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Introduction

Let A be a Noetherian local ring and M a finitely generated A-module. We
say that M is a Buchsbaum module if the difference LM [qM ) — eq(M) is
an invariant of M, not depending on the choice of a parameter ideal q for M.
Goto [6] gave a structure theorem for maximal Buchsbaum modules over reg-
ular local rings, that is, if A is a regular local ring of dimension d > 0, then
there exist exactly d isomorphism classes of indecomposable maximal Buchs-
baum A-modules and any maximal Buchsbaum A-module is a direct sum of finite
copies of them and the residue class field k, where an A-module M is said to
be maximal if dimy M = dimA. In this paper we are interested in improving his
theorem, so that it shall work not only for regular local rings but also for Cohen-
Macaulay local rings possessing dualizing complexes. For instance, Yoshino [22]
explored maximal Buchsbaum modules over a Gorenstein local ring A, and gave
a univalent correspondence between certain maximal Buchsbaum modules and
representations of some quivers. In his theorem he assumed the modules consid-
ered to have finite projective dimension; this assumption seems reasonable, since
modules over regular local rings have finite projective dimension.

Stiickrad and Vogel [20] gave a sufficient condition, so called the surjectivity
criterion, for modules to be Buchsbaum. In general, it is not a necessary condition
and so we refer to those modules satisfying the condition obtained by Stiickrad
and Vogel as surjective-Buchsbaum modules over A; see the next section for
the detail of definition. However, if A is regular, then the condition is also
necessary; therefore we may particularly regard Goto’s theorem as an assertion
on surjective-Buchsbaum modules. In our paper we shall establish, over Cohen-
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Macaulay local rings, a structure theorem for maximal surjective-Buchsbaum
modules which satisfy the finiteness of some homological invariants.
Firstly we shall prove the following theorem.

Theorem 3.1 Let A be a Cohen-Macaulay local ring of dimension d > 0. Assume
that A is not regular and that A has a dualizing complex. Then there exist exactly
d + 1 isomorphism classes of indecomposable maximal surjective-Buchsbaum A-
modules of finite injective dimension, and any maximal surjective-Buchsbaum A-
module of finite injective dimension is a direct sum of finite copies of them.

Secondly we shall explore the relationship between the surjective-Buchsbaum
modules of finite injective dimension and the surjective-Buchsbaum modules of
finite projective dimension. Our results are summarized into the following.

Theorem 3.3 Let A be a Cohen-Macaulay local ring possessing the canonical
module Ky. Let M be a finitely generated A-module of finite projective dimension.
Then M ®4 K, has finite injective dimension, and if M ®4 Ky is a surjective-
Buchsbaum A-module, so is M.

Let us call M a typical surjective-Buchsbaum A-module, if it has finite pro-
Jective dimension and if M ®4 K, is a surjective-Buchsbaum A-module. We shall
give the following structure theorem, similar to Theorem 3.1, for typical maximal
surjective-Buchsbaum modules over Cohen-Macaulay local rings.

Corollary 3.5 Let A be a Cohen-Macaulay local ring of dimension d > 0. Assume
that A is not regular and that A has a dualizing complex. Then there exist exactly
d + 1 isomorphism classes of indecomposable maximal typical surjective-Buchs-
baum A-modules, and any maximal typical surjective-Buchsbaum A-module is a
direct sum of finite copies of them.

It should be noted here that there exist, over certain Cohen-Macaulay local
rings, infinitely many non-isomorphic and non-typical indecomposable maximal
surjective-Buchsbaum modules of finite projective dimension, by which we find
the most essential assumption in Goto’s theorem is the finiteness of injective
dimension, not the finiteness of projective dimension.

Throughout this paper, A denotes a Noetherian local ring with maximal
ideal m. Let k be the residue class field of A. We assume d = dimA > 0.
For each A-module M, £4(M) denotes the length of M.

