for C*(X,X/), since there are no
fixed simplexes; while for C*(X/), f is the identity, so its Lefschetz number is
the Euler characteristic of X/. This, using (9), establishes the proposition.

Unfortunately for the application of this result, at the moment both our space
X = BK" and its fixed point sets are far from finite,although they are up to
homotopy. However, this is not a serious problem. We know that F,(S2) is
contained in the finite complex []" S2. We can make the action of SO(3) x X,
on this simplicial, and so give the quotient ¥ = ([]" §2)/SO(3) the structure of a
finite complex in which X, or F,(S 2)/S0(3) is contained as the complement of a
subcomplex Yp. The action of X, on everything is also simplicial by construction.
Take a fine enough (equivariant) subdivision, and let X be the complement of
an open regular neighbourhood of Yj in Y. Then not only is the inclusion of X
in X a homotopy equivalence, but the same is true of the fixed point sets for
the action of X, on X. We can therefore substitute the Euler characteristics of
fixed point sets derived in 2.2., 2.3., into the formula for the Lefschetz number
which we just obtained for finite complexes. We shall express this in terms of
characters as follows.

Proposition 3.8 Let A = K°(BK";Q), B = K!(BK"; Q). Then, for o € X,

(10) Tra(o) — Trz(0) = x((BK")?)

(11) Tra(o) + Trp(o) = x((BK™)T)

where T is the involution defined in 2.3., and the fixed subspaces are the ones we
have already studied.

Proof. Equation (10) is simply a restatement of what we have shown already.
Equation (11) adds a new ingredient, essentially that the trace of o7 on K *(BK")
is (—1)™ times the trace of ¢. This in turn follows from:

Lemma. The induced homomorphism T* in cohomology of BK" is (—1)? on HY.

Proof. Use induction on n. The forgetful map 7 from BK" to BK"~! commutes
with 7, as does, by good luck, the cross section we constructed. It’s therefore
enough to look at the action of 7* on a fibre which is fixed under 7, say at

7 X1 ] € FR(8%)/SO(3)

with all the x’s on the equator. Here 7 is the reflection in the equator, acting on
the complement of the (n — 1) points. Identify this space as usual with the wedge
of (n —2) circles and we see that 7* = —1 on H! of the fibre. Since this is all
the fibre cohomology, the lemma follows and hence so does Proposition 3.8.

We conclude this section by recalling a basic result from character theory.
Suppose G is a finite group, and M a finite rank module over kG, where k is
a field of characteristic zero. Then the rank of the invariant submodule M is
equal to
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> T (y)

Y€EG

- G]

where |G| is the order of the group. (For a proof of this see e.g. [10].)

3.7 Proof of the theorem

We now have the material necessary to prove Theorem 2, with a little compu-
tation. We begin with a result which relates the numbers Tns Sns Tn, 5, to Euler
characteristics:

Proposition 3.9 Let r,, s,, 7,, 5, be as in Theorem 2. Then

(13) R 6222 X(BK™Y")
(14) R T E%j X(BK"Y)
(15) =i = e ag::‘_z(X((BKn)a) + X(BK™)9)
R =) ez:: X(BK™Y'™) + X((BK" )"

Proof. First, equation (12) identifies r, and s, with the sums over X, of the
appropriate traces, divided by |X,_,| = (n — 2)! The result for 7, and §, is
similar, with the group X, _, replaced by X,_2 x X, whose order is 2.(n — 2)!
Next, proposition 3.6. shows that the difference (resp. sum) of the traces of any
o on K% K is equal to the Euler characteristic of the fixed point set of ¢ (resp.
o7) on BK". This establishes the proposition.

We now need to compute the right hand sides in the four formulae (13)-(16)
using what we have already found about the Euler characteristics of the fixed
point sets. The first result is:

Proposition 3.10 We have

Z X(BK™Y) = {gz —2)! ifnisodd

if n is even
ocEX,
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Proof. Write S, for the required sum. Then we know that the only ¢’s which
contribute to S, are products of k-cycles, where k divides (n — 2) For each such
k, we add a term equal (in the terms of section 3.2.) to x(E (= 2 k).

