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1 Introduction

Harnack inequalities for parabolic equations originate with the work of
Moser [M] who treated the case of linear divergence-form equations. In this
context, the inequality estimates a solution from below, in terms of the values
it attains on an earlier region of the parabolic domain. Inequalities of this type
have recently appeared for many geometric evolution equations, including
several quasilinear and fully nonlinear examples. These new developments
began with Li and Yau [LY], who showed how to obtain a Harnack
inequality for the heat equation by clever use of the parabolic maximum
principle. Similar techniques were employed by Hamilton, who proved
Harnack inequalities for various nonlinear evolution equations — the flow of
Riemannian metrics by their Ricci curvature in two dimensions [Hal], the
mean curvature flow of hypersurfaces in Euclidean space, and several scalar
equations [Ha2]. Chow has treated flows of hypersurfaces in Euclidean space
by powers of the Gauss curvature [Ch3], and also the flow of Riemannian
metrics by the gradient of the Yamabe functional [Ch4]. Most recently,
Hamilton has proved a Harnack inequality for the higher-dimensional Ricci
curvature flow [Ha3].

Throughout this paper, M" will be a compact, smooth n-dimensional
Riemannian manifold. We consider a smoothly evolving one-parameter fam-
ily of immersions described by a map¢: [0,T)x M">IR"*!, where the
evolution is governed by an equation of the following form:

(L1) 2 plx,0)= — FO¥ (x, ), (x, D)v(x

* This work was carried out while the author was supported by an Australian Postgradu-
ate Research Award and an ANUTECH scholarship
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where v: M" x [0, T)— S" is a unit normal to the hypersurface ¢,(M") at the
point ¢,(x), and #" is the Weingarten map (see Sect.2 for details). The
function F gives the speed of motion of the hypersurfaces through R"*1. We
require that Eq. (1.1) is a parabolic, second order system of partial differential
equations, which is invariant under diffeomorphisms of M", translations of
@ in R"*!, and translations in time. The precise form implied by these
conditions will be discussed in Sect. 3. In many cases we may wish to consider
the stronger condition that Eq. (1.1) must be invariant under all isometries of
R"*!; equations which satisfy this are called isotropic, while those that only
satisfy the weaker condition are called anisotropic.

The purpose of this paper is to prove Harnack inequalities for a wide class
of such evolution equations for hypersurfaces. It is shown that natural Har-
nack inequalities hold for convex solutions to equations of the form (1.1),
provided that the speed function S satisfies some natural concavity properties
when considered as a function of the inverse of the Weingarten map #". The
first step of the proof is to show that a certain natural quantity (to leading
order, the time derivative of the speed of the hypersurface) satisfies a simple
and useful evolution equation (Lemma 5.1). In the cases which have been
proved previously by Hamilton and Chow, this step is accomplished by
performing a long and cumbersome calculation with an astonishingly simple
result. Here the calculation is made transparent by a natural reparametriz-
ation of the flow equations using the Gauss map. This is developed in Sects.
2 and 3. The parabolic maximum principle can be applied to this evolution
equation to deduce a differential inequality for the speed (Theorems 5.6, 5.1 1).
In many cases this in turn can be integrated to give a Harnack inequality for
the speed. This integration can be performed in various ways, two of which are
described here: Theorem 5.17 gives an estimate which imitates the methods of
previous work, and Theorem 5.21 describes an alternative estimate which
seems more useful in many cases. An integral estimate (an entropy inequality)
can also be obtained for certain flows by integrating the differential equation
of Lemma 5.1 over the whole manifold instead of using the parabolic max-
imum principle (Theorem 5.26).