Surjective-Buchsbaum modules

Firstly we shall give the definition and characterizations of surjective-Buchsbaum
modules. Let M be an A-module and put

SocM=0A:4m and FmE=D[O»:’m"] .

n=1
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The derived functor of Soc(-) is Ext;(k, —). The one of Iy, is denoted by Hl(-);
see [8]. If M is finite generated, then Extf,(k,M) is finite-dimensional k-vector
space. We put uf‘(M) = EA(Extf‘(k,M)) and call it the i-th Bass number of M
see [2]. Similarly we put ﬂ;‘(M) = ZA(Tor,‘-‘(k,M)) and call it the i-th Betti
number of M. For any finitely generated A-module M, the i-th local cohomol-
ogy Hy (M) of M with respect to m is an Artinian module but not necessarily
finitely generated. We say that M has finite local cohomologies, if H' (M) are
finitely generated for all i # dimy M.
The inclusion map SocM < I, M induces the natural map

S Exty(k,M) — Hi (M)
for all i > 0.

Definition 2.1 Let M be a finitely generated A-module. Then M is said to be a
surjective-Buchsbaum A-module, if the natural map ¢}, is surjective for all i #
dimA M.

Being surjective-Buchsbaum depends on the choice of base rings. In fact,
let B be a homomorphic image of A and M a B-module. Then M is not nec-
essary a surjective-Buchsbaum B-module, even if M is a surjective-Buchsbaum
A-module; see, for example, [18, §2]. A surjective-Buchsbaum module is Buchs-
baum [20] and has finite local cohomologies. Naturally, every Cohen-Macaulay
module M is surjective-Buchsbaum, because H! (M) =0 for all i #dimy M.

For each A-module M of finite local cohomologies, we put

; _Jl(H (M), ifi#s=dimyM;
haM) = { la(mey,), ifi=s.
The next result is basically due to [13] and [21]; inequalities (2.2.1) were given by
Miyazaki [13, Corollary 1.14], when A is regular. The second part of Lemma 2.2
is called the Bass number criterion and due to Yamagishi [21, Theorem 1.2].
Because it plays a key role in this paper, we shall note here a brief proof for the
sake of completeness.

Lemma 2.2 Let M be a finitely generated A-module of finite local cohomologies
and assume s = dimy M > 0. Then we have the inequalities

(2.2.1) M) < Zﬂ;‘(k) Ry (M) foralli <s .
j=0

Furthermore the following statements are equivalent to each other:

(1) M is a surjective-Buchsbaum A-module;
(ii) the equalities in (2.2.1) hold for all i < s.

When this is the case, we also have the equality in (2.2.1) for i = s.
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Proof . Take a minimal injective resolution /® of M and a minimal free reso-
lution F, of k. Then the double complex C*® = Homy(F,, I, I®) gives rise to
spectral sequences (E?,'d?) and ("EP?,"d"?):

SocI?, if g =0;

mrd _ q "grd —
EI HomA(F[H Hm (M )) and El { 0’ otherwise.

By the second spectral sequence, we have H"(C*®*) = Ext}(k, M), while the first
one shows

(22.2) M) =D (BT <> (B )

j=0 j=0
Thus we get the inequalities (2.2.1) for all i < s. Because the composite map
o0 0,
H*(C*") » EY — E)"

coincides with the natural map ¢;,, we also have the inequality (2.2.1) for i =s.
Suppose that M is a surjective-Buchsbaum A-module. Then for all i < s, any
element of H/ (M) is represented by an element of the k-vector space Soc/'.
Hence since F, is minimal, 9f? must be zero for all ¢ < s. Thus E}? = E?4 for
all p, g with p+g < s and g # s, and so by (2.2.2) we have the equalities (2.2.1).
Conversely, assume the equalities in (2.2.1) for all i < s. Then we have
Ef? ='EP4 for all p + g < s by (2.2.2). Hence the composite of the maps

i 10,i _ 1p0,i
H’(C..) —5 Eool = E]
is necessarily surjective for all i < s; thus so is the natural map ¢},. [

Let X, be a complex of A-modules and we denote by dX its differen-
tiations. We say that a homomorphism X, — Y, of complexes is said to
be a quasi-isomorphism, if it induces an isomorphism of homology. A quasi-
isomorphism X, — Y, is said to be a free resolution of Y, if X, is a complex
consisting of free modules. If Im d,-x C mX;_; for all i, then X, is said to be
minimal. A complex X, bounded below whose homologies are finitely generated
has a unique minimal free resolution up to isomorphisms; see [14].

