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1 Introduction

An isoparametric hypersurface in Euclidean space is one whose principal curva-
tures are constant. In this paper, we introduce the notion of isoparametric hyper-
surface in affine differential geometry. The affine shape operator is symmetric
with respect to the affine metric, but the affine metric is in general indefinite.
Therefore, the shape operator need not be diagonalizable and the principal cur-
vatures may not be real.

Much recent work in affine differential geometry has involved the study of
hypersurfaces which are isoparametric in our sense. In particular, the affine homo-
geneous surfaces, studied classically, and classified by Nomizu and Sasaki, [NS],
are isoparametric. Also the affine spheres, whose affine normal lines are all par-
allel or all pass through a common point, are included. Unlike the Euclidean case
though, there are immediate examples of affine isoparametric hypersurfaces and
even affine spheres which are not homogeneous. In particular there are families
of non-homogeneous ruled surfaces having both principal curvatures identically
zero [MR], [V]. The latter paper includes examples for which the shape operator
is not diagonalizable.

In the study of Riemannian isoparametric hypersurfaces, the concept of paral-
lel hypersurface is important, since isoparametric hypersurfaces occur in parallel
families. It would be hoped that the study of parallel hypersurfaces would also
be useful in discussing affine isoparametric hypersurfaces. However, it is not
immediately clear that the concept of parallel hypersurface is reasonable, since
there is no guarantee in the affine case that the affine normal of the parallel hy-
persurface will agree with the affine normal of the original hypersurface. In the
present paper, we show (Theorem 3.1) that an affine hypersurface has this prop-
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erty precisely when it is isoparametric. In §4 we briefly discuss a few examples,
and apply our results to the study of symmetry about the focal set.

Precise definitions are given in §2. For further information about isoparamet-
ric hypersurfaces, see [CR], and for affine hypersurfaces, see [N] and [MR]. All
manifolds are assumed connected unless stated otherwise. Manifolds and maps
are assumed smooth, i.e. C®,

2 Preliminaries

Let f be an immersion of a smooth manifold M", n > 2, into (n+1)-dimensional
affine space R"*! with a fixed parallel volume element w defined by

wX1, .., Xp1) = det(Xy, . .., Xpyi).

Choose any transversal vector field £ locally on M. Then for X , Y tangent to M
we have

Dxfu(Y) =£(VxY) + h(X, Y )E,

Dx& = —f(SX) + T(X)§,

where V is the induced affine connection on M, the symmetric bilinear tensor
is the affine fundamental form , S is the shape operator, and T is the transversal
connection form. We also have the induced volume form 6, defined by

0X1, ..., Xn) = w(iXn, . . .\ fuXn, £).

A frame on which § > 0 will be called positively oriented. Whether h is degen-
erate or not depends only on f, and is independent of the choice of £. If A is
nondegenerate, we say that f is a nondegenerate affine immersion. The possibly
indefinite Riemannian metric 4 determines a volume element v which we choose
to have the same sign as 6. For a positively oriented frame Xy,...,X,), we have

viXy,...,Xp) = \/|det[h(X,-,X{-)]|.

It is well known that we can choose ¢ uniquely (up to a sign) so that 7 = 0
and v = 6. This makes 6 parallel with respect to V. This choice of € is called
the affine normal and the corresponding 4 is the affine metric.

A nondegenerate affine immersion f : M" — R™*! is said to be isoparametric
if the characteristic polynomial of the shape operator S has constant coefficients.
The eigenvalues of S are called the affine principal curvatures or simply the
principal curvatures if the context is clear. If f is isoparametric, the principal
curvatures are constant. If the principal curvatures are all real, we will represent
them by Ay < A < ... < A,. Notice that selecting the opposite sign for ¢
simply reverses the sign of the );’s. If all principal curvatures are equal, the
hypersurface is called an affine sphere.
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3 Parallel hypersurfaces and focal sets

For a given immersion f, and any constant ¢, define the map f, : M" — R"*!
by f; = f +t€. For local calculations, one can assume that M is orientable, with
affine normal £. If x is not a critical point of f;, then f; is an immersion on a
neighborhood of x € M, and f; is called the parallel hypersurface to f at distance
t.

In the Euclidean case, the unit normal &, to a given hypersurface f at x is
also normal to f; at x. In the affine case though, it is not generally true that the
affine normal direction &, at x is also the affine normal direction to f; at x. The
following Theorem shows in fact that this is true only when f is isoparametric.

