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Part 1. Real hypersurfaces with hermitian shape operators

Theoretically we learn from Cartan-Chern’s theory ([1] for n=1, [3] in general)
how to verify whether a nondegenerate real hypersurface in C"*! is spherical, i.e.
locally CR (Cauchy-Riemann)-equivalent to the unit sphere in C**!. In practice,
it is not easy to construct any class of spherical real hypersurfaces with certain
geometric conditions.

In the first part of the paper, we consider real hypersurfaces with hermitian
shape operators. Namely, the shape operator (or the second fundamental form)
is required to be compatible with the induced complex structure. (See §2 for
more details) The above condition is natural from the viewpoint of Riemannian
geometry. In particular, we are dealing with real hypersurfaces defined by

n+l
¥n = [exp(xr +y1)*1/4 + [explr — 1)’ 1/4+ Y (5 +y) —1=0, n=1,2,...
k=2

The real hypersurface defined by 1, = 0 in C? is not locally CR-equivalent
to the unit sphere in C3. (See the argument in the end of §2) However, the real
hypersurface defined by 1; = 0 in C? is actually spherical.

As a matter of fact, it just happens that

Theorem. Every nondegenerate (or, say, strictly pseudoconvex) real hypersur-
face in C? with hermitian shape operator is spherical.

In §81 and 3, following a procedure developed in [3] to determine the CR
connection forms and the curvatures, we carry out the lengthy algebraic manipu-
lation. Meanwhile, we see how the shape operator plays its role in Cartan-Chern’s

—_—
* The research of the author was supported in part by National Science Council grant NSC 82-
0208-M-001-079 of the Republic of China



528 J.-H. Cheng

theory for an embedded CR manifold. In 82 we are devoted to a discussion of
real hypersurfaces with hermitian shape operators.

1 Interaction between induced Riemannian structure
and induced CR structure

Let us start with a general setting although only the case n = 1 will be needed.
Let M be a real hypersurface in a Kaehler manifold of dimension n + 1. Let
J be the complex structure of M and T:M be the tangent space to M at x. We
choose a local field of orthonormal frames o, €0~ = Jeg, e1, e = Jey,...,e,, eps =
Je, in M such that, restricted to M, ep, e, e, ...,e,, e, are tangent to M and
€1, €1+, ..., e, ey« are contained in the maximal complex subspace T,M NJT,M at
each point x of M. Let w°,w®, W', w!", ..., w" w"" be the field of coframes with
respect to eo, e+, €1, €y, ..., e,,e,+. The corresponding Riemannian connection
forms are denoted by wg?, wpA”, etc. Let

¢ = VI A = T,
0" = wp*+vV—lws ,4,B=0,1,..n.

We need a field of admissible coframes for the induced CR structure on M.
(For CR structures, see [3]) Take 6 = w° and 68 = 8 + V=1uP" 1< 8 <n.
Since w® =0 on M, 6° =6 on M. It follows that

n
d0=d6’=—->"0"A6° —6,°A0 on M (1.1)
B=1
In the subsequent discussion, we are always working on M unless otherwise
stated. The summation convention is adopted and the small Greek and English
indices run from 1 to n. First, we express the Riemannian connection forms 65°
in terms of 6%, #* and 4,

05° = I'go0° + 550 + Tg.6. (1.2)
Since wp® = 0 by skew symmetry, it follows that ]
60° = iwe” (i =v/—1). (1.3)
Substituting (1.2) and (1.3) into (1.1) and noting that 6 is real, we obtain
df=Tpab® A% +0 A (=I5,0° +iwe®) (1.4)
and the symmetry relations
Isa =Tup and I = —Tpp. (1.5

Write wgo‘ = Sg,wr +Sg,-w" +Sg()0 and wgo = wg-o‘ = Sg-,w’ +Sg:,‘ w" +Sg~0¢9
where Spp,A,B =0,1,...,n, 1*, ..., n* are components of the second fundamental
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form. Now the coefficients I'go, I')35, I3« in (1.2) can be expressed in terms of
Sap’s by observing the corresponding coefficients on both sides of the identity
05° = wg® +iwg® . Thus we obtain

T'go = (Saps +Spa+)/2 +i(Spa — Sp+a+)/2
Tps = (Sap — Sgar)/2+i(Spa + Sgea+)/2 (1.6)
Fﬁ* = Sﬂ¢0 + ngo.

Note that Syp is symmetric, i.e. Sap = Spa. In order for (1.4) to fit the fundamental
equation (4.10) in [3] for the CR structure (w = 6, w® = # therein), we take

98a = —ilps and ¢ = —Ip.0° +iwy® — iSof (1.7)

where Soo is the 6-coefficient of the expression wy®™ = Soaw? + Spgew?” + Spof.
Note that ¢ is real and actually equal to —Sog.w? + Sogw®". By (1.5), ggs is
hermitian symmetric. Throughout the paper we assume that

det(gpa) # 0.