Definition 2.3 ([9] or [14]). A complex D} of A-modules is said to be a dualizing
complex of A, if it satisfies the following two conditions:

() D} = @ Ex(A/p) for all integers i, where Eo(-) denotes the injective

pESpec A
dimA/p=—i

envelope;
(i) H (DY) are finitely generated.

A dualizing complex of A is uniquely determined up to isomorphisms if it exists. A
finitely generated A-module Ky is said to be the canonical module of A if Ky ®4 A
is isomorphic to Homy(HZ (A), EA(A/m)), where A denotes the m-adic completion
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of A. The canonical module of A is uniquely determined up to isomorphisms if it
exists.

From now on, we assume that A possesses a dualizing complex D}. Let
D(-) = Homgu(-, D). The next result is fundamental; see (8], [14], [16], or [19].

Proposition 2.4 Let M be a finitely generated A-module. Then

(1) the canonical map M — DD(M) is a quasi-isomorphism;
(i) H (M) = HomA(H“(D(M)),EA(A/m))for all i.

In particular, K4(d) — D} is a quasi-isomorphism if A is Cohen-Macaulay.

Let M be a finitely generated A-module and H, a minimal free resolution
of D(M). Then D(H,) is an injective resolution of M , which gives rise to the
commutative diagram

Soc D(H,) — I D(H,)
Homy(H.,Soc Ex(A/m)) — Homy(H.,E4(A/m))

Homy(H, ®4 k, E(A/m))

Hence we have the naturgl map H;(H,) — H;(H, ®,4 k) to be the Matlis dual of
the natural map @},: Exty(k,M) — H/(M). From this we immediately get the
following.

Lemma 2.5 Let M be a finitely generated A-module of dimension s > 0 and H,
a minimal free resolution of D(M ). Then the Jollowing statements are equivalent:

(1) M is a surjective-Buchsbaum A-module;
(ii) the natural map Hi(H,) — H;(Hy ®4 k) is injective for all i < s;
(iii) Kerd! NmH; = Imd¥,| forall i < s.

When M is a surjective-Buchsbaum A-module, one can get more information
on H,. Let F, be a minimal free resolution of k. For each i , let us define the
subcomplex F{) of F, as follows:

po - F forallj <i;
i =0 forallj >i.

For each complex X, and integer n, let Xo(n) denote the shifting of X, in de-
gree n. Then we have

Proposition 2.6 Let M be a finitely generated A-module of dimension s > 0
and H, a minimal free resolution of D(M). Then the following statements are
equivalent:

(1) M is a surjective-Buchsbaum A-module;
(ii) the subcomplex H®) of H,
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O-Hy—>H;_ y—---—H —Hy—0
is a direct sum of finite copies of {Fﬁ“")(—i)}o«q.

Proof . (i) = (ii). By induction on ¢, we shall prove the complex
H®:0-H - H_y—---—H — Hy—0

is isomorphic to
1t

@ (Fst—i)(_i))h,:(M)

i=0
for all + < s. We may assume that s > ¢t > 0 and that our assertion is true
for t — 1; hence we have

-1 :
Kerd/ | = @ (Kerd,F_l_,-)h‘(M) :
i=0

Since M is a surjective-Buchsbaum A-module, we get Kerd | nmH;_; = Imd”
for all i < s. Therefore we have

Imd! = Kerd" , nmH,_,

t—1 ,
= {@ (Kel'df_l_.i)hA(M)} n mH,_1

i=0
t—1 .
= @D (ImdF )™
i=0

This decomposition of Imd¥ causes a direct sum decomposition

t—1 : 1—1 ;
{@ (F,._,')hA(M)} ®A* and d,” = {@ (dr[:—i)hA(M)} ® 0%,

i=0 i=0

H,

with a = rank H, — ZJ'.=, rank Fj - hffj (M). Since rank Hy = p',(M), we have
a = hj(M). Thus we have the required decomposition of H{", because A = F(®.