Theorem 3.1 Let f : M" — R™! be a nondegenerate affine immersion with
shape operator S. If f is isoparametric, then for any parallel hypersurface f,, the
affine normal associated with f, is proportional to . Conversely, if for some open
interval U, f; is a hypersurface with affine normal proportional to € for allt € U,
then f is isoparametric. )

Proof. We will write f for f, = f +t£, use bars to identify objects associated with
f, and omit the subscript ¢. If we assume that f is simply the inclusion map of
a submanifold M of R™*!, then we can write f, = I —tS, where I is the identity
transformation.

Let My be a connected open subset of M on which f is an immersion. If £
is any transverse vector field to f on My, there is a smooth function r = r(t) :
My — R and a vector field Z tangent to My such that £ = r¢ + Z. Then for X
and Y tangent to My,

Dxfu(Y) = fu(VxY)+h(X,Y)E

= VXY—tS(VxY)+}_z(X,Y)r§+}_:(X,Y)Z. 3.1)
But also
Dxf.(Y) = Dx(Y —1SY)
= VxY +h(X,Y)¢—t(VxSY + h(X,SY)E). 3.2)

Then matching up coefficients of £ we see that
h(X,Y)= %h(X,(I —18)Y).

Thus % is automatically nondegenerate on M. In particular, if £ is an affine
normal for f, we can write

Dx§

_f-*(§x)
—(I —t5)SX, (3.3)

and
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Dx¢

Dx(ré +Z)
(Xr)¢ — rSX + VxZ + h(X, Z)E. (3.4)

Again matching coefficients of £ gives 0 = Xr + h(X,Z), and so for a given
value of ¢ we know that r is constant if and only if Z = 0, that is, ¢ and E are
proportional.

Now let us explicitly calculate r(z). Let X;,...,X, be a local frame on M,
such that 8(Xy, ..., X,) = w(Xi,...,Xs, &) = 1. Then since £ is the affine normal,
we have v = 0, so that

u(Xi, ..., X,) = /| detlh(X;, X;)]| = 1.

Now, let ¢ = @(t) = det(I — tS). Let £ be the affine normal of f which induces

the same orientation as £. Then
\/ | detlh(Xi, X;)]|

1
\/ | detl~h(X;, d — 1S)X;)]|

17(X1,...,X,|)

= | detl — 1) detlh(X;, X))]|}
|2
1

= W|det(1—tS)|%u(X1,...,Xn)
1 1

= —lolt.
r|?

But we can also calculate that

O(Xl,--"xn) = w(ftxla"'yf*xnyé.)
= W —1)Xy,...,(I —15)X,,rE)
= rdet( —1S) w(X,...,X,,E)
= rp0Xy,...,X,).

Because £ is the affine normal of f, we know that 7 = f. This allows us to
calculate r, and we see that

r(t) = | det(I — 1S)|” ™ = +|p|#1.

Note that the characteristic polynomial of S is just t"(o(1/t). Thus, if f is
isoparametric, det(/ — £S) is constant on M, f is an immersion on all of M,
and r(t) is constant. Conversely, suppose that f : My — R™! is a parallel
hypersurface at distance ¢ whose affine normal ¢ satisfies £ = r(¢)€. Then r(z) is
constant by (3.4) and hence @(t) = det(/ — tS) is also constant. If this condition
holds for all ¢ in some interval U, then the coefficients of the characteristic
polynomial of S can be expressed in terms of the values of ¢ and its derivatives
at some ty € U. Thus they must be constants and we can conclude that f is
isoparametric.
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]
We also have an interest in what happens to the shape operator when taking
a parallel hypersurface.

Proposition 3.2 Iff : M" — R™! is an isoparametric hypersurface, then so is
f =f +1t€ provided that I — S is invertible. Its shape operator is given by

S=r( —15)'s.

In particular, if S is diagonalizable, and X, . .., X, is a basis of eigenvectors of
the shape operator S, such that SX; = \;X;, then the shape operator S of f is
given by

j=n i
5 [T Ay
SX,' = i - \j A,
i< 1=t
or more briefly,
v _ TON
¥y= 1 —t) "

Proof. Match coefficients of X in equations (3.3) and (3.4).