Namely, the induced CR structure is nondegenerate. Since one of the Kaehlerian
structure equations reads

df™=—05%A6° — 6, N,

it is reasonable to take the “first approximation” of CR connection forms as
below:

(bga(l) = 050 and ¢a(l) = 0001'

Now, A,3,, Bajs and C,j are to be determined from the following expression

d9ap — 0a"9y5 ~ Jav®p™ ™ + Goapd = Aapy0” + Bogz87 + Cazf.  (1.8)

A direct computation shows that

Aaﬁ'y —iFa[;,y+iFa[;F.,*/2
Cap = —ilus (1.9)
where dI', 5 — 0,7, 5 — I'n3057 is written as
Fa[;ﬂ” + Fag;/@'-y + Fa[;*().

On the other hand, substituting (1.2) into the following formula for the curvature
on M

d0e° + 0,0 A6 +6,° A 6,° = 2,°
2.0 =RLcpb° N, C,D=0,1,...n

we obtain



530 J.-H. Cheng

Rcp€ A 6P

(T oz — Tas0p" — Lgbo” +iwe® T5) A 67

+ (dTax — Tpgbo® — Toub0® + it Tau — Tond) A B
+ (dTae — Tan8e” — I'yefe” +iwe® Tog) A 68
+ Toulp56P AOY — Tyt A 6. (1.10)

Define the suitable derivatives of Iy, Iy, by the following expressions:

dTou — Tpgfo® — TagB® — I.0,°
= Touy0" + Fos87 + s
dTag ~ Lon0s" — Ty
= Taepb® + Ipy36® + Tagf. (1.11)

In deducing (1.9), we have used the identity

(=)@l - I 56a" — Pa’yeﬁ;’ = Lopl'ys6”
+  ilpwe” ) — Iy 55000
Aagy87 +Bops87 + C,z0. (1.12)

After plugging (1.11) and (1.12) in (1.10) and equating the corresponding terms
on both sides, we obtain

; = 1 _

iAasp = Ra’py — Tazlps — Lanlpy + Tapy — 5Laplye,

iCay = Ral03+ ey — i Tz S0 (1.13)
Now, we see that things get complicated. In order to go further, we have to
make certain assumptions. It is natural to take M = C™*! with the Euclidean

metric. Therefore the curvature tensor R vanishes. The basic assumption for M
in M = C™*! we like to make is

I'up =0 for all a,B=1,...,n. ) (1.14)

Under the assumptions above, (1.13) takes the simpler form

Aasp = —Loaylpe — I'anlps
iCa‘y = Pa*"y - iFa—'ySOO. (115)

Note that the condition (1.14) reduces the order of derivatives in the expression
for Aasp by one degree if, say, we start with a defining function for M in C**'.
In terms of the second fundamental form, the condition (1.14) is equivalent to
the following conditions
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Saﬂ" = —Sﬁa'y Sﬁa = Sﬂ‘a‘ (116)

by (1.6).

The geometric meaning of (1.16) will be explained in the next section. (We
will see that (1.16) is equivalent to the shape operator being hermitian) Mean-
while, we will show that the condition (1.16) is not trivial by giving some ex-
amples other than spheres.

2 Real hypersurfaces with hermitian shape operators: examples

Throughout this section, we shall consider vectors in column form. Consider the
real hypersurface M in C"*! defined by v = 0 with grad 1 (gradient of 1) # 0.
The unit normal to M is given by

eo- = grad 9 /||grad ¢||.

Let 6 denote the covariant derivative in C"*! (Of course, it is just the usual
differentiation). And let (,) denote the Euclidean metric in C"*! = R>**2 At
p €M,X € T,M, the shape operator A is, up to a sign, given by

AX) = Ve 2.1)

Now,

Vx€or X(1/\\grad |))grad ¢ + (1/||grad ¢|)7xgrad ¥
—eo- (eo~, (Vgrad ¥)/(|lgrad |))(X)) + (Vgrad v)/(|grad ¥||)(X)

(I — eo-"eo+)(Hess v/||grad y|)(X) (2.2)

where Hess 1), 'ep- and I denote the Hessian of 1, the transpose of eg-, and the
identity matrix respectively.
It is easy to see that the condition (1.16) can be reformulated as follows:

(AX,X) = (AJX,JX) for X € T,M NJT,M. (2.3)

We say that the shape operator A is compatible with the induced complex structure
if (2.3) holds. And call such A hermitian. Since {ep+,X) =0 for X € T,M, then

(eo+"eg+ Hess (X ),X) = 0.
By (2.1), (2.2), a direct computation puts (2.3) in the following form:
(Hess ¥(X),X) = (Hess ¥(JX),JX), X € T,M NJT,M. 2.4)

Let X = (a%)21,.. 2042, JX = (b), ice. b' = —a?,b? = a', etc.. The condition
(2.4) can be rewritten as
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d}LaL - Oa
Ybt = 0
Ywata" = btV (2.5)

where 1, 1y denote the first and second derivatives respectively.

Now, consider the case n = 1. We see that q! = 0, a? = Y32 + 42, a3 =
Va1 —atps, a* = —yhyhsa—1h11hs satisfy both conditions Yral = 0and ¢ 6L = 0.
So a direct substitution in Yyata = iy bLbN gives

Ws® + YD + 9aP)W2 — 1) + 23 — 1) ehrbs — Pt (2.6)
+ 2(%13 — Y2a)(Whaths + Y19s)] + Aihaa(vharhy — Y1) (W2v)s + Y1103)
+ (Y33 — Yan)[(1s — ¥ap3)? — (aths + ¥1903)?] = 0.