(ii) = (i). Since Imdf = Kerd} ; NmF;_; for all i, the complex F&~(—i)
satisfies the condition (iii) of Lemma 2.5. Therefore so does H{, because H{
is a direct sum of {F{"~(—i)}. This completes the proof. []

Typical surjective-Buchsbaum modules

In this section let A be a Cohen-Macaulay local ring of dimension 4 > 0 and
assume that A possesses a dualizing complex D2. Firstly we shall prove the
following.
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Theorem 3.1 Suppose that A is not a regular local ring. Then there exist d + 1
indecomposable maximal surjective-Buchsbaum A-modules Ly, L,, ..., Ly of finite
injective dimension with ky(L;) = b forall i, j. Furthermore any maximal surjec-
tive-Buchsbaum A-module of finite injective dimension is isomorphic to a unique
direct sum of finite copies of A-modules Ly, L, ..., L.

Proof . Let F, be a minimal free resolution of the residue class field k. For each
0<i<d weputl; = Coker(df_,-)* ®a K4 where (-)* denotes the A-dual.
Since Extf,(k, K4) =0 for all i < d [10, Satz 6.1], we have the following exact
sequence

0— (Fo)" ® Ks— -+ = (Fa_iz1)* ®Kg — (Fg_i)* ®4 K4 — L; — 0.

Since Ky has finite injective dimension [10, Bemerkung 5.4], so does L;.
We firstly prove that L; is an indecomposable maximal surjective-Buchsbaum

A-module. Let r; = 3712 (1) =" rank F;.

Claim . Let i > 0. Then r; > 0.

Choose p € SpecA \ {m}. Then because the exact sequence
(Fi—l)p —’"‘_’(Fl)p _'(Fo)p —0

is split, we have (Im d,-F )p is a free Ay,-module of rank 7;. Hence r; > 0. If ri=0,
then (Imd/), = 0 for all p € SpecA \ {m} and so we have Imdf to be of
finite length. Since it is an A-submodule of the free A-module F;_; and A is a
Cohen-Macaulay local ring of positive dimension, we get df = 0. Therefore A
has to be regular and i = d + 1, which contradicts our standard assumption. And
so we have r; > 0. This completes the proof of the claim.

Let 0 <i < d. For each minimal prime ideal p of A, we have

d—i
Cap(Li)p) = (=1~ rank F; - £4, (Kn)p)
j=0
=Td—i+1 - €a, (Ka,),
which is positive by the claim; hence L; is maximal.
Let us consider D(L;). Then we have the following diagram

FU=(_p —  Homu((F~9)*(i), D(D}))

D(Li) — D((FE=")*(i —d) ®4 Ka) —> Homu(FE4=D)*(i — d), D(K4))

of quasi-isomorphisms; see the remark after Proposition 2.4, from which we find
F{=9(—i) is a minimal free resolution of D(L;); see [14, Chapter 2, Lemma 2.5].
Thus L; is a maximal surjective-Buchsbaum A-module by Proposition 2.6. We
furthermore have hf;(Lj) = ¢ forall i <d, see (2.2.1). If L; were decomposable,
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the complex F~9 is also decomposable, which contradicts the fact that F{@—9
is a part of a minimal free resolution of the indecomposable module k. Thus L;
is indecomposable.

