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1 Statement of results

First we define BU(x). Let L%(G) be the usual complex (in this case finite
dimensional) Hilbert space of the complex regular representation of G, and let

H™(G) = f LX(G),

where L}(G) = L?(G). Let BU,(G) be the Grassmann G-space of complex
n-planes in #*(G) and let n: E,(G) - BU,(G) be the tautological complex
G-vector bundle over BU,(G). The latter is a universal G — U (n)-vector
bundle [LR] with associated principal G — U(n)-bundle P,(G) —» BU,(G), the
G-bundle of orthonormal n-frames in 5#(G).

As we shall see below BU,(G) is not convenient for our purposes, espe-
cially since the fixed point sets BU,(G)¥ are not connected. We correct for this
by restricting to G-vector bundles modeled by a given complex representation
o:G — U(n) as follows:

Definition 1 We define BU () to be the G-subspace of #*(G) x BU,(G) of all
pairs (v, p) such that the action of the isotropy group G,pyon E,(G), =~ (p)is
equivalent to a|G,, ,.

Let E(a) and 7, be defined as pullbacks
E(@ —> E,(G)
BU(x) — BU,(G)
where the map BU(«) — BU,(G) is the projection to the second factor.

* Partially supported by NSF MCS 7701623
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As we will show later =, is universal for complex G-vector bundles
p:E — X over G-CW-complexes X such that for all x € X the action of G, on
E, =n"!(x) is equivalent to a|G,. Henceforth such bundles will be called
a-bundles. The analogous notion in the case when a is an orthogonal repre-
sentation was introduced in our earlier paper [RT].

The study of the equivalent classifying space BU(«) is crucial for the
understanding of equivariant characteristic classes. In the nonequivariant case
it is well known that BU (n) splits rationally into a product of Eilenberg-Mac
Lane spaces. Therefore the classifying map of a complex n-bundle over X is
determined rationally by cohomology classes namely the Chern classes. In
contrast to the nonequivariant case however, BU(«) or BU,(G) does not split
rationally into a product of Eilenberg—-Mac Lane G-spaces even when the
group G is as simple as Z,. In [RT] we gave counterexamples for real
representations o but the same argument carries over for complex representa-
tion of Z, as well. We recall further from [RT] that

BU(«)¥ ~ BC(a|H),

where C(a|H) is the centralizer of a(H) in U(n), and BC(x|H) is a product of
BU(n;)’s, i.e. the fixed point sets BU(«)” do split rationally into a product of
Eilenberg—Mac Lane spaces. The question is whether we can still utilize the
simple form of the fixed point sets in order to compute the G-rational
homotopy type of BU(x).

In the nonequivariant case the rational homotopy type of a simply
connected space X is determined by the minimal model .#y of X which is
a free and minimal differential graded algebra (DGA) over Q. We recall from
[S] that a space X is called formal if there is a cohomology isomorphism

p: My - H*(X;Q).

In other words the rational homotopy type of X is determined by the rational
cohomology of X.

Now let X be a G-CW complex such that X¥ is nonempty and sim-
ply-connected for all H = G. The notion of homotopy we consider in this
context is equivariant homotopy of G-maps. We recall a result of [B] which
characterizes G-homotopy equivalences for G-CW complexes, namely a G-
map f: X — Y is a G-homotopy equivalence if and only if it induces isomor-
phisms (f#),:n,(X") - n,(YH) for all subgroups H of G. An appropriate
notion of rational G-homotopy type was developed in [T] where all fixed
point sets are rationalized at the same time. Also for any space X as above an
equivariant minimal model was constructed which determines the equivariant
rational homotopy type of X.

The equivariant minimal model .# is a system of DGA’s rather than
a single DGA i.e. ./ is a particular functor from the orbit category @ into the
category of DGA’s. Here (); is the category the objects of which are the
quotients G/H, H < G, and morphisms are the equivariant maps. To simplify
notation, we will designate objects of O; by H rather than by G/H. Other
examples of systems of DGA’s associated to a G-complex X are the system
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H*(X;Q) of the cohomology of the fixed point sets and the system &y of de
Rham algebras of the fixed point sets defined as functors from O into the
category of graded algebras over Q by

H*(X;Q)(H) = H*(X%;Q)
and
Ex(H) = Exn

respectively for H < G.