We return for the moment to writing g for A ~2_ We have by the corollary to
Proposition 3.3:

(17 X(E(q,k)) = ¢p(k).(—k) 9~ D(g — 1)!

This must be supplemented by a calculation of the number of conjugacy
classes of the given type. The standard formula (see [9]) gives us this in the form
k,, , Substltutmg this in (15) and cancelling, we find that the total contribution

from products of k-cycles is ¢(k).(—1)9~D(n — 3)! Hence dividing by (n — 2)!

(18) 3 XWBK"Y )=~ -3) S Gk)-DF

0EX, 2 kln—2

The — sign arises because we have (—1)?~! in (15).

Now if n, and hence n —2, is odd, so are all factors k and every term in (18)
is positive. Using the well-known formula " ¢(k) = n, we obtain proposition

k|n

3.10 in this case. |

Next suppose that n is even, say n —2 = 2'.m with m odd. Then every factor
k|m gives a sequence of factors k,2k,...,2" .k of n — 2. Now note that o 2 is
even for i < t and odd for i =¢; so the sign in the sum (18) is negative m the
first case and positive in the second. Hence the contribution of these factors to
the sum is —@(k) — ¢(2k) — ... — #(2"~ k) + #(2' .k). This can be easily seen to
be zero from general properties of ¢. This completes the proof of the proposition.
Putting propositions 3.9. and 3.10. together, we have the formula of theorem 2
for r, — s,.

Next, we prove the formula for r, + s,. Considering the fixed point sets of

o7 (equation (14)), we know that the only nonzero Euler characteristics occur
when:

(@) o =1, when the fixed point set is homotopy equivalent to %(n — 1)! points
and
(b) o is a 2-cycle, when it is homotopy equivalent to (n — 3)! points.

It is now easy to compute using proposition 3.9. and the fact that there are
( ) 2-cycles:

19)  ryts, = —0 (n 1)!+("—_2)2("—_3)

(n—-2)2

This formula completes the proof of theorem 2 in the ‘ordinary’ case; we now

proceed to the dihedral case. The formula for 7, — §, will follow when we have
shown

n=3)"=n-2
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Proposition 3.11 The sum

> X(BK™Y)

cEX, ,
is equal to O when n is even and to (—D¥(2k +1)! when n = 2k + 3 is odd.

Proof. By Proposition 35,if n =2k +2 is even, then there are two cases to
consider. Either o is a product of (k — 1) disjoint two-cycles — and then X =
(-2 Yk—-1)! —orcisa product of k such cycles, and y = —(—2)k~1k! Now,
there are 5,,4(%_'%, elements of the first type, and %‘-kl', of the second; multiplying,
and adding, we get zero for the sum of all Euler characteristics.

If n = 2k + 3, then & must be a product of k disjoint two-cycles, and X =
(—2)* k! Since there are %",—*;,ﬁ such elements, we obtain the result of Proposition
3.11.

Putting this together with proposition 3.10, we find that 7, — 5, is zero if n
is even, and %( 1+ (=1)*) if n = 2k +3 is odd. This gives the formula of theorem
2 immediately.

Lastly we have to prove the formula for the sum Tn +5y. This is slightly more
complicated. The important factor in differentiating between cases is the sign for
even values of m in proposition 3.6.

We first make a simple observation. Let (o) be the conjugacy class of o, and
suppose its elements to be made up of q disjoint m-cycles, where gm = n—2. The

number of elements in (o) is S;,;g Hence, if this is multiplied by m?='(g — 1),

the result is ﬁ"’;—?)' = (n — 3)! Now suppose in the first place that n is odd, the
easiest case. Then so are all its factors, and each factor m contributes (using
proposition 3.6 and the above remark) an amount ¢(m).(n — 3)! to the sum of
Euler characteristics in equation (16). Hence, as in the proof of proposition 3.10,
we obtain (n — 2)! for the sum required. This gives

n—1

Fo+8, = Tl_zﬁ((n =2)+1)(n-2)! =
for n odd, and this is the formula of theorem 2 in the odd cases.