Itis easy to see that the ¥ given by ¥1; = 9, 13 = 114, Y13 = 4, Y3 =
0 and 133 = 1)44 solves the equation above. Denote the real coordinates in C2
by (x1,y1,x2,y2). The general solution of the wave equation ;; = 1, in two
variables takes the form f (x, +¥1) +g(x; — y1). Therefore =f(x+y1)+g(x; —
yi)+x2+ ¥2% — 1 satisfies the equation (2.6). In particular,

¥ = [exp(xi +y1)°1/4 + [exp(xi — y1)*1/4 + x: + y,® — 1

is a solution of (2.6) which defines a bounded strictly convex domain {1 < 0}
in C2. Similarly, we can deal with the case n > 1. For n = 2, the previous
a',a? a* a* with a° = a5 = 0 still satisfy both conditions y,a’ = 0 and b =
0. Since the maximal complex subspace at a point has the complex dimension 2,
we need one more X = (a%),-,... ¢ which is independent of (ab) and (bL) = J (ab).
It is easy to see that X given by a' =0, a2 =0, a3 =0, a* = Us? + 062, a° =
V3vs — Yaths, @b = —ihuhs — Y315 is a qualified candidate. Now expanding
(Hess Y(X),X) = (Hess }(JX),JX ) gives

Ws® + PeH(s? + P62 )(Was — 33) + 2(thas + Y36)(Watbs — Yarhs)  (2.7)
+ 235 — Yae)(Wat + Y3vhs)] + 4bss(Paths — P3te)(Wate + P31)s)
+ (s — Yee) (Y36 — Yaths)® — (harhs + W3bs)?] = 0.

Observe that the 9 given by 111 = ¥, 23 = — (14, t13.= Y24, Y34 =0 and

V33 = Yas, Va6 = P35, Y36 = —tus, s = 0, hss = s satisfies both equations
(2.6) and (2.7). In particular,

¥ =[exp(x1 +y1)°1/4 +[exp(ri — y1)?1/4 +x2 +y 2 +x32 4y — 1 (2.8)

is a solution of (2.6) and (2.7) which defines a bounded strictly convex domain
{¥ <0} in C3.

It can be shown that the real hypersurface % =0 in C? given above is not
locally CR-equivalent to the unit sphere in C>. In fact, if we invoke a theorem on
p.-72 in S. Webster’s thesis, Berkeley, 1975, it suffices to compute the curvature
K for the domain {x; +iy; € C : [exp(x; +y;)?]/4 + [exp(x; — y1)?]/4 — 1 < 0}



Some applications of Cartan’s theory 533

with certain metric and see if it is not a negative constant —2. But this is easy
by the formula (1.20) on p.73 of the thesis mentioned above. However the real
hypersurface defined by [exp(x; +y1)*1/4 +[exp(x; — y1)?]/4+x:2 +y,2 —1 =0 in
C? is actually spherical. (This follows from our theorem) Note that the theorem
mentioned above in Webster’s thesis is not applicable for the case n = 1.

3 Proof of the theorem

We know that in the study of CR structures the case for M of dimension 3 is
often quite different from the general situation. In this section we continue §1
to follow the procedure developed in [3] to compute the Cartan curvature tensor
Qs for the case n = 1.

The “second approximation” of CR connection forms takes the following
form:

¢|I(2) = 9]I+A11191+%C110
¢'® = 00'+%c.'0‘ 3.1

where A;';, C,' are given by (1.15) and g;; = —iI}; and its inverse g'! are
used to raise or lower indices. Then

dp=i¢p'® A6, +ib; Ad'® +0 A1) for some real 1-form 7).
Let
'V =dp)'® — i) AP +ig PN +i{p PN} + %12;/\ 9. (32)
Skew hermitian symmetry of ' gives
o' = I;0' — .60 (3.3)
by (1.2) with the assumption I'j; = 0. It follows that
d6,' = I';*6" A 0'mod 6 (3.4)
Substituting (3.1) in (3.2) and using (3.3) and (3.4) give
D,'D =271;20' A0 +dA, ' | AB' -A, 16, A8'+C, ' T;6' NO'+C; ' T, 16" A8'mod 6.
Define A;',;, A;'y; and A;',, by
dA' — AN G = A 10T+ A 110 AL
and §y,"{® by ¢,'® = §,,1;1M0! A " mod 6. Then we have
Su'iP=2n - A+ G0 - G (33)

It is easy to obtain
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Atlyi=-2@, g +20:% (3.6)
Using (3.6) and (1.15), we can reduce (3.5) to
Su'i¥ =20, 3.7)
Following (3.7), we have

iV = s W=2r,;
S(]) = Sll(l)zsli(])g” =2iF|*iF]i and
3D = SV —(i/4)SVgy; = Bi/2)T,; (3.8)

where I''! = I';;=1. On the other hand
1 =
'@ = 60! + (Il — iSpo)6". (3.9

by (1.15) and (3.1).
An easy computation shows that

¢ = —Siow' + Sjow!” (3.10)

by (1.6) and (1.7). It follows that de = 0 A [(—Si-00 + SooSo1)w! + (S100 +
So0So1+)w!"]. Therefore using (3.9) and (3.10), we obtain

dp—ig'P A — i AP =gAq

where 1 i
Y= (—EFM — IN.Iy;)6' - (Ef‘laue —I.0p)6" (3.11)
Note that it is easy to deduce I, = S1+00 — S00So1 + i (S100 + SooSo1+ ).