It seems that the right definition for equivariant formality would be to
require that there is a cohomology isomorphism from the equivariant minimal
model of a G-space X to the system of cohomology algebras of the fixed point
sets H*(X;Q). However, not all systems of DGA’s admit an equivariant
minimal model. The crucial property needed is injectivity in the sense of
category theory. A system of DGA’s can be considered as an object of
a certain abelian category namely the category of functors from Og into the
category of vector spaces (by neglect of structure). A system of DGA’s is
injective if it is an injective object in this abelian category.

As shown in [T] the system &y of the de Rham algebras of the fixed point
sets of X is always injective and equivariant minimal models for G-spaces with
nonempty nilpotent fixed point sets can be constructed. However the system
H*(X;Q) is almost never injective. Recently [FT] solved this problem by
constructing injective envelopes for arbitrary systems of DGA’s as follows:

Theorem 2 [FT] For any system of DGA’s s/ over a finite group G there is an
injective system of DGA’s .# and an inclusion i: s/ — % which is a cohomology
isomorphism.

This construction of injective envelopes satisfies certain functoriality and
uniqueness conditions. Now the definition of equivariant formality can be
given as follows.

Definition 3 [FT] A G-space X is said to be equivariantly formal if there is
a cohomology isomorphism from the equivariant minimal model # of X into the
injective envelope . of H*(X;Q).

In other words the equivariant homotopy type of X is rationally deter-
mined by the rational cohomology of its fixed point sets. We remark here that
the above difficulty does not appear in the definition of equivariant formality
in the dual sense in terms of differential graded Lie algebras. In fact we proved
in [RT] the equivariant formality of B(x), where « is an orthogonal repre-
sentation of an abelian group G, in this dual sense.

The main result of this paper is:

Theorem 4 The space BU () is equivariantly formal.

This means that the equivariant homotopy type of BU(a) rationally
depends only on the cohomology of its fixed point sets. Since BU («) does not
decompose rationally into a product of G-Eilenberg-Mac Lane spaces, the
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formality of BU(«) is the next best property that makes the question of the
equivariant characteristic classes tractable.

Remark. By using more recent work of B. Fine, who extended Triantafillou’s
equivariant minimal model theory to the non-connected fixed point set case,
we can show equally well that the general classifying space BU,(G) is
equivariantly formal. However we see several advantages in focusing on
BU (a). First of all the cohomology of the fixed point sets is simpler being a free
polynomial algebra. Even more importantly fixing the representation o sim-
plifies the surgery exact sequence in computations involving realizing co-
homology characteristic classes by bundles as in the section on applications
below. Thirdly the delicate question of equivariant transversality is better
dealt with in the context of a single representation. Since the formality of
BU ,(G) is still of theoretical if not computational importance we state it here
as a theorem.

Theorem 5 The classifying space BU,(G) is equivariantly formal.

In order to prove that the space BU () is equivariantly formal we approxi-
mate it by a system of spaces BU, which has the advantage that is is a limit
of G-Kiahler manifolds. Then we employ the equivariant formality of G-
Kahler manifolds from [FT] (actually a refinement of it) and a subtle inverse
limit argument. Here several technical difficulties have to be dealt with. First,
as is well known minimal models are not functorial. Moreover in contrast to
the nonequivariant case, surjectivity of a map f: &/ — # between systems of
DGA'’s is not sufficient for the existence of a strict (not only up to homotopy)
lift f':. M — A& of f to the minimal models. Special arguments using the
geometry of BU(«) have to be used to make this approach work.

The proof of formality of BU,(G) is simpler since it is a limit of G-Kahler
manifolds and no approximation is needed.

On the way we prove the following proposition which is useful for the
lifting problem above.

Proposition 6 Let Y be a G-simplicial complex and let X be a G-subcomplex
of Y. Then the map ¢: 8y — &x has a linear splitting in each degree, where ¢
is the map between the systems of de Rham algebras induced by the
inclusion.