Finally, let M be an arbitrary maximal surjective-Buchsbaum A-module of fi-
nite injective dimension and H, a minimal free resolution of D(M ). Then because
inj.dim, M = depth A, we have H; = 0 for all i > d. Hence by Proposition 2.6, we

d N i
get the decomposition H, = 69,_0 (Ffd"‘)(—i))h‘w), whence M = HY(D(H.,)) =
=

@L,(L,- YA Let M = G):io(L,')""' be another decomposition of M. Then ap-
plying the local cohomology functor H/ (-) to both sides, we get an isomor-
phism H: (M) = @f:o H} (Lj)*. Hence hi(M) = o for each i < d, because
hy(Li) = &; for all j > 0. Since p§(M) = 37 pd(L)Hy(M) = Yo pd(L)oy
and hy(M) = «; for each i < d, we have hd(M)ud(Ls) = capd(Ls). Because
Ly = K4 and uf((KA) =1, we also get hjf(M ) = az. This completes the proof of
Theorem 3.1. [J

Although we excluded in Theorem 3.1 the case where A is regular, the above
proof still works for that case and we may recover Goto’s theorem [6]. In
fact,when A is regular, we have r; = (¢]) for all i, so that the proof shows
L; is a maximal Buchsbaum A-module if 0 < i < d, while Ly = k. Clearly,
they are the syzygies of k and we find, by the latter part of the proof, that any
maximal Buchsbaum A-module is a direct sum of finite copies of them.

Theorem 3.1 involves the result of Sharp [17, Corollary 2.7], that is to say
any maximal Cohen-Macaulay A-module of finite injective dimension is a direct
sum of finite copies of Kj.

Here we state the acyclicity lemma due to Buchsbaum and Eisenbud.

Lemma 3.2 ([3]). Let M be a finitely generated module over a Noetherian local
ring R and
Fe:0—F, > F,_| > ---—> F — F,

a complex of finitely generated free R-modules. Let r; = 3 '_(—1Y ' rank F;
and 1,,(df) denote the ideal of R generated by the r;-th minors of df. Then the
following statements are equivalent:

(i) Fe ®a M is acyclic;
(ii) depth (1,(dF),M) > i forall i > 1.

Hence the complex Fo @4 M is acyclic if and only if so is F,, when R is a Cohen-
Macaulay local ring and M is a maximal Cohen-Macaulay R-module.

Let M be a finitely generated A-module of finite projective dimension and
H, a minimal free resolution of M. Then by Lemma 3.2 the complex

O H @Ky — - 2 Hy®@s Ky oM R4 K4 — 0

is exact. Hence the A-module N = M ®, K, has finite injective dimension and
(He)*(—d) is a minimal free resolution of D(N); see the proof of Theorem 3.1.
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Conversely, let N be a finitely generated A-module of finite injective dimension
H, a minimal free resolution of D(N) and ¢ = depthN. We note that H; = 0
for all i > d. We put M = Coker(d})* and r; = Z;;'(—l)i_i+' rank H; for
t+1<i <d. Then we get dimA/l,l (d,-") < i — 1. In fact for all prime ideal P,
we find that (Df;)p = 0 for all —j < dimA/p by the definition. For all prime
ideal p such that dimA/p > i, since (He)y — D(N), is also quasi-isomorphism,
the sequence

(H)y = (Hi—1)p — -+ —> (H,), — 0
is exact and split, whence I,,(d!") ¢ p. Therefore we have the following sequence

N . L
0= (H)" 5 (Hi)" = -+ = (Hao)' o (Hy)* - M — 0

to be exact. Hence M has finite projective dimension and depthM = ¢; see [1,
Theorem 3.7]. Because H, = (H,)** is a free resolution also for DM ®4Ky), we
have an isomorphism M ®4 K4 = N. Thus there is a depth-preserving one-to-one
correspondence between the modules M of finite projective dimension and the
modules N of finite injective dimension. Hence we get the first assertion in the
next theorem so that, passing to the localizations at p of SuppM ®,K4 = Supp M,
we have by [15, Satz 2.5] the second one of the next theorem.

Theorem 3.3 Let M be a finitely generated A-module of finite projective dimen-
sion. Then

(i) M is a Cohen-Macaulay A-module if and only if so is M ®4 Kj.
(i) M has finite local cohomologies if and only if so does M ®, K.
(i) IfM @4 K, isa surjective-Buchsbaum A-module, then so is M.