Let ¢'® = ¢!@ 1 D,16! and ¢,! = ¢,!® + D, 0. Then by (3.9) and (3.8), we
have

P =gt %ismo‘. (3.12)
while (3.1), (1.15) and (3.8) imply
¢! =6," —2I.6" — %iSooé?. . (3.13)
Let
0/'D =dey' — i AP +2ig,D g + %12;/‘\ 9. (3.14)

Substituting (3.13), (3.12) and (3.1 1) in (3.14) and carrying out the compu-
tation, we finally obtain
$,'@ =0, (3.15)

Here we have used the identity:

1 _ _ -
dSoo — ¢pSeo = —i(%n“ + i1.)0" + iGlw = I'iI.)6" (mod 6)
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which can be easily deduced.
Now, (3.15) says that V;'; = 0. Therefore E; = (£)V;'| = 0 and ¢' =
$'® +E'9 = ¢'®. Then a lengthy but straightforward computation gives
= 1 - =
déy — dii NP + 51/)/\01 =0110' A0 (mod ' NG, 6" NG
where
Qi = iNi[Na + )] (3.16)

Note that (1.8) has been used to deal with the term dI;.
Recall that I, is defined by (cf. (1.11))

dIly. — Tii0p" — [y = T8 + 1,161 + . (3.17)
The covariant derivatives S4op of the second fundamental form are given by
dSpo — Scowa® — Sacwo® = Saopw”
where A, B, C range over 0,1, 1*.

Using (1.16), (1.6), (1.2) and 6;' = w;' +iw", wi-!" = wi!, wi+! = wys!
we can reduce the left hand side of (3.17) to

)

[(Si~o1 — SooS11) + iSio1]w' + [Si-01+
+ i(Siors +SooSi+1+)]w!
+ [(Si-00 — SooS10) + i(S100 + S00S1+0)10-

where we have used S+ = Sj+; = 0 by (1.16). Thus it follows that

I'w + I',1 = S1~01 — SooS11 + iS101 (3.18)
i(Iw1 — ) = Si-01+ +i(S101+ + SooS1+1+)-
Now it is easy to see from (3.18) that
Iiv1 = Si+0 +i(S110 — Si=1+0)/2 (3.19)

by (1.16) and symmetry of Sspc. From (1.16), the following ‘“commutation”
relations

{ Si+1+4 — S114 = 2(S10S1+4 + So1+S14)

3.20
Sii=a + Si1+14 = 2(S10514 — So1+S1+4), A=0,1,1* (3:20)

hold. In particular, S-0 = (S10)* — (S1+0)* and Si1o — Si+1+0 = —4S01S01+. Sub-
stituting these equalities in (3.19) and comparing with I, = Sj-q +iS10, we find
that I'|,; + (I7,)? vanishes identically. It follows that Qy; vanishes identically by
(3.16). Therefore M is spherical according to Cartan’s theory ([1], [3]). We have
proven our theorem.

As a consequence, we can easily deduce by Hartogs’ theorem
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Corollary. The bounded strictly convex domain defined by 1 = [exp(x; +y1)?] /4+

lexp(x1 —y1)1/4+x22+y22 — 1 less than zero in C? is biholomorphically equivalent
to the unit ball in C2.

Recall that the shape operator of the real hypersurface given by the above
¥ =0 in C? is hermitian as shown in §2 and also note that 1) is real analytic.

Part II. Invariant elements of surface area
in 3-dimensional CR geometry

In §1 of this part, we construct some invariant area elements on a non-
characteristic surface in a CR 3-space. Thus we have the notion of surface area
which is invariant under ambient CR transformations. Moreover, an invariant
Lorentzian metric on the surface is also obtained. So in particular light rays of
this invariant Lorentzian metric form invariant curves on the surface. In §2 we
deduce the equation of minimal surfaces with respect to the simplest invariant
area element dA. The actual computation for surfaces in the Heisenberg group
is carried out in §3. There is a potential application that dA may give rise to
a characterization of the “mass” in CR geometry [4] as the Willmore integrand
does in the geometry of asymptotically flat manifolds [5]. Also CR-invariant area
elements might be of use for giving quantitative description of objects in contact
3-topology.