Next, suppose n = 4k, n —2 = 2 (mod 4). Say n —2 = 2n’ where n’ is
odd. For each factor m of n’ we have two factors m, 2m of n. By proposition
3.6 and the remark above, these contribute @(m).(n —3)! and 3.¢(2m).(n — )=
3.¢(m).(n —3)! (The sign in the second case is positive because 35 is odd.) Since
the sum of all ¢(m) is n’, the contribution from dihedral elements is 2.(n — 2)!
Hence,

Pt = (1 =2+ 2 —2)1 =
S Ty D T2
i.e. 2k as required.

Lastly, let n =4k +2, n —2 =0 (mod 4). Then write n — 2 = 2*.n’, with

t > 1. Again let m be a factor of n’; it determines factors m,2m,...,2".m of
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n — 2. For each of these except the last, 5" is even. We find using the previous
methods the following contribution to the sum:

(n —3)1p(m)(1 —3¢(2) — (&) — ... — p(2" ") + ¢(2))
which it is easy to see is zero. Hence,
Fo 48, = 2.(%—2)!“" —)+0)n—2)1= "2

which is 2k again. This completes the proof of theorem 2.

3.8 Some examples

Theorem 1 is a complicated result, while theorem 2 is very simple. Together, in
any case, they add up to give us an effective method of computing the p-adic or
infinite part of K*(BI™) for any n > 2. To make this clear, let us look at some
simple examples.

Suppose first that n has a simple odd prime factor p; say n = pg where g is
prime to p. Let us find the p-adic part of K*(BI™). We have from theorem 1:

(20) K*(BI')® C,=C, o (p—z_—l-) (K*(B[“l+2)) Xy

Theorem 2 requires us to distinguish between g (and hence n) odd and even. Let
us write the ranks of K% K! as an ordered pair of integers (r,s). We have:

B _Ja+ &)k, (50 if ¢ =2k
The answer is of course exactly the same for the p-adic part of K *(BI""*?), while
in the case of BI™*!, we have only to replace (252) by (p — 1).

We finally give a brief demonstration of the method by computing the quo-
tients K *(BI'™)/Torsion for 3 < n < 10. We know that the groups in question
are profinite, and hence a sum of copies of 2p (the p-adic numbers) for a finite
set of primes p. Theorem 1 tells us which primes; and theorems 1 and 2 together
make it possible to compute how many copies of Z,, appear for any p. Formula
(21) gives us the ranks for p = 5,7, and for p =3 if n < 9. For the 3-adic part
when n =9 we use theorem 1 (i), (ii) to give the summands

(3.(K5 (BK*)*™) @ (K5 (BK)™)

which has rank (3,0) + (2, 1) = (5, 1) using theorem 2. The corresponding part
when n = 10 must then simply be twice this, and so has rank (10, 2).

It remains to compute the 2-adic part, which is the complicated case. Here we
have to invoke theorem 1 cases (i1), (iii) or (iv). Using the notation of theorem
2, the ranks are the following.
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(r3,53)
(r3,53) + (Fa, 54) + (73, 53)
2.(r3,53) + (r4,54)
(r3,53) + (P4, 54) + (Fs, 55)
(rs, s5)
2.(r3,53) + (r4, 54) + (7, 56) + (Fs, 55)
4.(r3,53) +2.(r4, 54) + (6, 56)
2.(r3,53) + (r4, 54) + (76, 5s) + (77, 57)
(Note (a) that 7,, §, play the role of some sort of half of Tn, Sy; (b) a broad pattern
is beginning to emerge.)
We can now derive the values of these from theorem 2. The end result is:

NV phWws

- \O o0
(=}

Proposition 3.12 The Jollowing are the groups K *(BI'™)/Torsion for 3 < n <
10.

BI®  (Z,+125,0)

BI* (322 + 223, 22)

BI® (322 +23 +225,22)

BI®  (32y+23+425,22, +Z3)

BI"  (22,+225 +2Zs5+32,,2, + 22,)

BI'®  (52y+24+62,,42, +2,)

BI®  (82y+523+32,,42,+2,)

BI'" (62, + 102 + 225,32, + 22, + 275)

The values for n = 3,4,6 agree (I am relieved to say) with those obtained by
completely different methods in [8].

