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1 Introduction

We are concerned with classical solutions to the following initial value problem
for nonlinear wave equations:

(1.1) Ou = uy — Adu = |u|? in R" x [0,00),
u(x,0) = f(x),u(x,0) = g(x), xeR",

where u is a scalar unknown function, p > 1,n>2, and f,g are given smooth
functions.

In the case where f,g are large in some sense, it is known by Glassey
[4] that solutions to (1.1) blow-up in finite time. Hence, we may formulate a
question as follows: what is the critical value of p, say po(n), depending on
n, with the property that (1.1) admits a global solution for all “small” f,g if
p > po(n), and that there are blowing-up solutions if 1 < p= po(n).

First, consider (1.1) with compactly supported initial data. In the case n = 3,
John [6] proved that solutions to (1.1) blow-up in finite time for p = 2 under
some positivity condition on initial data. One can see that his result is still
valid for 1 < p<2. See the result and its proof of R. Agemi [1]. On the other
hand, Sideris [16] proved that a radially symmetric global solution exists for all
p > 2. Hence, these two results imply that po(3) = 2. Schaeffer [14] verified
po(5) = 3/2 by establishing global existence of a radially symmetric global
solution and showing the finite-time blow-up for a fairly large class of initial
data. In other space dimensions, it seems to be difficult to determine po(n),
especially the existence-part in even space dimensions. In the case n = 2
Agemi [1] showed that solutions to (1.1) with “positive” data blow-up in finite
time for 1 < p<3. See also Masuda [12] for p =2 or John [7] and Schaeffer
[15] for p = 3. In higher space dimensions, n =4, Rammaha [13] proved that
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radially symmetric solutions to (1.1) with “positive” data blow-up in finite time
provided p=(n+1)/(n—1) forodd nand 1 < p < (n+ 1)/(n—1) for even
n. For the existence-part, Klainerman [8] [9] established Sobolev inequalities in
Minkowski space and proved a general existence theorem which when applied to
the special case (1.1) implies, one can see actually, the global in time existence
of a solution provided p > (n+1)/(n — 1) and p is an even integer or larger
number. See Introduction in Agemi [1]. It has been conjectured that

n+1

(12) polm) = 2.

On contrast, for semilinear wave equations:
(1.3) Ou=|ul? in R"x[0,00),

one can observe the similar phenomenon to (1.1). There is a critical value of
P, say pg(n). For 2<n<4, we have already known that po(n) is a positive
root of the quadratic equation: (n—1)p? — (n+1)p—2 = 0. In the case nxSs,
only the blow-up in 1 < p < p}(n) was shown. See Introduction in Takamura
[18] for this survey. It has also been conjectured that, for all n>2,

n+1+vVn2+10n-7 n+1
4 > = = .
(1.4) po(n) 2n—1) > po(n) n_1

The remarkable result on (1.3) is that, if the initial data has noncompact
support, we get blowing-up solutions even for the existence p > pg(n) in the
compactly supported case because of the slow spatial decay of the data. This
fact has been verified in the case 2<n<S5. Moreover, the critical decay was
obtained in the case n = 2,3. Slow decay yields blowing-up solutions and rapid
decay implies that we have a global solution. We note that such a critical decay
never depends on dimensions » and that, just in the critical, we have a global
solution. See Introduction in Takamura [18].

The aim of this paper is to show that, for n = 4,5, the problem (1.1) has
the similar blow-up phenomenon to the above noncompactly supported case on
(1.3). For n = 2,3, see Kubo [10]. As for the global existence for (1.1) with
noncompactly supported data in the case n=4, one can actually remove the
compactness assumption on the support of initial data in Klainerman’s general
existence theorem, but has to assume the rapid spatial decay on the data. For
slowly decaying data, Asakura [2] proved the global existence for n = 5 and
p = 2. If the nonlinearity is of the form u/ with integer p, Takamura [17]
proved the global existence for n = 3 and p > 2 = po(3). In the same
situation, Kubo [11] proved the global existence for odd n>5 and p=2. 1t
is very difficult to determine the critical decay, especially to show the global
existence in even space dimensions.