1 Invariant area elements on a non-characteristic surface

We are going to deal with the local CR geometry. The ambient 3-space is en-
dowed with a strictly pseudoconvex CR structure. (see [1], [3]) Let (6, 6',6")
be an admissible coframe with respect to this CR structure, where @ is a contact
form and 6' is complex, such that

d9=i0' A0 +0 A ¢ (1.1)

for some real one-form ¢. Call such coframe (or just ') unitary. Given an admis-
sible unitary coframe (6, 6", 6'), there associate uniquely determined connection
forms ¢, !, 9 satisfying certain structure equations (e.g. [3]) with

ol +ol —g=0. (1.2)

Two admissible unitary coframes and their associated connection forms are
related according to the formula

H=dh-h='+hITh™! (1.3)

where
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7r8 ) 6! 20
T=| —igt ¢l+nd 206
NI
with 7 = (—=1/3)(¢! + ¢) and
t 0 O
h=| n t 0
r 7 !
subject to
f = —2ittlr!
i |
4 1=1 -
| ' P+ /2)FE " -7 =0.
In particular, the change of admissible unitary coframes reads
6=uf
~ 1.5
{ 6' =0'u) +6v! (1)
where
w=|t P> 0uf =t@])",0' ==2 | t P r())! and (1.6)
|t} |=1 or u =| u} |? (by unitarity). :
Write 8! = w' +iw? 0 = o' + io*ul = ul, +iu), and v' = v} +iv}
for w!,w?, &', &%, ul,,ul,,v!,v! real. Let M be a piece of surface defined by

w? = 0. Note that it is not possible to have a surface defined by 6 = 0 due to
non-integrability (1.1). A point p of a surface is usually called characteristic if
6 vanishes when restricted to this surface at p. In this terminology our surface
M is non-characteristic. If &? is another choice of defining M, then &2 has to be
proportional to w?. It follows from (1.5) that ], = v! = 0 and

0=ub
o' =w'u], +6v} (1.7
0? = wul,

with u, = +,/u (Here we assume that the change preserves the orientation of M .
See the latter context.). The existence of w? such that it is the imaginary part of
an admissible unitary 1-form 6! and w? = 0 defines (non-characteristic) surfaces
can be easily shown. (see the actual computation in §3)

By the third equality of (1.4), we can write ¢ = e‘*. Since u), = t(t}) "' (], =
0) by (1.6) is real, it follows that A = 2k /3 for some integer k due to the second
equality of (1.4). So tll is constant. (this fact will be used in the latter computation)

Equating real and imaginary parts of both sides of the structure equation
df' =6' A p! + 6 A ¢! gives
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dw'=w'/\¢},—w2/\¢,‘c+9/\¢1 (1.8.1)

dw? =w' A gl +w? Al +0 N ¢! (1.8.2)
where we write ¢] = ¢ +i¢}. and ¢' = ¢! + ig; for ¢}, 1., 4!, 4! real. On
M, (1.8.2) is reduced to

0=w'Agl. +0A .

By Cartan’s lemma it follows that on M

Bl = h1o0 + hyyw! (1.9.1)

¢L = hoof + hoyw' (1.9.2)

with hyg = hg;. The quadratic differential form

IT= W', + 04} = hiy(W')? + 2h10w' 0 + hog§?

is usually called the second fundamental form of M (with respect to the ambient
CR structure). Now it is natural to ask what would be the transformation law of
hij,0 <i,j < 1, under (1.7), the change of admissible coframes. A lengthy but
straightforward computation based on (1.3) using (1.4) and (1.6) with u/,v' real
(in particular, we use the fact that tll is constant as mentioned above) shows that

Bl = bl +6pw! + 6,20 (L.10)
Vgl = ¢l = 2p0}, — 692" — 4p% '

where p = v!/2u!  (note that ul, = \/u). 1t follows from (1.9.1), (1.9.2) and
(1.10) that

Vuhyy = hyy +6p (1.11.1)
uhio +2y/uphy; = hyo +6p? (1.11.2)
u%ﬁoo+4upi{10 +4\/17p251| =h00+8p3. (1.11.3)

Solving (1.11.1) for p and then substituting in (1.11.2) and (1.1 1.3), we obtain

-1 1
ulhio + 2hiy) = ho + i (1.12.1)
3> 2~ ~ 2 ~ 2 2
u? (hoo + 3hohi + Eh?,) = hoo + 3ok + ﬁh?,. (1.12.2)

Since O A D' = uig A ! by (1.7), the following 2-forms
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{ | H |} 0 Aw' (with H = hyo + Lh})

1.13
(hoo + %h]oh“ + 2—27}1131)9 Aw! ( )

are invariant under (1.7). Similarly the second fundamental form transforms as
below:

IT = u{II + 6p(w')* + 12p°w' 0 + 8p*6?}.

Then it is a direct verification that

1
27

H*

1
| H |2 {IT — hy(w")? + §h,2,w'0 — —h},6%}

1
| H |2 {2Hw'6 + (hoo — Z e}
changes invariantly.

Now let X and X be (local) CR 3-spaces. They are oriented according to the
order of 6,w!,w? (8,&",d? respectively). Let M and M be non-characteristic
surfaces in X and X with orientations in the order of (f,w') and (§,d") re-
spectively. Let ¢ : X — X be an orientation-preserving CR diffeomorphism
which maps M onto M and also preserves orientations on M and M. Then
0=p*0,&" = p*d', @* = p*&? are related to 0,w',w? in (1.7). Let dA denote
either 2-form of (1.13) on M and dA denote the corresponding 2-form on M.
Thus the previous argument gives the following result.