In the last section we give an application of the formality of the classifying
space BU () by realizing certain cohomology data as equivariant Pontryagin
classes of a G-manifold in Theorem 14 and Corollary 18.

2 Proofs

We begin with an easy result. Henceforth X will denote a G-space which
admits a G-embedding in #°(G) — for example, a countable G-CW-complex.
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Proposition 7 Let E — X be a numerable « bundle. (See [LR], Def. 2). Then
there exists a G-map f:X — BU(x) unique up to G-homotopy such that
S*(E(®)) = E. In other words, n, is universal for such X.

Proof. Up to G-homotopy, E determines uniquely a map f: X — BU,(G). Let
Jj:X > A be a G-embedding unique up to G-homotopy since #* is G-
contractible. Since (fxj)y*n*(E.(G)) = E, fxj is an embedding, and E is an
a-bundle fxj(X) must lie in BU(x). We let f=fxj. Applying the same
arguments to X xI rel Xxdl we see that f is unique up to G-
homotopy. QED

The space BU () is not so nice to work with, but it seems difficult to find
simpler universal models at the level of G-spaces. However, at the level of
systems of G-spaces [RT] there are more convenient models available. Recall
that a G-system (of spaces) is just a contravariant functor S from the orbit
category (g into the category of topological spaces. A map of a system is just
a transformation of functors. Given a G-space Y, the correspondence H +— Y#
is a G-system and this embeds G-spaces and G-maps as a full subcategory of
G-systems. A system is thus a generalized G-space. The generalization consists
in relaxing two properties of G-spaces: for any subgroup K = H and N the
normalizer of K in H

1. The map S(H) — S(K)" may not be an embedding.
2. The map S(H) — S(K)" may not be a homotopy equivalence.

The first property is an inessential difference in that we can replace
a reasonable S by a homotopy equivalent system using mapping cylinders
such that all mappings in the system are embeddings. The second property is
the crucial difference and can lead to anomalies such as maps j:S; — S,
between systems such that for each H in (g, j(H) is a homotopy equivalence
between CW complexes, yet j has no homotopy inverse. Thus the usual
methods of constructing maps of G-spaces step by step up the fixed point
strata can fail when the domain is a system. However when the domain is
a G-space and the range a G-system, those methods do apply. This is an
observation that can be made precise using Elmendorf’s realization transform
[E] from systems to spaces, but we do not need this generality here.

In [RT] we developed the notion of bundle systems and a-bundle systems
over G-systems of spaces. Specifically, for H € Og, let C(x(H)) be the central-
izer of a| H. Let E(U(n)) be the standard infinite join model for the universal
contractible U (n) space, and BC(a(H)) = E(U (n)))/C(«(H)) the corresponding
model for the classifying space of C(«(H)). Then each BC(«a(H)) has a canoni-
cal U(n) bundle on it and the corresponding spaces and bundles form an
a-bundle system which we denote by BC(«). We can then apply the criterion of
Theorem 6 of [LR] and the remarks following it to conclude that BC(a) is
universal for numerable a-bundles over G-spaces.

While we cannot expect BC(x), or anything else, to be universal for all
numerable a-bundle systems we can refine the above to the following: Let us
call S a nice system if each S(H) is a N(H)-CW-complex and further that if
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K > H then S(K) — S(H) is a pushout of CW-embeddings. Then BC(«) is
universal for numerable a-bundle systems over such S.
By the universality of both systems we can then conclude:

Proposition 8 There is a unique up to homotopy map of systems BU (&) - BC(«)
compatible with the corresponding bundle systems. For every H in O this map
induces a weak homotopy equivalence BU (¢)? — BC(x)".