Several evolution equations of the form (1.1) have been studied before:
A well-known example is the mean curvature flow (see for example [Hu1]) for
which F,(x) is given by the mean curvature H of the hypersurface ¢,(M") at
the point ¢,(x). Tso [Ts] has considered Eq. (1.1) with speed F given by the
Gauss curvature K; Chow [Chl, Ch2] extended this work to other Gauss
curvature flows, with speed F = K*for o> 0, and also to the case F = R'l‘, where
R is the scalar curvature. Urbas [U1, U2], Huisken [Hu2], and Gerhardt [G]
have considered flows where F is homogeneous of degree 1 in the principal
curvatures. These are all isotropic examples; Cahn et al. [CHT] have con-
sidered some anisotropic flows, including examples of the form F=pu(v)H.
Related anisotropic equations have appeared in other papers (see [AG,
GGt1]). In a paper by the author [A1], a wide class of other isotropic examples
is treated — all homogeneous of degree 1 in the principal curvatures. The
applicability of these flows is demonstrated in [A2], where they are used to
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give an elegant new proof of the 1/4-pinching sphere theorem of Klingenberg,
Rauch, and Berger. Further applications are given in [A3], where anisotropic
flows are central to a new proof of the Aleksandrov-Fenchel inequalities for
convex bodies. Section 4 gives some more examples. The results of this paper
apply to all of these different flow equations.

2 Notation and conventions

The standard metric on Euclidean space R"* ! is denoted <. . .,. .., and the
standard connection is denoted D. Each immersion ¢, of M " induces a metric
g and a connection V on TM", the tangent bundle of M (the dependence of
these on time will not be made explicit):

(2.1) 9(u, v)=<To(u), Te(v))
Vu v= Tx_ L (p(nx(DTq)(u) T‘P (U)))

for all u and v in T, M". Here =, is the projection of R"*! onto the image of
T, .

The tangent bundle TM and its adjoint T*M give rise to higher tensor
bundles by taking tensor products. Of particular interest is the space of maps
of TM, which may be identified with the bundle T*M ® TM. The metric
g allows us to relate this to the bundle of bilinear forms T*M @ T*M: For
a bilinear form .7, the corresponding map is denoted g*.7, and defined by the
equation

(2.2) 9(u,g*7 (v))=7 (u,v)

for all vectors u and v in TM. In indicial notation, g* is the operator which
raises an index; some care is required here because we consider several
different metrics, and the effect of ‘raising an index’ is different for each of
these.

The connection can be used to define tensorial derivatives for any tensor.
Suppose ¥ is a covariant k-tensor (a multilinear function of k vectors). Then
the derivative is a covariant (k + 1)-tensor defined as follows:

(2.3) (V€)W v1,. .., 00)=d,(€ (v, ..., 00)—F(Vur,. .., 1)
— =B (v1,. .., Vi),

where d,, is simply the directional derivative in direction u, which we consider
to act on the function € (vy, . . ., v¢), taking the vector fields vy, . . . , v) fixed.
Repeating this procedure gives higher tensorial derivatives. In particular, the
second tensorial derivative is called the Hessian. In the case of functions, it is
defined as follows:

(2.4) Hessy f(u, v)=d,d, f—dy.. f -
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The second fundamental form IT is the symmetric tensor given by the
normal component of the connection on R"*!:

(2.3) I (u, )= —<DrpTo (v), v>

for all u and v in T, M ", where Top: TM—R"*! is the derivative of 0.
The Weingarten map# : TM"—>TM" gives the rate of change in the
direction of the normal along the surface:

(2.6) W =Tp 1oTv

where Tv: TM »TS "< R"*! is the derivative of the Gauss map. The second
fundamental form and the Weingarten map are related by the Weingarten
relation:

(2.7 I (u, v)=g(# (u),v) .

The eigenvalues 4,,. .., 4, of # are called the principal curvatures.

This paper will be concerned particularly with the case where the immer-
sions are strictly locally convex (the second fundamental form is positive
definite everywhere). For such a hypersurface, the inverse of the Gauss map is
an immersion, which we can consider as a parametrization of the hypersur-
face. Thus we can assume that we have an immersion @:S">R"*! for which
the Gauss mapv: S"—S" is the identity map on S" (In the case n=1, we may
have to consider some covering of S '). The standard metric and connection
on §" will be denoted § and V.

The support function s: S"> IR of ¢ gives the perpendicular distance from
the origin of the tangent plane at @(2). It follows that ¢ has this form:

(2.8) 0(2)=s(2)+a(z)

where a(z) is a vector tangent to S” at z, for each z in §". Differentiating this
expression in a tangential direction u gives the following result:

(2.9) To(w)=(D,s)z+su+D,a
=(D,,S)Z +su+ Vua —9g(u, a)z .