Theorem. The 2-forms of (1.13) (called area elements if not 0) are invariant
under ambient orientation-preserving CR diffeomorphisms which also preserve
orientations of corresponding surfaces, i.e.

p*(dA) = dA.

Moreover, suppose H # 0. Then II* is an invariant Lorentzian metric on the
surface M, i.e.

1) =1

where IT* is the corresponding Lorentzian metric on the surface M.

2 The equation of CR-invariant minimal surfaces

In this section we deduce the equation of minimal surfaces with respect to the
CR-invariant area element

dA=|H |1 A



540 J.-H. Cheng

where we recall that H = ko + éhlzl (# 0 by assumption). The idea is similar as
in [2], for instance, for the affine geometry.

Let £2 be a small domain of M with boundary 842. Its area is
AN) = / dA.
o)

We need to compute the first variation 0A($2) under an infinitesimal displace-
ment of {2 with 912 kept fixed. Analytically let 7 : M x I, — X (I. denotes
the interval —e < t < €) be a smooth mapping with 7(x,0)=x € M C X and
m(x,t)=x forall x € 2 and all ¢ € I such that the restriction of 7 to 2 x 1.
is an embedding for simplicity. Also assume we have an admissible coframe
6,w',w? on 7(£2 x I.) for small  such that

760 = 0 + %t

m™w!' =& +aldr (2.1)

with a%,a!,a smoothly extended to be zero on 2. (It is not difficult to achieve
the above admissible coframe once we figure out the existence of w? from the
actual computation in section 3.) It follows from (2.1) that

T @AW= AS! +dt A @' - a'h) (2.2)

and also

|H |72 d( H |} 0Aw)=|H |~} d(| H HAOAW! +d@ AW
=%dlog|H|/\t9/\w' —%¢A0Awl+h“9/\w2/\w'. (2.3)

by (1.1) (note that i§" A 67 = 2w! Aw?), (1.2), (1.8.1) and (1.9.1).

The operator d on M x I, can be decomposed as

0
d=d dt—.
e+ ’ax

Multiplying | H |§ on both sides of (2.2) and taking exterior differentiation gives

b s
5 H 11 OAGY) Adr

= dindu{|H |? @' —a'd}+ | H |} {%(dlog |H | —m*¢) A0 Aw")
—ahyydt A0 Aw')} (2.4)

by (2.3) and the third equality of (2.1). Next we deal with the term dlog | H |
—7*¢. Exterior differentiation of w? = adt (the pull-back 7* is omitted in the
following context for simplicity of notation) implies



Some applications of Cartan’s theory 541

W' APl +ONA QL +dt A(ad), +da)=0 (2.5)
by (1.8.2). Express ¢} and ¢! as follows:

Pl. = hnw' +hiof + mydt 2.6.1)

B! = hoyw" + hooB + hodt . (2.6.2)
From (2.5), we also have the expression for the last term:
adl, +da = ho + hyw'" + hdt. (2.7)

Taking exterior differentiation of (2.6.1) and using the structure equations
(1.1), (1.8.1) and d¢},. = 3w' A ¢! +3w? A ¢! (see [3]) give

(dhyy +3¢) — hug,) Aw'  + (dhig — hii ¢! — hiod) A B
+ {dhi +aBe! +hn ¢}, +2hw")} Adt =0.

Therefore we can write

dhyy +3¢! — hy1d), = hyw' + hyyof + prde (2.8.1)
dhio — hi1@} — hio¢ = hio1w' + hiof + prodt (2.8.2)
dhy +a(3p. + hyydl, + 2hiow") = prw' + prof + qidt (2.8.3)

with Ayj9 = hj;. It follows from (2.8.1) and (2.8.2) that

dH

1
dh]() + gh“dh]]

1 1 1
Ho+ (§h1nh| + hyon)w' + (§h110h1| +hig0)0 + (§h11P11 +pro)dt.
(2.9)

That is to say,

1
dlog |H |= ¢+ H"(gh”p“ + pro)dt(mod w', 6). (2.10)

By substituting (2.10) in (2.4), we obtain
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15) 1A
—(H|ZdAG
3t(l l )

S 0. N i 3. .1 .
= dy{|H |} @%"' - a'd)}+ | H } {(zH '(§h1|p11 +p10) —ah JO A G
@2.11)

Now compute

A'(0)

0 iAo .
E/ﬂ,HP 0/\(4.)1 |,=0
301
= {EH (§h|1p11+p10)—ah“}dA (2.12)
7]

by (2.11) and Stokes’ theorem (noting that a® = a' = 0 on 912).

To deal with the first term in the above integrand, we observe for ¢ =constant
that after a straightforward computation

1 1 1. _1
d{| H lé h(w' — hy160)} {lH |2 (hp1y +3p,0)+§szgn(H) |H |72

X

2
(2h1oh1y; + 5’1121’1111 +2h11h110 + 3h100)h,

a|H |7 (oo +8hihio + B3} Aw' (2.13)

by (2.9), (2.8.3) (with ¢! and ¢}, replaced by hij using (1.9.1) and (1.9.2)),
(2.8.1) and structure equations (1.1), (1.8.1).