We wish finally to introduce a third universal model, the system BU,,
where BU,(H) consists of n planes V in H® invariant under the action of
H and such that the action of H on V is equivalent to «|H. BU, is a nice
system since as we show below it is a limit of systems of smooth varieties. By
definition there is a map of systems BU, — BU,(G) and the induced system of
bundles over BU, is a system of a-bundles. By the universality of BC() there
is a unique up to homotopy map of systems s: BU, — BC(a). To show that
BU, is universal for numerable a-bundles over G-CW-complexes it then
suffices to show that the map BU,(H) —» BC(x(H)) is a weak homotopy
equivalence for every H. This follows from the following:

Proposition 9 Given any finite complex X and f as below there exists a unique up
to homotopy f' which makes the diagram commute

BU,(H)
2 ls(tn
X L BC(w(H)).

Proof. Given fwe have the pullback bundle «|H: E — X, where X has trivial
H action. We then have the G-bundle G xzE — G/H x X and this induces
a unique up to G-homotopy G-map f’:G/H x X — BU,(G). Restricting to
ex X yields /" : X — BU,(G)" and since E is a «| H bundle, f’(X) must lie in
BU,(H), and since f" induces E, s(f") =f. The uniqueness of f* follows by
making the same argument on X x I rel X xdl. QED.

We have not quite constructed a map from BU(«) to BU,, since BU(«) is
not a priori a-G CW-complex. However, applying Elmendorf’s realization
functor replaces BU(x) by a G-CW-complex r(BU(x)) which maps into it.
Since in this case the realization is also universal being G-homotopy equiva-
lent to the realization of BC(x), we get a map in the other direction and this
gets us a weak equivalence from BU (o) to BU,. In any case we have a diagram

/v BU(a)
e

BU,,

r(BU (@)

where i(H), j(H) are weak homotopy equivalences. Thus we proved the
following.

Proposition 10 There is a weak equivalence between BU («) and BU,.
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Before we prove the main theorem we recall the result about the formality
of Kahler manifolds which we will use in the proof.

Theorem 11 [FT] Let G be a finite group and let X be a Kdihler manifold which
admits a holomorphic G-action with nonempty connected and simply connected
fixed point sets. Then X is equivariantly formal. Moreover equivariant holomor-
phic maps between G-Kdhler manifolds are formal, i.e. they-are determined
rationally by the maps induced on cohomology.

Proof of Theorem 4 By Proposition 10 it suffices to prove that BU, is formal.
We consider the system of spaces BU, as the limit of inclusions

: CBUa,NCBUa.N+1 <o

where BU, y is defined in the same way as BU, except that we use
#N(G) = @)= L;(G) instead of #*(G). By construction each BU, y(H) is
a smooth algebraic variety and NH/H acts on BU, y(H) preserving this
structure. By a well known result BU, y(H) is a Kihler manifold and
G preserves the structure. In fact BU, y(H) are complex Grassmann manifolds
and they approximate the cohomology of BU,(H) up to a range k(N) such
that k(N) » oo if N> o0, ie.

H'(BU,(H)) = H'(BU,,y(H)) (1

for i < k(N). Consider the sequence of the systems of de Rham algebras of
BU, y’s and their equivariant minimal models .#y = .# BU. y Namely:

EN
— S — S, —

o,N +1

o [ox @

EN
=== "”N+l ——=¥ J”N —

This diagram commutes only up to homotopy in general. Moreover the
inverse limit limg .#y need not be a minimal system of DGA’s. It need not be
even an injective system of DGA’s.

In order to get a well defined inverse limit we proceed as follows. First we
observe that ey is surjective meaning that ey(H) is surjective for every H < G.
Moreover by (1) ey induces an isomorphism on cohomology in degrees less or
equal to k(N). In the nonequivariant case these two properties are enough to
guarantee the existence of a strict lifting &y in (2) up to degree < k(N). In the
equivariant case we need in addition a linear splitting of the map &y in the
same degrees. This is provided by Proposition 6. Then the construction of lifts
of [T] can be modified by a coboundary to give a strict lifting of ey in the
range of degrees < k(N). Therefore the diagram (2) commutes strictly
in degrées < k(N) and commutes only up to homotopy in higher degrees. In
fact by construction it commutes strictly when restricted to the sub-
systems Ay 1(k(N)) = #y(k(N)) which correspond to the k(N)-stage of
the Postnikov tower.
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In the same way we continue the diagram to the left for larger N and hence
larger k(N). Now we observe that .#y(k(N)) = 4y, (k(N)) for all i = 0 and
therefore

M (k(N)) = My(k(N)) .