Proof . We have only to show (iii). Suppose that M ®, K, is a surjective-Buchs-
baum A-module and let G, be a minimal free resolution of Ka. Then M has finite
local cohomologies by (ii) and we have the following quasi-isomorphisms

(Ho)"(=d)®4 Go — (Ho)*(—d)®4 Ka — Homy(H,, K(d))

D(M) — D(H.,),

so that we find (H,)*(—d) ®, G, is a minimal free resolution of D(M), see [13,
Chapter 2, Lemma 2.5]. We shall use (Ho)*(—d) ®4 G, to compute several
invariants of M. First we have

i

(3.3.1) ,qu(M) =rank[(H,)*(—d) ® G.]; = z rank G; - rank Hy,j_; .
j=0

The double complex (H,)*(—d ) ®4 G, gives rise to the spectral sequence

Epy = Hp_4(Ho)* ®4 Gy = Hyoy(Ha)*(=d) @4 G) .
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Recall that H,f, (M ®4 K4) and H[ (M) has finite length for all i < s, and we find
Ca(Hi—a((Ha)*)) = hy(M ®4 K4) and £a(H;((H,)*(—d) ®4 G.)) = hi(M) [12].
Therefore we get

i
(33.2) hi(M) < “rank G; - hy /(M ®4 Kx) foralli <s.

j=0
On the other hand, because M ®,4 K, is a surjective-Buchsbaum A-module, we

have by Lemma 2.2 the equalities
(3.3.3)

i
pa(M ®4 Ka) =tank Hy_; = Y rank Fj - hy /(M @4, Kx)  foralli <s .
j=0

Hence by (3.3.1), (3.3.2), and (3.3.3) we ﬁnd’

pa(M) = " rank G; - rank Hy_;.;
Jj=0
= Z rank F} - rank G; -hj”j_k(M ®a Ka)

0<j,k
J+k<i

i
> “rank Fy - (M) forall i <s.
k=0

Thus Lemma 2.2 shows M is a surjective-Buchsbaum A-module. []

Definition 3.4 A finitely generated A-module M is said to be a typical surjec-
tive-Buchsbaum A-module if M has finite projective dimension and if M ®4 Ky is
a surjective-Buchsbaum A-module.

The next result is a structure theorem for typical maximal surjective-Buchs-
baum A-modules.

Corollary 3.5 If A is not a regular local ring, then there exist exactly d + 1 non-
isomorphic indecomposable typical maximal surjective-Buchsbaum A-modules.
Furthermore any typical maximal surjective-Buchsbaum A-module is a unique
direct sum of finite copies of them.

Proof . Let F, be a minimal free resolution of k and we put L] = Coker(d}_,)*,
for each 0 < i < d. Then because Extf‘(k,A) =0 for all j < d, the A-module L]
has finite projective dimension. Therefore, since L} ®4 Ko = L; and since L; is
by Theorem 3.1 an indecomposable maximal surjective-Buchsbaum A-module
of finite injective dimension, by Theorem 3.3 we get L is an indecomposable
typical surjective-Buchsbaum A-module. Let M be an arbitrary typical maximal
surjective-Buchsbaum A-module and H, a minimal free resolution of M. Then
(He)*(—d) is a minimal free resolution of D (M ®4K,) and so, by Proposition 2.8,
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the complex (H,)*(—d) is a direct sum of finite copies of {Fﬁ""')(—i)}o<i<d.
Hence H, is a direct sum of finite copies of {(F{@~)*(i — D} ocica Therefore
we have M to be a direct sum of finite copies of L, Li, ..., L},. Considering
the local cohomology modules, we find, similarly as is in the proof of Theo-

rem 3.1, that L] appears exactly h,‘;(M ®a K,) times in the decomposition. Thus
the uniqueness of the decomposition follows. []

Non typical surjective-Buchsbaum modules.

The converse of (iii) of Theorem 3.3 is not true in general, that is there exists,
over a certain Cohen-Macaulay local ring A, a non-typical surjective-Buchsbaum
A-module of finite projective dimension. More explicitly, we have the following.