]

Define a point p € R"™! to be a focal point of multiplicity m of f if there is

some real number A, and x € M such that p = f(x) + (1/X)&;, and the Jacobian

of the function F(x) =f(x)+(1/)\)&; has nullity m > 0 at x. The set of all focal

points is called the focal set of f. In the discussion of isoparametric immersions

in Euclidean space, the focal set plays an important role, and the same will be
true in the affine case.

Theorem 3.3 Iff : M" — R™*! is an isoparametric immersion and 1/t is not an
eigenvalue of the shape operator S, then f, has the same focal set as f.

Proof. Again write f for f,. If X is a nonzero eigenvalue of S, then

r(HA

A= 11—t

is an eigenvalue of S, the shape operator for f = f +t£, with the same eigenspace
as \. Forany x e M,

F(x)=fx)+(1/N&

1—tA
fx)+e& + W’(‘)ﬁx
f&x)+ (/N

Also, F, and F, have the same null space. Thus the focal points of f and f
match.
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4 Isoparametric hypersurfaces that are symmetric about the focal set

Let f : M" — R™! be an isoparametric immersion into Euclidean space. It is
known that f extends uniquely to an embedding of a complete manifold (sphere,
cylinder, or hyperplane). So we might as well assume that the original M is
complete. If £ is a unit normal field to f, then one can verify that the map
f =f +(2/))€ has an image identical to that of f, when ) is a nonzero constant
principal curvature of the immersion f. In the affine case, the situation is some-
what more complicated. For example, the set V = {x € R*|(x? — x})x; = 1}
has 8 components, each of which is a homogeneous affine sphere with principal
curvature 3711/2 having the origin as the only focal point. With appropriate
choice of &, we see that f(V) = V. Although V does not qualify as an affine
hypersurface (since it is not connected), it does exhibit symmetry about the fo-
cal set. Specifically, f(x) = —x for x € V. Another standard example, the set
(x2 + x})x3 = £1 behaves similarly. It has just two components and they are
interchanged by f.

It should be noted that all homogeneous affine surfaces are isoparametric and
are also symmetric about the focal set in this sense. These are described in [NS]
and include surfaces that are not affine spheres. For instance, (x3 —x?)*x? = %1,

in other words, x3 = ixr $ +x22, has four connected components, and the focal
set is the parabola x3 = x?, x; = 0. The components are separated by the plane
x1 = 0 and the parabolic cylinder x; = xzz. The principal curvatures are A\; = 0 and

X2 = —5-34/6 and the affine normal is & = (—/\2)(x1,0,xl_§). If, for example,

flx) = (x1,x2,x, L x3), describes the sheet in the region x; > 0, x3 > x2, then
[ +(2/X)€ is the sheet in the region x; < 0, x3 < x2.

This example is analogous to the Euclidean cylinder. It has two constant dis-
tinct principal curvatures, one of which is zero. In fact, every affine hypersurface
that is symmetric about the focal set possesses this property or is an affine sphere.
Specifically, we have the following Theorem:

Theorem 4.1 Let f : M" — R"! be an affine isoparametric hypersurface. Sup-
pose that the principal curvatures are all real and not all zero. If for all nonzero
principal curvatures X, f +(2/A)§ is an isoparametric immersion with the same
principal curvatures as f, then f is an affine sphere or has exactly two distinct
principal curvatures. One of these principal curvatures is 0.

Proof. We will first show that all the principal curvatures have the same sign.
Suppose that the principal curvatures are arranged such that A\; < X\ < ... < A\,.
Without loss of generality, we can assume that at least one principal curvature
is positive. Let A = A, be the smallest positive principal curvature. Then under
the map f =f + (2/\), the principal curvatures change as follows

5 = @/
T = 2/MN

Notice that if ); is positive, then the sign of ); is —sgn(r(2/))). But also notice
that if ); is negative, then the sign of ); is also —sgn(r(2/))). Thus all the
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nonzero \; have the same sign. Since f and f have the same principal curvatures,
all the nonzero A; must be positive.

Suppose that r(2/X) < 0. If \; < )\; are two nonzero principal curvatures, it
is straightforward to verify that

%= r(2/ M)A

T1=@2/MN

> /\J = l__m

Thus f reverses the order of the principal curvatures, and hence X = \,. We
can then use this to get A, = —r(2/A)X. We also know that X, = ), and from
this equation we can then show that (2/A) = —1. It follows that all the nonzero
principal curvatures are equal. On the other hand, if r(2/A) > 0, then all the
nonzero J; are negative. However, the argument just given applies to the —J;
and again, all the nonzero principal curvatures are equal.
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