The main difficulty to show the blow-up in high space dimensions, n>4,
is that the fundamental solution of [ yields derivative loss. To avoid this, we
consider the spherically symmetric case of (1.1). But, then, fundamental solution
is no longer positive for full space. Rammaha [13] used the full space integral
of solutions and reduced to the nomexistence theory for ordinary differential
inequalities. Such a method is never applicable to the noncompactly supported
case.
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Our problem is

(15) e — th ~ 2y = Ftr) in [0,00)? ,
u(r70) = E(p(r)a ut(r’o) = Elﬁ(r)’ r e [0’00) )

where € is a positive small parameter.

Theorem 1.1 Let n = 4, 5. Assume that F € C' (R) satisfies
(1.6) F(s)=Als|? for A>0, p>1

and that smooth data ¢,y satisfies

(1.7) o(r)=0, Y(r)= r € [0,00)

M
(A +r)y
for M > 0, 0<K<—-—1—.
p—1

Then, there exists a positive constant C, independent of e, such that the life-
span T(¢), maximal existence time, of classical solutions to (1.5) satisfies

(1.8) T(e)< Ce~(P~D1=(p=130)

Remark 1.2 In further high dimensions, #=6, Theorem 1.1 should be true. But
our method is not directly applicable. We may get more complicated restrictions
on space-time variables in gaining a sufficient positivity of fundamental solution
to prove this blow-up. See the proof of Lemma 2.3 below.

Remark 1.3 By Theorem 1.1 and Kubo [10], one can conjecture that the critical
decay of the initial data which has an order O(|x|™*) as |x| — oo for the
problem (1.1) is k = 1/( p—1) for all n=2. On the problem (1.3), it is known
that the critical decay is k = (p+ 1)/(p — 1) for n = 2,3. Both two critical
decays may be independent of space dimensions n.

2 Preliminaries

We shall proceed the proof via point-wise estimate as in Takamura [18]. Let
u° be a solution to the following initial value problem:

(2.1) Ou’ =0 in R” x [0,00),
Wm0 =0, ul=o=y(x]), xeR".
As is well-known, the classical formulas for ° are given by

o 1 1a¢

p3
(2.2) = T E { >

Y 1w+ polds,
— P o|=1
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for x € R* and

@) 2(21:)2 Tar

£ f Y(x + tw|)dS,

for x € IR’. For instance, see Courant & Hilbert [3].
Lemma 2.1 Let v € C°([0,00)). Then, Jor all t > 0 and x € R”, we have
24) [ o(|x + tw|)dS,

|lw|=1

2(0,, 1
~ @y 2,

f (2 = (r = P X)(r + 1) = 22" q0(A)dA,

where r = |x| > 0 and w, = 2n"?/T\(n/2) is an area of the unit sphere in R".

Lemma 2.1 immediately follows from a classical result of the fundamental
identity for iterated spherical means. See John [5]. We omit the proof.

Lemma 2.2 (The representation formula) Let n =4, 5 and u be a solution to
(1.5) with o(r) =0 for r = |x|, x € R". Then, we have

(2.5) u=eu’ +L(F(u)) in [0,00)%,

where, for n = 4,

(2.6) o J)‘ 1

WAL Of\/_—p
’}“’ P4rt—p?
2ol VA2 = (r — p)\/(r + p)? —

=Ap(A)d4,

1 L. =t
@7) LFE@Xr0 = 5 fd [ \/Tﬁf)i‘—?
r}ﬂ A24rt—p?
=0l VA2 = (r = pP/(r +p) —

).F(u,(/l, 7))dA,

for n =5,
(2.8) W(r,t) = = rf' (A2 + 2 = A)P(A)da,
Ir—1|
(29)  L(F(u))(r,t) = # fdr r+fH(/12 +7% = (t = ©)?)AF (u,(4,7))d7 .
0 |r—t+1|

Proof of Lemma 2.2 First, let n = 4. We note that w; = 4x. It follows from
(2.2) and (2.4) that
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1 10°%L pdp
0 — s
(2.10) u'(r,t)= 527 atof