This shows that .# is a minimal system of DGA’s. We note that .# does not
depend on the homotopy lifting of (2) in degrees = k(N), in fact such a lifting
beyond the k(N)-stage of the Postnikov tower is not necessary for the
definition of .#. We will use this fact later in the proof. Because the minimal
systems .#y(k(N)) are uniquely defined up to isomorphism .# is unique up to
isomorphism as well. Since obviously

EBu.n = li;?'n é’nu,‘,\,

we get amap p: .4 — &py, which is a cohomology isomorphism by construc-
tion of .# and property (1).

In order to show that BU, is equivariantly formal we have to construct
a cohomology isomorphism

u. M- £,
where £ is an injective envelope of H*(BU,;Q). First we note that

H*(BU,;Q) = li;_’n H*(BU,,5;Q)

by property (1). By the equivariant formality of each BU, y we have maps
un: My — Iy,

where Sy is an injective envelope of H*(BU, y;Q). The injective envelope
#n+1 can be chosen to be isomorphic to the injective envelope .#  in the range
of degrees < k(N). Therefore we get again an isomorphism
ey: My+1(k(N)) > M y(k(N)) such that the diagram

— IN+1 — IN —

I I | v

—  My+1(k(N)) — My(k(N)) —

commutes. As we remarked earlier the inverse limit limg .#y does not depend
on the existence of a map from # ., , to .#y beyond the k(N)-stage. Hence
limy # y is defined by the sequence (3), and it coincides with the inverse limit
defined by (2). On the other hand it is easy to see that the inverse limit of the
#n’s is an injective envelope # of H*(BU,;Q). Therefore the required map
p between the two inverse limits exists and is a cohomology isomorphism by
a degree by degree argument. This completes the proof of the theorem.

In effect we proved a more general result. We state it as a separate
proposition below since it may be useful in other situations as well.
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Proposition 12 Let S be a G-space or a system of spaces over G which is the
direct limit of a sequence of inclusions

._'S'l_’sll'}‘l_*.."

where (i) each S, is a formal G-space or a formal nice system of spaces over G,
and (ii) there is a function k(n) of n such that k(n) —» o0 asn — oo and such that

H'(S,(H)) = H'(S(H))
for i < k(n) and H < G. Then S is equivariantly formal.

Proof of Proposition 6 We adapt to the equivariant case the extension map
E on forms given in [BG] p. 3. This map is linear and provides for each p-form
w defined on the boundary of a simplex ¢ an extension @’ of w of the same
degree on 0. We will make E functorial with respect to the category (g, i.e. we
will construct a natural transformation

E:8y - &x

by induction on the fixed point sets and on dimension of simplices. First we
define an extension map E(G): &xg — &yg as in [BG] which is a splitting of
€(G):&ys — Exs. Let H be a fixed subgroup of G. Assume inductively that
E(H'):Exyr — &y is defined for all H' 2 H. Consider a form w e &xr. This
form has already been extended to all n-simplices of Y the isotropy groups of
which are larger than H. Extend the form by E of [BG] on the simplices of Y#
the isotropy group of which is H. We have a linear map from &y into
&yn which we average over the action of N(H)/H to get an equivariant map
E(X): &xu — &yu; here N(H) is the normalizer of H in G. By translating this
map by g € G we get the desired map E(K) for all subgroups K which are
conjugate to H. This completes the inductive step and the proof of the
proposition.

Applications

We recall that in the nonequivariant case, by using surgery methods one can
realize (under certain signature conditions) rational cohomology classes as
Pontryagin classes of a manifold of a given rational homotopy type. As an
application of our formality result we prove an equivariant analogue, The-
orem 14 and Corollary 18. The formality assumption of the manifold is
necessary since the nonstable equivariant classifying space is not a product of
G-Eilenberg Mac Lane spaces rationally.