Proposition 4.1 Let B be a Noetherian local ring with maximal ideal n and
a C n? an ideal of B. Assume that A = B /a is not a Gorenstein ring but it is a
Cohen-Macaulay ring of dimension d > 2. We furthermore assume that the field
B /n is infinite, 55 (a) > 1, and B{\(Kx) = BB(K,). Then there exist infinitely many
non-isomorphic and non-typical indecomposable maximal surjective-Buchsbaum
A-modules of finite projective dimension.

Proof . We put m = n/a and k = A/m = B/n. Let F, be a minimal free
resolution_ of k as a B-module. First, we shall consider M = Coker(d{D ®p A)*.
Since Exty(k,A) =0 for all i < d, there is an exact sequence

0— (Fo®sA)" - (FI®sA)* - (F,@3A) - M —0
and M has finite projective dimension as an A-module. We can obtain that

. Bl (Ka) + BY(Ka) - B2 (k) i=d—1;
pa(M) = § B3(Ka) i=d-2
0 foralli <d —2,

and
, Bi(Ka) i=d—1;
haM) = BB(Kp) i=d—2;
0 foralli <d —2

in the same way as the proof of Theorem 3.3. If i > s = dimy M, then H (M) =
0, and if s > 0, then H (M) is not finitely generated [8]. Hence M is maximal.
Moreover by the assumption, we have B (Ka) = B8 (Ka), B4 (Ka) = BB (K,) and
ﬂf k) = ﬂ;‘(k), therefore M is a surjective-Buchsbaum A-module. On the other
hand, we also obtain that

. BEk) i=d-1;
HaM @4 Kpa)= 1 BB(k) i=d—2;
0 foralli <d -2,
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and
, Br(A)=pF3(a) i=d—1;
ha(M ®4 Ka) = { BE(A) =1 i=d-2
0 foralli <d —2.
Hence M ®4 K, is not a surjective-Buchsbaum A-module by Lemma 2.2.

Next we shall construct more non-typical surjective-Buchsbaum modules of
finite projective dimension. Let K = Ker(d{ ®p A) and L = Im(d} ®p A). Then
since K /L = Torf (k,A) is a k-vector space of dimension ﬂg(a) > 2, there
exist infinitely many distinct submodules of K which contain L. For such a
submodule L', we choose a free A-module F;/ and an epimorphism ¢,/: F;; — L’
such that rank F;s = ﬁa‘(L’ )- Then since the localization of the complex

]FLIZO——)FL/ fﬂ»F} RpA—Fp®R®pA—0

is exact and split at any p € SpecA \ {m}, the ideal /,(¢,/) of A is m-primary
for r = rank F; — rank Fy. We put M} = Coker(¢,/)*. Then, by Lemma 3.2, we
have the following exact sequence

0 — (Fp ®p A)* — (F1 ®p A)* (M, (FL/)* — My —0.

Hence M, has finite projective dimension. We shall show that M;, is a maximal
surjective-Buchsbaum A-module.
Since L C L', futhermore F; ®4 K4 and D(M;/) have the same homologies,
we get
Im(¢ ®4 Ka) D Im(d; @4 Ka)

and h,‘:—l(MLl) < hf_l(M ). Moreover we have

Bl k) - k"2 (Mp) + B~ (M) >pd = (M)

=B (k) - Bo(Ka) + B (Ka)
=g~ 'M)
=Bik) - h{ XM+ h§~'(M).

Since hg_Z(M) = hz_z(MU) =1, we get hf"(M) = hA“(ML/) and so M;; is a
maximal surjective-Buchsbaum A-module by Lemma 2.2. Furthermore, since IF;/
is a minimal free resolution of D(Ms ®4 K4), M/ cannot be a typical surjective-
Buchsbaum A-module unless L' = K. We shall show that M;; is indecomposable.
Let My, = M; ®M, be a direct sum decomposition of M. Since proj.dim, M;, =
2, we may assume proj.dim, M; = 2. Then proj.dim M, < 1, because ﬂQ(MU) =
1. If proj.dim, M, = 0, the homomorphism ¢;» must be a non-trivial direct sum
of some map with a zero map, which contradicts the fact that 35(L') = rank F,.
Similarly we can prove that proj.dim, M, # 1. Therefore M, is a zero module
and hence we conclude M,/ is indecomposable.