The vector a can be deduced from the fact that the tangent space T,¢(7,S") is
parallel to the tangent space T,S" — this implies that the component of the
expression (2.9) in direction z must be zero. Hence we have g(u, a)=D,s for
every tangential vector u, and so a(z)= Vs, the gradient of s with respect to the
metric § on the sphere. The immersion is therefore given by the following
expression

(2.10) @(2)=s(z)z+Vs .

An expression for the curvature also follows from the calculation above:
Recall that the Weingarten curvature % is given by the expression
W ()=Te "o Tv(u), from Eq. (2.6). In the present situation we have Tv=Id,
and so ¥~ ~!=T¢. The calculation (2.9) and the expression for the vector
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a therefore give:
(2.11) W " (w)=V,(Vs)+sId(u)
=(g*Hessgs+ sId)(u) .

For convenience we will denote the map g* Hessgs+ Ids by A4, or by A[s].
It is useful to have expressions for the metric and connection of the
hypersurface in terms of s and A:

(2.12) g(u, v)=g(A(u), A(v))
(2.13) Vao=Vo+ A4 (VA(u,v),

Another useful equation, which can be deduced directly from the Eq. (2.11) for
the map A, is a form of the Codazzi equations:

(2.14) VA(u, v)=VA(v,u) .

The great advantage of the support function is that it allows us to consider
a family of convex hypersurfaces simply as an evolving scalar function defined
on the sphere. This makes things much simpler than the more abstract
framework allowing arbitrary parametrizations, since we no longer have
different descriptions of the same hypersurface. Furthermore, the identifica-
tion with the sphere provides a time-independent metric and connection,
which vastly simplifies many calculations — including especially those pres-
ented here for the proof of the Harnack inequalities.

The expression (2.11) allows us to use the support function to calculate
functions of the curvature of a hypersurface. For example, a function F )
(such as the speed functions of Eq. (1.1)) gives rise to a ‘dual’ function D(A[s]),
defined according to the following equation:

(2.15) ®(X)=—F(X1)

for every positive definite map X. The application of these ideas to the
evolution equations will be developed fully in the next section.

Examples. The mean curvature H is given by the trace of the Weingarten
map, which is the trace of the inverse of the map A. The harmonic mean
curvature is the inverse of the trace of the inverse of the Weingarten map, or
the reciprocal of the trace of 4. The Gauss curvature is the determinant of %",
or the inverse of the determinant of 4. More examples are given in Sect. 4.

3 The evolution equations

In this paper we will work with the support function, rather than working
explicitly with the hypersurfaces. This contrasts with previous work such as
[Hul], and [A1], where the speed was considered as a function of the
principal curvatures, and calculations were performed with respect to the
metric and measure on the hypersurfaces. Here we write everything in terms of
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the support function and the map 4 defined by (2.4). A similar approach has
been used before by Tso [Ts], and by Urbas [U1]. An important step in this
approach is to rewrite Eq.(1.1) as an evolution equation for the support
function.

Theorem 3.1 Suppose ¢: M"x[0,T)-»R"*! is a Sfamily of strictly convex
immersions satisfying (1.1). Then the support functions s: 8" x [0, T)—IR satisfy
the following equation:

(3.2 % s(z, t)=P(A[s(z,1)], 2) .

I will not be concerned with questions of existence of solutions or preserving
convexity in this paper. Some very general results on short-time existence and
regularity for hypersurface evolution equations can be found in [GG2].

We require the function @ to have the following form:

(3.3 D(A,z)=—F(W,z)
for all z in §". As in Eq. (2.15), @ can be defined in terms of F as follows:
34 P(X,z2)=—F(X 1,2

for all positive definite maps X and all points z in S". @ is a real function
defined on a domain Q contained in 7*S" ® TS, the space of linear maps of
TS". Since we require Eq. (1.1) to be parabolic,  must satisfy a strict mono-
tonicity condition: The derivative & of @ is in 7S" ® T*S", and is defined for
each point z in §” and each map X in by its action on elements 2 of the
tensor bundle T*S"® TS":

(3.5 O (B)= d (X +rAB, 2)
dr r=0

We require that this map be positive definite at each z in " and each X in Q.

The domain of definition of F is the set Q' of maps which are inverse to maps

in 2. Note that the derivative F of F is positive definite whenever @ is.

Since we usually consider convex hypersurfaces, we will often take Q to be
the set of symmetric positive definite maps of TM. In some circumstances,
however, other choices of domain are interesting—see for example the flows
used in [A2].