On the other hand, from (2.7) we get

aqﬁ}, AO+da A6 =hw' A6 (note that ¢ = constant). (2.14)
Multiplying both sides of (2.14) by | H ]% S and integrating give rise to

/a{d(lHﬁf)—%lHl%fqb}Ah/ IHEmoAs.  @1s)
2 o _

Here we have used (1.1), (1.2) and Stokes’ theorem with a = 0 on 012. Applying
(2.15) Withf =| H ,_I (hiohin + %hlzlhn] +hy1hio+ %h]oo) and then substituting
in the integration of (2.13), we finally reduce (2.12) to

A'(0) = / ay Ao (2.16)
(7

where the 1-form

1 3 1 2
D =—3dUH  P+7 | H [ fo—Zsign(t) | H |} (Ohoo+6h11 kg + 3 hfy '
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Since minimal surfaces are critical points of A, i.e., A’(0) = 0 for all a with
a =0 on 012, the equation of minimal surfaces is therefore given by

> A6=0

which is a nonlinear fourth-order differential equation of the defining function
for the surface.

In the appendix we do further reduction. Actually, we can choose suitable
coframes such that h;; = 0 and Ao or Ay = 0.

Remark. Although we have the equation of minimal surfaces as above, we do
not know any solution yet. Of course, the analogue of the Plateau problem can
be asked.

3 Actual computation in the Heisenberg group
In this section we will carry our the actual computation for the CR-invariant area
element dA =| H |} 6 Aw! in the 3-dimensional Heisenberg group H!'.

The usual coframe in H' is given by

9=%dt+xdy—ydx (3.1.1)

6y =dz, z=x+iy (3.1.2)
for (¢,x,y) € H'. An admissible unitary 6" (i.e. d6 = i' A 8'mod 6) has the
following form

' = e'rdz +v'0 (3.2)
for X\ real. Now suppose our surface M is defined by y = f(x,t). Set w? =
gd(y —f) with a function g to be determined. It is clear that w? = 0 on M. Take

w! = (cos N)dx — (sin\)dy.
Then by (3.2), 6' = w! +iw? is equivalent to the following equalities:
cosA+xvl=g

sin\ —yvl=—f,-g (3.3)
v! = —=2f, - g (and v! = 0)

(fe,fi denote the partial derivatives of f in x,¢ respectively). From (3.3), we
obtain

cos A = ga,sin )\ = gb (3.4)
with a = 1 + 2xf,, b = —2yf, — f,. So we must have
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g=(@*+b?)"1
by assuming that a? + b2 does not vanish. To satisfy (1.1), we choose
¢ =2vw' = —4f,¢*(adx — bdy). (3.5)

Following §6 in [3], we can take the “first approximation” of ¢!, ¢! satisfying
(1.8.1), (1.8.2) as follows:

091, = —dA + 3v)w?
0of; = —vld\ (3.6)
0bs = —dv} +2(v))2w!

(note that ¢}, = 1¢ = vlw! by (1.2)). According to [3]

$1c = odl. +D}.0 (3.7)

where D/, is determined by

Imaginary part of {d(o4})—i6" A(0¢")+2i(o¢")A8'} = —8D).w' Aw?(mod 6),

(3.8)
Substituting (3.6) in (3.8) gives
1 30102
Dy = (=35)w.)". (3.9)
Thus we obtain
1 12 3 4,
®1e = —dX +3v,0° — E(UC) 0 3.10)

by (3.7), (3.6) and (3.9). On M,w? = 0. So hio and hy; are determined by the
following equality

—d) — ;(’Ucl)29=h109+h“wl. (3.11)

due to (1.9.1). Further computation goes on for the specific surface given by the
graph

y=f(x,)=[1 - —x2}} >0 (3.12)

over {t?+x* < 1}. The above surface is a portion of the following closed surface
S:

x2+y)2+12=1.

It is easy to see that there are only two characteristic points on S, namely
(0,0,1) and (0,0, —1). For f given by (3.12) we have precise formulas for f;, fx:
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where s = x? + y2. Then we can easily compute a,b, and g. The result is as
follows:

a= —E
b=~L4+%

sy
g=ysi.

Therefore by (3.4) and the above formulas, we get

{ cos A = ga = (ys — xt)/s? (3.13)

sin A\ = gb = (yt + xs5)/s1%.

Now noting that ds = 2xdx + 2ydy, we can compute

_dsin )\
~ cos )\

d\ = {(s+x% —xyts "Vdx +(t+xy —y*ts ™ )dy +ydt } (ys —xt). (3.14)

Solving dt, dx,dy with 6,w',w? previously given, we obtain

dt = 20 — xdy + ydx)
dx = (cos \w' — (sin\)v!6 (3.15)
dy = —(sin \w' — (cos \)v!0

on the surface: w? = 0. Equating corresponding coefficients of both sides of
(3.11) give

hiy = (xyts™ — s — x% —2y%)cos A+ (t — xy — y2ts~")sin A
hio= =2y + vl {(s + x> +2y% — xyts")sin A + (¢t — xy — y%ts~") cos A}—2(])?

by (3.14) and (3.15). Expressing A;; and hjg in x,y,s,t by (3.13) and the formula
for v! in (3.3), we get
hi =3s%(xt—ys) (3.16)
hio = 357 (6yst? + 6xts? — 2xt — dys — 3¢2). ’

Note that in the above computation we keep using s + > = 1 and y is
implicitly given by (3.12).