Finally we shall check that My, 2 My, if L, # L,. Suppose that My, =M,
Then there are isomorphisms 1, ¥, ¥, that make the following diagram
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(ér,)*
0 — (Fo ® A)* — (Fi ®5 A)* 5 (F.,)* — My, — 0

O |
* * (¢lq)‘ *
0— (Fp®p A)* — (F, ®5 A)* = (Fi,))* — My, —0

is commutative. Without loss of generality we may assume that 1), is the identity
map. Then taking the A-duals (-)*, we have that (W1)*(L2) = Ly and (;)*(e)—e €
K for any e € F; ®p A. We would like to show that (W1)*(Ly) = Ly. Let X, be
the Koszul complex generated over A by a minimal base of m. We may identify
F; ®p A and Fy ®p A with X; and Xo, respectively. Hence we may lift the
homomorphism (1,)* to an automorphism of X,. Then, letting C = Im(df ®p A),
we have that (1,)*(C) = C. Let e € m(F, ®p A), that is, e = Y a;e; for
some g; € m and ¢; € F) ®p A. Then because K /C is a k-vector space,

@) e) —e=> a{(W) (&) —e} €C,

that is, (1;)*(¢) = e modulo C. Thus we get (¥1)*(Ly) = L,, because L O C.
Therefore we have L, = L, as required. This completes the proof of Proposi-
tion 4.1. O

Corollary 4.2 Let A be a Cohen-Macaulay complete local ring with infinite
residue class field. Suppose that A has dimension d > 2 and embedding codi-
mension 2. If A is not a Gorenstein ring, then there exist infinitely many non-
isomorphic and non-typical indecomposable maximal surjective-Buchsbaum A-
modules of finite projective dimension.

Proof . We choose a regular local ring B with maximal ideal n and an ideal a C n?
such that A = B /a. Then a is a perfect ideal of height 2. By the theorem of Hilbert
and Burch (see [4] or [11, p. 148]), we have a minimal free resolution

08" Lipg™ 5,5 _pia0

of B/a over B, where n > 1 is the Cohen-Macaulay type of A, f = ) is
an (n +1) X n matrix and g = (gj) is a 1 x (n + 1) matrix such that g; is the
determinant of the matrix obtained from S by omitting the j-th row. Notice that
ﬁg(a) =n+1 > 2 and we have ﬁf’(KA) =n + 1, since K4 = Cokerf*, where
(-)* denotes B-dual. We want to know B(Ka). A direct computation shows that
aB" C nImf*; for example,

91 0
0 d
=]
0 dn+l

where for all j > 1, d; is the determinant of the matrix obtained from f omitting
the first and j-th rows and the first column. Hence we have ﬁ',‘(KA) =n+1,
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because ﬂ’,‘(KA) = ﬂg(lm(f* ®g A)). Thus applying Proposition 4.1, we get the
assertion. [J

By the well-known theorem of Auslander and Buchsbaum [1, Theorem 3.7]
we find that a maximal Cohen-Macaulay module of finite projective dimension
must be free. Proposition 4.1 contrasts strikingly with this assertion. Here we
would like to cite the following theorem due to Goto and Nishida.

Theorem 4.3 ([7]). Let R = k[[Xy, ..., X,] be a formal power series ring over an
algebraically closed field k of chk # 2. Let A = R/I, where I is an ideal of R and
suppose that A is a Cohen-Macaulay ring of dimA = d > 2. Then the following
statements are equivalent:

(1) A is a regular local ring;
(ii) there exist only finitely many isomorphism classes of indecomposable maximal
Buchsbaum modules.

These results lead us to the following conjecture:

Conjecture 4.4 Let A be a Cohen-Macaulay complete local ring of dimension d >
2 with infinite residue class field. Then the following statements are equivalent:

(i) A is a Gorenstein local ring;
(ii) there exist only finitely many isomorphism classes of indecomposable max-
imal surjective-Buchsbaum A-modules of finite projective dimension.
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