VE—p?
x f ’ [(2 = (r = p))(r + p)* — A1)]"=3V2y(2)dA .
Ir—pl

Integration by parts in the p-integral yields that

t

1 10
(211) uo(r,t)=—2—n-r—2?aof\/t2—pzdp
8 ™ 2 2 a2n(n-3)2
o J (2% = (r = p) N+ p) — 4%)] AY(2)dA

[r—p|

NI
2nrty /2 — p?
< I S0 = (= PP + 9 = 2L

[r—=pl

X

Since

(2.12) %[(,12 == p)2)((r + p)z _ ,12)]("—3)/2

2(n —3)p(A2 +r* — p?)
(22 = (r = p)(r + p)* — A2)J6—m2°

we get (2.6). Therefore, (2.5) for n = 4 immediately follows from Duhamel’s
principle.

Next, let n = 5. We note that wg = 272, It follows from (2.3) and (2.4)
that

r+t
(2.13) °(r,t) = LI [ (A2 = (r — O )(r + t)* — A1) 4y(2)dA
16r3 t ot~
11 rf' 2[(12 —(r=)(r + 1) = A2 (1)dA .
1673 ¢ I ot
Using (2.12) with p = ¢, we get (2.8). As in the case n =4, (2.5) forn =15
immediately follows from Duhamel’s principle again.

Lemma 2.3 Let n = 4, 5 and u be a solution to (1.5) with o(r)=0,y(r)=0
for r = |x|,x € R", and with F 20. Then, for r =t > 0, we have

t r+t—1
(2.14) u(r,t)gsuo(r,t)+$ fdr [ AF(u(2,7))dA,
0 r—t+1t

0 1 r+t 3
(2.15) u (r,:)gﬁriz W(A)dA .
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Proof of Lemma 2.3 First, let n = 4. It follows from (2.6) that

(2.16) ()2 rzf \/”d_Lp
rip AByY(A)da

MUYy a3

because » — p=r — ¢t =0. Then, inverting the order of (4, p)- -integral, we find
that

1 rtt
217) @ n= - L,Pw(z)da

y ris |
=i VI = p2\p = (r = AR\(r + A — p?

In the domain of (p, A)-integral, we know that

(2.18) (r+A=pP=@+i+p)r+i-p)

S2r+t)r+A-|r—A)

<8?.
Since

b
pdp 1ol 1y n .
(2.19) m\/bz_ ( )_2 for 0<a<b,
it follows from (2.17) and (2.18) that
0 r+t 3

(2.20) uw(r,t)= \/_ 3 f/l Y(A)da .

In view of (2.5) and (2.7), replacing ¢ by ¢ — ¢ in (2.16)<2.18) and using
r—t=0, we have

1 t r+t—1
W {dt’_’fﬂﬂf.‘(u,(i,r))dl.

We therefore obtain (2.14) and (2.15) for n = 4.
Next, let n = 5. It follows from (2.8) and » — =0 that

(2.21) u(r,t)Zeu’(r,t) +

(222) u°(r, t)>— fi3t//(l)dl

Similarly to the case n = 4, using r — >0 again, (2.5) and (2.9) yield that
1 ¢ r+t—1

(2.23) u(r,t)=eu(r,t) + = Jdr [ AFu(A1))dA,

0

r—t+t

which completes the proof of Lemma 2.2.
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3 Proof of Theorem 1.1

Let u be a solution of (1.5) with (1.6) and (1.7). If ¢ is larger than some
constant, we will have a contradiction. This implies that T(¢) has an upper
bound.

By (1.6) and (1.7), we find from Lemma 2.3 that

r+t

(3.1) u(r, t) = eu’(r, t)> f By(ydi

Mef,13(1+/1) dl for r—1t20.

First, we assume that r —¢ =0 for fixed 6 > 0. Then, it follows from (3.1) that

Me 1+5 —x it 3—k
(3.2) u(r)z o ( - ) f/l di
Me (146N~ g
22 (52) o0 r!{idi.
Hence, we have
Cot3
(3.3) u(r,t)= TR for r—t=96
where we set
M/ 6 \x
(3.4) C°:£?(1—+a) >0.

Now, we assume an estimate of the form

ct?

(3.5) u(r,t)2 20+ 1P

for r—t=26.