A Appendix. The existence of torsion

The few examples of K*(BI™) known so far — basically, n = 3,4 and 6 —are
all torsion free, so that theorems 1 and 2 tell us all there is to know. This (and
the similar results for finite groups) prompted me in [8] to conjecture that this
was always the case. This is in fact quite untrue, as we shall see. We have in
fact:

Theorem 3 Letp > 3bea prime. Then if 2p+2 < n < 3p, we have in p-localized
K -theory
K'(BI™), =Z/p;

K°BI™), =0
In consequence, K*(BI™) has p-primary part equal to the torsion group Z/p.

The reason for the above choice of example is that it is small enough to
be (relatively) easily computable and large enough so that the first Dyer-Lashof
operations in homology lead to something non-trivial when translated across.
Of course the given values of n,p are such that there is no p-adic part in the
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K -theory according to theorem 1. Accordingly, if there is anything non-trivial in
the p-part it must be torsion.

The theorem is an easy consequence of the structure of the cohomology of
BI™. Specifically, we use the following result:

Proposition A.1 If 2p +2 < n < 3p, then the mod p cohomology Poincaré
polynomial of BI'™" is 14t* ~2+t* =} and the mod p Bockstein is an isomorphism
from H¥~2 to H¥~!,

This result immediately implies theorem 3. For the reduced p-local cohomol-
ogy of BI™, being finitely generated, must be just Z/p in dimension 2p — 1; and
the result on the K -theory follows from the (trivial) Atiyah-Hirzebruch spectral
sequence.

For the proof of Proposition A.1, I appeal to the paper of Bédigheimer, Cohen
and Peim [5], which computes H*(BI™;F,) for all n and all odd primes p, and
so contains this result as a rather trivial example of the general calculation.
However, as the theorem which describes the homology for primes p > 3 is
complicated, I’ll explain explicitly how the deduction is made. The ‘formula’
of [5] is that (for n > 2 and p > 3) H"(BI’";F,,) is the component of degree
k +2gn and weight n in a bigraded (degree and weight) F,-vector space

(22) [A2 ® (Hu(BS?;F,) ® Uy,)] ® BWyyy,

where Ay,, Uy, are specified F,-vector spaces. BW,,,, is an algebra related to
the cohomology of £225*3; for our purpose it is enough to know that in weight
less than 4p it is generated by:

1 (degree and weight 0)

A1 (degree (4q +2)p — 2 and weight 2p)

B(A1) (degree (4g +2)p — 1 and weight 2p)
where [ is the Bockstein. We now have:

Lemma. [f n is congruent mod p to one of 3, . . ., p — 1, then the homogeneous
subspace of Ay, Uy, of weight n has dimension 1, 0 respectively over F,. Ay, is
generated by I', of degree 2qn.

This follows easily from the criterion given, that (n,3) # 0 mod p; this is
satisfied precisely for the given values of n. (We therefore find our geometrical
distinction between values of n mod p agreeing with that arrived at by homotopy
theory in [5].) We now deduce that for 2p +2 < n < 3p the terms of weight n

in the expression (22) consist of Yo @1, Yn—2p ® A1, Yu—2p ® B(A1). Subtracting
2gn to get back to the cohomology of BI™, these have dimensions equal to
1,2p —2,2p — 1 respectively. This is the statement of proposition A.1.

Note 1. Theorem 3 provides us with p-torsion only in cases where, according to
theorems 1 and 2, there is no p-adic part. It would be interesting to know that
it can occur in the other places; specifically, to know something of 2- and 3-
torsion. (Also, we can observe that the first case of theorem 3 is that of 5-torsion
in K*(BI'). Is there any torsion in BI™ for smaller n?)
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Note 2. We have, in the above results, enough information on the K -theory of
BI™ and its relation to the group theory to ask how the classes coming from
representations might enter. There are also a variety of results on representations
of mapping class groups, such as those of Kohno [9] derived from the monodromy
of the Knizhnik-Zamolodzhnikov equation. It appears rather hard, but could be
rewarding, to relate some of these to classes in K -theory.

Acknowledgement. 1 am grateful to Fred Cohen and Bill Harvey for help at some crucial points.
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