As before we fix a representation « : G — U (n) which we also call V, where
V' is a complex vector space on which G acts by unitary automorphisms. Let
S(V') denote the unit sphere of V and T(V) the one-point-compactification,
where both are G-spaces. In the equivariant context we have the notion of
a G-bundle E — Y with fiber X, where all spaces are G-spaces and all maps
are equivariant. These come with structure groups K(E) c Homeo(X ), where the
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inclusion is an equivariant map and the action of G on Homeo(X) is by
conjugation. We will particularly consider bundles with fiber V or S(V) and
structure group U(V).

More generally we can consider fiber spaces E — Y with fibers G-
homotopy equivalent to X, the structure H-space of which is the monoid of
base point preserving self homotopy equivalences of X denoted aut(X ).
Because of the G-fixed base point assumption, the fiber space E has a canoni-
cal crossection which we regard as part of its structure. Equivalence of two
such fibrations means G-fiber homotopy equivalence preserving the crossec-
tion. Both bundles and fiber spaces have classifying spaces denoted by BK (E)
and BH(E) respectively.

Definition 13 4 (V, W )-structure on a G-manifold M is a smooth embedding
c:M — V @ W such that the G-normal bundle n(c) of c is given a V-structure,
i.e. n(c) is classified by a G-map, defined up to G-homotopy, n(c): M — BU(V).
Here W can be a real or complex representation whereas V is a complex
representation as before.

We will routinely identify fibrations and bundles with their classifying
maps and with their total spaces. Such a structure on M yields a based G-map
T(V ®@ W) — T(n(c)) called the characteristic map of the structure. Its trans-
verse inverse image of M is just c¢(M).

Example. If M is G-connected, and |G| is odd and if W is the tangent
representation of G at a fixed point of M, and V is any unitary representation,
then any G-embedding of M in V @ W yields a canonical (V, W )-structure.

Now we wish to recall a few facts from surgery theory. We will work in the
smooth category and for brevity with the homotopy rather than the simple
homotopy version, although what we say with some obvious modifications
applies to both.

Let P be an integral Poincaré duality space of formal dimension n > 4.
Again for brevity’s sake we assume that P is orientable. Then we have the
surgery exact sequence

L'> #(P)—> ¥/ (P)> L°.

Here L' are Abelian groups which depend only on the dimiension of P and on
71(P). The set ¥ (P) consists of homotopy equivalences of smooth manifolds to
P identified up to h-cobordism over P, whereas .4(P) is the set of normal maps
of degree 1 from smooth manifolds to P identified up to cobordism over P.

The sequence can be localized at 0 (rationalized) in the following sense. We
replace P by its localization at 0. More precisely we localize at O the universal
cover of P in the category of free 7, (P)-spaces. Let P’ be the orbit space. Now
& (P') is the set of rational homotopy equivalences of smooth manifolds to P’
up to rational h-cobordism over P’ and 4 '(P’) becomes the set of smooth
manifold maps of positive degree such that the rationalized stable normal
bundle pulls back from P’. The corresponding L-groups depend only on the
rational group ring Q(n,(P)), [Ba].
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Instead of looking at fundamental groups acting freely on universal covers
we consider finite groups G acting smoothly (and orientation preserving) on
compact manifolds M. Then under the gap hypothesis, i.e. the assumption that
for subgroups K c H, dimM*¥ < dim M¥ implies dimM¥ < 2dimMX > 2,
a good version of the surgery exact sequence holds [DR]. The ./ and & sets
are the G-category versions of the above 4" and &. The L-groups depend on
G. the dimensions of the fixed point submanifolds, the fundamental groups of
the fixed point sets, and some local data. For simplicity we consider only the
G-simply connected case, where the fixed point sets are nonempty and simply
connected. Then the only local data we need to specify is the tangent repre-
sentation of G at a fixed point which we fix once and for all.

Under the hypothesis of nonempty and simply connected fixed point sets
we can rationalize G-spaces M yielding M, and as above the localized surgery
exact sequence. The corresponding L-groups depend only on G, the fixed
point dimensions and the local tangent representation. We will write them as
L(M,) for convenience, and make some remarks about calculating later. Our
main theorem can now be stated.