All constants a,b,C are positive. We note that (3.5) is true with a = 3,b =

k,C = Cy. Then, it follows from (1.6), (1.7) and Lemma 2.3 that, for r —¢=9,
t rt—1

(3.6) u(r,)2 g fdr [ 2lu(,1)|PdA .

r—t+t

Inverting the order of (4, 7)-integral, we find that, for r — =9,

A r A—(r—t) r+t r+—i
(3.7) u(r,z)g@(jdz [ de+ fd/l f df),13|u,(,1 )P
r— 0
r+t r+t—4

fi3d,1 f |us(4,7)|Pd .
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Holder’s inequality yields that

r+t—2 p

J w(4,t)dt
0

r+t—A
S(r+t—=)P [ |u(4,1)|Pdr.
0

(3.8)

Since u(4,0) = ep(4) = 0 by (1.7), we obtain from (3.7) and (3.8) that, for
r—t=9,

r+t
(3.9) u(r,t)gg% fA3(r+t—/1)l_”|u(/1,r+t—A)l”dl.

Noticing that A — (r + ¢ — 4)=r — 126 in the domain of the integral, we get
by (3.5) and (3.9) that, for r — =6,

ACP rat 3-2p 1—p+pa
(310) u(r,t)gm fl (r+t— /1) di
ACP r+t .
283G T TG | A+t = D
r+t
- AC?

= 8r2(r + 1)Pb3(p—1) rf(”+t— A)Pad). .

Hence, we have

*

C*?
=z —_— —t>
(3.11) u(r’t)=r2(r+t)b' for r—t>6
with
(3.12) a* = pa+1,6° = pb+3(p—1),c* = -2~
' SR A O S gt

In view of (3.3), (3.4), (3.11), (3.12), we define sequences {an}, {bm},{Cn}
for m € N by

(G.13)  @mir=pan+1, buyi=pbn+3(p—1), Cup = ﬂ%ﬁk—l) ’
a =3, b, =k, ’ Ci=0GC.
Solving these sequences, we have
(14)  apy = p"'(3 + L) =+ 3) -3
p—1 p—1
Cnt1 gN%’g, where N = A(;)T;l) .

The last line of (3.14) implies that
(3.15) Cn+1 2 exp[ p"(log Co — Sp(m))],



Nonlinear wave equations 575

where we set

n jlog p — log N
(3.16) Sp(m) = -Zldj’ d;= f_ﬂpj_g_
=

We note that d; > 0 for sufficiently large ;. Since lim; ,ood;y1/d; =
1/p,Sp(m) converges for p > 1 as m — oo by d’Alembert’s criterion on
series with positive terms. Hence, there is a positive constant S, 4 such that

(3.17) Crn+1 2 exp(p"(log Co — Sp)) -

Therefore, we conclude by (3.5), (3.14), (3.17) that

A%
(3.18) u(r,t)g%%exp(p’”(r,t)) for r—t=6,

where we set
1
(3.19)  J(r,t) =logCy — Sps + (3 + F) log? — (x + 3)log(r + 1) .

If there is a point (rg, %) such that
(3.20) J(ro,t9) > 0,70 — 8920,

we get a desired contradiction:

(3.21) u(ro,tp) - 00 as m— oo

by (3.18), which shows that u cannot be a solution of (1.5). So we shall find
such a point.
By (3.19), J(r,t) > 0 follows from

K+36Sp.4

(3.22) (—1— — x) logt?= log
p—1

In view of (1.7) and (3.4), (3.22) follows from

(3.23) t=2Ce=(P=DM=(p=1)  for (>p 126,
where

2.3%kt3eSp4 11 4+ § (p—1)/(1—=(p—1)x)
(3.24) c_( — (5 )x) >0

Therefore, we can conclude that

(3.25) T(e) < Ce(P~/(-(p=1))

with C defined by (3.24). This inequality completes the proof of Theorem 1.1.
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Added in proof

Using Rammaha’s representation formulas in [13], one can see that the assertion of Theorem
1.1 is true for all n=2. The estimate A2 +r2 — > > A? in the proof of Lemma 2.3 should be
replaced by A% +r2 — 2 2 r? — {2, Details of this proof will be published elsewhere. Anyway,
this paper essentially proves the blow-up for slowly decaying data in high space dimensions.
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