Similarly for the graph contained in S and defined by y < 0, we still have
our dA. By symmetry, dA is also well defined for x > 0 and x < 0. Altogether
dA makes sense for everywhere on S except characteristic points (0,0, 1) and
(0,0,—1). However dA vanishes wherever H = 0. And we do have points at
which H = 0. For instance, H vanishes at (x,y,¢) = (+1,0,0) and (£¢,0,0) for
at least one £ between 0 and 1. In fact, H = ¢[3x*+3x3—1 - 3. L] fory = 0 by
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(3.16) and continuity. It is interesting to give a complete description of the zero
set of dA on S. Also near the characteristic point (0,0, 1), say, hy; ~ 0, hyg ~ s=1.
Hence dA ~ s=2y~ldx Adt. (note that y~'dx Adr = —x~'dy Adt whenever xy
0) For y > 0,y~! > s~1. On the other hand, near 0,0,1),57% ~ (1 — 1)~ 14
and it is easy to see that the integral

é V1-x* ;
/ / (1 — )" "ddedx
0 1—¢

diverges for any small 6, > 0. Therefore the integral of dA over the whole
surface S diverges.

A Appendix

It will be shown that by suitable choices of coframes we can make hy;; =0 and
h100 or h]]] =0.

First we examine the change of hy;; defined by (2.8.1) under (1.7). It is easy
to see that from (1.3) we have

¢=¢—dlogu — 4pw? + 56 (A.1)

where s = 4Re(77) (note that ¢ = \/ue~* with \ = 2n7/3 for some integer n).
Since we learn uH = H by (1.12.1), it follows from (A.1) that on M (w? = 0),

¢—dlog |H |=¢—dlog | H | +s6. (A2)

On the way to search for the change of ¢! under (1.7) via the formula (1.3),
we obtain that on M,

dhyy +3¢] — hudl,
| 1 ~
= u_%(dh” +3¢; — h]]¢:,)+ g-su"%w] +(psu—i - gShll)o (A3)

by (1.2), (1.11.1) and (A.1) through a lengthy computation. Thus comparing
(A.3) with (2.8.1) gives (t = constant)

2uhyyy = 2hyy; +3s (A4.1)

2v/u(uhiio + vlhyy) = 2h10 — shy (A4.2)

by (1.7) and (1.12.1). So we can choose s = —%hm to annihilate the right-hand
side of (A.4.1), i.e. to make &y, = 0.

Taking exterior differentiation of (2.6.2) gives
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(dhoy — i@} —  hiod) Aw' +(dhoo — 214} — 3hod!, + Qew') A B
1
+ {dho +a(ho ¢}, +2hgow' + Ezp —0,0)}Adt=0

where Q = Q, +iQ, with Q,, Q. real is called the Cartan (curvature) tensor (it
is written as Q;; in [3]). Therefore we can write

dhoy — h11¢; — hiod = horiw" + ho1of + pordt (A5.1)

dhoo — 2ho1 4} — 3hood), + Qcw' = hoorw! + hoooB + poodt (A5.2)
1

dho + a(ho1 b}, + 2hoow" + E'I’ — 0,0) = poof + por1w' + qodt (A.5.3)

with hgio = hgo1(= hi0o and pm Pio also by (2.8.2) with hyp = hg1). Now from
(1.11.1) we can choose v} \/— hy; such that h” = 0. Suppose this be done,
i.e., suppose A;; = 0. Then ¢' and ¢! transform as follows:

Vug! = ¢l + %swl (A6.1)

Vgl =l (A6.2)
according to (A.3) and the second equality of (1.10). Hence

hoo = hoott? (A.7)
by (A.6.2). On the other hand, A;;o changes “tensorially :

uihyio = hio (A.8)

due to (A.4.2) since hj; = v} = 0 by assumption. Also we can write

3¢y = hijw' +hiof (A.9)

by (2.8.1) (¢ = constant). Now a direct computation starting with exterior differ-
entiation of (A.7) gives

u%hoo; = hoot — hioS (A.10.1)

u3 hooo = hooo — %hoos (A.10.2)

by (A.5.2), (A2), (A.9), (A.8), (A.4.1) and noting that uk, = hyo and Q. = u?Q,.
It is clear now that from (A.10.1) and (A.10.2) we can choose s to make either
right-hand side vanish (by assuming hjo # 0 or hg # 0), i.e., h]O() hoo1 0 or
hooo = 0.



548 J-H. Cheng

Note that there are 3 degrees of freedom for us to choose admissible coframes
(6,w',w?, ) subject to the equation (1.1) under (1.7) and (A.1), namely, u,v!
and s. After choosing v,’ and s to make h;; = 0 and hi11 or hygo or kg = 0
respectively, we have only one degree of freedom, u, left over.
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of existence of above-mentioned CR-invariant area elements before this work could be carried out.
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