If the equation is isotropic, then F and & are restricted further: F is given
by a symmetric function of the principal curvatures 4,,. . ., 4,. This means
also that & is given by a symmetric function of the eigenvalues of the
map A =g*Hessgs + Ids, which are called the principal radii of curvature.

Examples. In the case of the flow by mean curvature, the elliptic operator
& =Fg*Hessy, naturally associated with the flow in the standard parametriz-
ation, is just the Laplacian on the hypersurface:

&L =tr,Hessg=4.
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In local coordinates this may be written g V,V;, employing the summation
convention. Similarly, the flow by the Gauss curvature K has ¥=
K (I ~')7V,V;, where I ! is the inverse of I with respect to g. More generally,
for a curvature function F the associated elllptlc operator is given by
& =F'V,V;, where F' gives the components of F, and F /=g Fi.

The mean curvature flow is not as simple when written in terms of ¢ and
the Gauss map parametrization—then we have an elliptic operator Z =
®g*Hessg, which becomes in this case H2(4 ~2)¥, v,

The flow by harmonic mean curvature has F=—H_; where

1 =1
H _1=<—Zlf1> . The flow Eq.(1.1), written in terms of the principal

curvatures, is rather complicated: The coefficients of the elllptlc operator
& =Fg*Hessy associated with this flow are given by H2 ;% ~2. In terms of
the support function, however, this flow is much s1mpler The Eq. (3.2) be-
comes in this case:

0 _

— 5= —(4s+ns) !

where 4 is the Laplacian on S”. Even simpler is the outward flow by the
inverse of the harmonic mean curvature, which has the form:

% s=As+ns .

The Eq. (1.1) extends the parametrization ¢, of the initial hypersurface to
later hypersurfaces by identifying points on trajectories normal to the hyper-
surfaces. This will be referred to as the standard parametrization of the flow.
The approach adopted here is somewhat different — we identify points which
have the same normal direction. This will be referred to as the Gauss map
parametrization of the flow.

The definitions of Sect. 1 allow us to find induced evolution equations for
various interesting geometric quantities. In the Gauss map parametrization
the details are slightly different from the standard parametrization—compare
the calculations in [A1].

Theorem 3.6 The following evolution equations hold under the Gauss map
parametrization of the flow (1.1):

(3.7) %(Hessvs+gs)=Hesse¢+¢g

38) % A=g*(Hessz®)+1d @
d _ .

(3.9 o P=Z0+0(1d)?,

where 2 is the elliptic operator ®§*Hesss .
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Proof. The first equation follows simply by differentiating the Eq. (3.2), since
the metric g and connection V are independent of time. The second follows
immediately from this. Since @ depends only on A4 and z, where z is indepen-

dent of time, we have:
0 . [0
5 0= <E A)

Example. For the harmonic mean curvature flow we have

i )=
5 @=2*(d0+n9)

which implies Eq. 3.9). O

which is related to certain porous medium equations. The associated elliptic
operator for this flow is £ =®24.

I will conclude this section with a simple result which allows us to
transform between evolution equations in the Gauss map parametrization
and the corresponding equations in the standard parametrization:

Lemma 3.10 Let Q:M"+[0,T)>IR and Q: S"x [0, T)—1R be related by the
equation

Q(v(x, 1), )=0(x, 1)

for all x in M" and t in [0, T). Then the following equation relates the time
derivatives of Q and Q:

0 0 -
3.11 — == +1 ~*(VF,VQ),
( ) <at Q)standard param. (atQ>Gauss param. ( Q)
where Il ' is the element of TM " ® TM " which is the inverse of II.

Proof. Differentiation of Eq.(2.10) gives the following expression for the
evolution of the immersion under the Gauss map parametrization:

(3.12) gi(p(z, t)=®(z, 1)z +Vd(z, t)

=—F(W,vWw—To(# ~'VF),

using the Eq. (3.4) which relates @ and F, and Eq.(2.12) which relate the
metrics g and g. This differs from (1.1) only in the extra tangential vector field
on the right hand side, which introduces a gradient term into the evolution
equation of any scalar quantity, as in (3.11). [

4 Examples

In this section I will give some examples of functions F(#", v) which may serve
as speeds in the Eq. (1.1), together with the dual functions ®(4, z) which give
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the speed in terms of the support function. I will also note some convexity
properties which will be relevant to the main results proved in the next
section.