Theorem 14 Let M be a G-simply connected manifold of dimension > 4 with
a (V, W)-structure, which is G-formal, and satisfies the gap hypothesis. Let

H(M,V) = Hom(H*(BU(V);Q), H*(M;Q))

be the set of natural transformations of rational cohomology thought of in the
usual way as algebra functors on the orbit category of G. Then there is a family
of maps j:H(M,V) — L°(M,) such that if j(b) =0 then there exists a G-
manifold M’ rationally equivalent to M such that b stabilized is realized by
a(V @ ke, W )-structure on M'. Here e is the trivial representation. If V itself is
sufficiently large (depending on the dimension of M) we canreplace V @ ke by V.

To prove this we will construct a map from the set of homotopy classes of
maps Mo - BU(V)o to A (M,). This construction does not use the gap
hypothesis or formality. This construction, the formality of M and BU(V ) and
the surgery exact sequence will then provide Theorem 14.

For any unitary G-representation V we have S(V @ e) = T(V @ R), where
T means one-point-compactification. Thus any V-bundle E over Y gives an
associated S(V @ e)-bundle S(E + ¢) with a canonical crossection corres-
ponding to the base point of T(V @R). Passing to fiber spaces yields
i:BU(V) — BautS(V @ e). Let i, be the rationalization of this map.

Remark. One may worry about localizing BautS(V @ e) since it is not G-
simply connected, although BU (V') is. The standard way to deal with this is to
replace the classifying space BautS(V @ e) by its G-simply connected covering
space, say B, and lift i. Then we simply define BautS(V @ e), = B,.

A standard argument equates autS(V @ e), = aut(S(V @ e),) and thus

BautS(V @ e)o = Baut(S(V @ e),) .
We thus have io: BU(V), — Baut(S(V @ e)o).
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Lemma 15 For any subgroup K of G, n,(BautS(V @ e)¥) is finite.

Proof. We have m(BautS(V @ e)*) = n;_ , (autx S(V @ e)), where autg(X) is
the monoid of K-equivariant self homotopy equivalences of X. Note that
autg S(V @ e) is a proper subset of autS(V @ e)*. For K = 1, autx S(V @ e) is
just the union of two components of Q™S(V @ e), where m = dimS(V & e).
For larger K the result follows from the equivariant Postnikov decomposition of
S(V @ e) and the fact that the fixed point sets are all spheres of odd dimension.

Corollary 16 The space BautS(V @ e), is equivariantly contractible as a G-
space.

Corollary 17 Any two fiber spaces over X with fibers S(V @ e), and with
crossections are G-fiber homotopy equivalent by an equivalence preserving the
crossection. The equivalence is itself determined up to G-fiber homotopy.

Proof of Theorem 14 We now return to our (V, W )-manifold M. We have the
composition.

ig°n(c)o: Mo —» BU(V)y — BautS(V @e), .

Let E, be the spherical fibration induced by this map. Let b: M, — BU(V),
be any map, and let E, be the spherical fibration induced by io°b. By
Corollary 17 we have a zero section preserving G-fiber homotopy equivalence
Sf1E; — E;, uniquely determined up to G-homotopy. Let E; = E; — (0-sec-
tion). Then f: E; — E, is well defined.

Since S(V @e)o = T(V @ R)o, and M, and thus E; and E; are rational
spaces, we have that (S' A Tn(c))o = T(E,). We thus have the following
composite map, uniquely defined up to G-homotopy, T(V @ W @ R) —
(8' A Tn(c))o = T(E,) > T(E,), where the first map is the suspension of the
characteristic map. We will denote this composition by h.

We now consider the diagram:
i

M — BU(®V)

1 |

My, 2SBU®W),.

Here M’ and b’ are pullbacks, and the right vertical ﬁlap is localization.
Since M, is rational the left vertical map is rationalization as well, and M’ is
rationally equivalent to M. Let E’ be the bundle induced by b'. Our construc-
tion yields a fiberwise localization T(E' @ R) — T(E,). We then have the
diagram:

T(E'®R)
O
TVeOW®R) - T(E,).

The set of basg point preserving G-homotopy classes of maps

[T(V & W @R), T(E,)]g form an Abelian group, since by our assumptions
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W always contains at least one trivial summand. Since the vertical map is
a rationalization elementary obstruction theory says there is a minimal
positive integer m such that mh lifts. Suspending once yields
mh:T(VOW® e) > T(E' @ e). Since in what follows we can also consider
dmh for any integer d, we are really describing an integer indexed family of
liftings. That is why we speak of a family of maps in Theorem 14.

The final step is to G-homotopy dmh to a map transversal to the zero
section. In general deforming maps equivariantly to transversal ones is a deli-
cate business which cannot always be done. However we have good control.
Specifically the tangent bundle of T(V @ W @ e) away from the base point
has a direct summand which at each point is the fiber of E’ @ e. We can then

apply the technique of strict transversality to deform dmh to a map transversal
to M’ which is unique up to G-transversal homotopy. (This makes sense even
though M’ is a “bad” space. Transversality is a local notion, and locally the
bundle is trivial. Hence locally we can project to the fiber of the bundle and
make the map transversal to zero.)

Thus without loss of generality we can assume dmh is transversal to M.
Composing MI(M)_,(M,) with the given localization of M’ - M, yields
a well defined element of .#"(M,) which by construction is provided with
a (V @ e, W)-structure. This completes the construction of the family of
functions from the homotopy classes of rational maps to the normal groups.

So far we have used neither formality nor the gap hypothesis. The surgery
exact sequence says that this element of 4" (M) is G-cobordant to a rational
G-equivalence iff its image in the surgery group vanishes. We may have to add
k trivial representations to make this cobordism in V ® W @ ke. Here k de-
pends on dim M. If V has enough trivial summands we do not have to do this.
In fact we can lift our original (V, W )-structures back to (V — ke, W) and
work there.

Now we bring formality into play. By definition it provides us with a map
from H(M, V') into homotopy classes of maps My — BU(V),, which realize
the given map on cohomology. Let b € H(M,V) and let b: M, — BU((V),
represent the corresponding homotopy class of maps. We say that a rational
equivalence f: M” — M,, where M” is given a (V, W)-structure, realizes b if
the following diagram commutes up to homotopy.

M” —  BU(®V)

P
M, — BU®V),.

Here the top horizontal map is the one associated with the (V, W )-struc-
ture. Now the conclusion of Theorem 14 holds by the construction.

The fact that the correspondence j in Theorem 14 is a relation rather than
a function is due entirely to the choice one has in lifting the rationalized

characteristic map. The vanishing of j(b) presumably depends on this choice.
One can describe the effect of different choices in terms of operations on the
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surgery group L(M,). Since we do not know these groups in general there is
not too much point in doing so. When L(M,) is nonzero it tends to have
rational vector space summands and thus is quite large. Since there are real
obstructions to realizing b, given by the G-signature theorem, which involve
Pontryagin numbers of the various fixed point sets, as well as some G-
orientation constraints, j(b) can often be nonzero, and a more refined analysis
shows that j(b) can take on quite a wide range of values. In fact L(M,) should
be thought of as precising exactly all the G-signature and G-orientation
constraints, and our theorem says that these are the only constraints.

Our result says that j(b) is determined by b but we are far from an explicit
calculation which would be very interesting. It is possible and likely that one
could realize b by an M” which does not come with a lift of the characteristic
map. Finally it is also true that it may be possible to realize some map
M, — BU(V ), whose map on cohomology is b, without being able to realize
b. That is b is not the unique map which on cohomology gives b.

Despite all this the existence of j does yield specific results. Most cleanly,
when |G| is odd, and the dimension of M is odd, then it is not difficult to show
by explicit calculation over fixed point sets that L(M,) is 0. Thus we have:

Corollary 18 If along with the hypothesis of Theorem 14, |G| is odd and M is
odd dimensional then any b € H(M, V') has a realization M" — M.
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