4.1 Isotropic Flows

For isotropic flows the speed takes the form F(#')=f(1)= —¢(x), where
A=(44,...,4,) are the principal curvatures, and x=(ky,..., k,) are the
principal radii of curvature: k;=A; !. ¢ is a symmetric function defined on
a symmetric domain ¥ in R", and f is the dual function defined by
Sy, A)=—¢(A1rY, ..., 4, ). The domain of definition Q of the func-
tion & is given by the set

Q={ZeT*S"QTS": k(Z)e¥} .

For flows of convex hypersurfaces we usually choose € =I", =R", the positive
cone consisting of those points with all coordinates positive.

Homogeneous examples. 1t is often natural to consider flows which are invari-
ant under dilations of space, in the sense that a solution remains a solution
under this operation, up to a rescaling of time. This criterion leads us to
consider speed functions which are homogeneous of some degree in the
principal curvatures (or the principal radii of curvature). The flows in [Hul,
Ts, Ch1-2, Al1] are isotropic, and homogeneous of positive degree in the
principal curvatures (negative in the principal radii of curvature).
The elementary symmetric functions are defined by:

1
e"‘l(x)=(—n) Y xi...x;, fork=1,...,n.
k) iv< - <ix

This gives the mean curvature if f=e,, and the Gauss curvature if f=e,. From
these a wider class can be defined by taking powers and ratios:

elbad(x)=sgna f?i]@ ] for 0<I<k<n and aeR\ {0}
e[l](x) = = :

Here e%(x)=1). If f=e*"% then ¢=el"""""* 2 The following result is

useful:
k1]
k=1-" for 0<l<k<n, are concave:

i | i
e[ I )ge[kl [

k’ ,— L, — L —
e pzet X +e T (),

Lemma. The functions e

Proof. See [BMV, p.306]. O

Other interesting examples in this class are the scalar curvature
g p
(f=e*%1) and the harmonic mean curvature (f=el™"~ 111 ¢ =l10.~11),
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The power means provide another class of examples in this category. They
are defined as follows for x=(x,,...,x,)in I';:

1
=

<1 Y x{) for r+0;
H'(x)z.- nl'=1

Jnod]

If f=H,, then ¢ = —HZ]. The functions H, are concave for <1, and convex
for r>1.

More generally, any symmetric function fwhich is homogeneous of degree
one and increasing with respect to each argument gives rise to a family of
examples f7, defined as follows for any r and any nonzero a:

for r=0.

sgna[rln’l)f(x’)] for r+0;
Jro2]

Homogeneous flows are normally divided into two subsets: The contrac-
tion flows, for which f is homogeneous of positive degree, and the expansion
flows, for which f is homogeneous of negative degree.

frx)=

for r=0.

Non-homogeneous examples. There are many ways to produce functions
which are non-homogeneous satisfying the required conditions; most of these
are of little interest. However, there are a few examples which have some
applications.

The quasi-arithmetic means are defined as follows: Suppose ¥: Ic R—R
is a strictly increasing smooth function on some (possibly infinite) interval I.

. : . 11 cn
Define a symmetric function ¥,, with €=1", by ¥,(x)=%¥ ~! <’—1 Zi=1 ‘I’(x,-)).

Many of the examples already discussed are of this form.

A further useful example is the following: For keR, and f a homogeneous
example as in the previous section, define f(x)= f(x—(k,...,k)), with do-
main €' =(k, ©)". These have some geometrical applications, which are the
subject of [A2].

4.2 Anisotropic flows

Taylor et al. [CHT] have considered some classes of flows which are aniso-
tropic, as a model for crystal growth phenomena. The simplest of these flows
take the form F = — u(v)H, where H is the mean curvature, and p is a ‘mobility
function’; this is usually given as the support function of some fixed convex
hypersurface W, called the Wulff shape. More generally, one might generalise
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this to flows of the form F= —pu(v)f(4), for any of the function f of the
preceding sections.

Another class of flows considered in [CHT] is given as follows: Let W be
a fixed, strictly convex Wulff shape containing the origin, with support
function u. The Weingarten map % of W is then given by (2.11):

Y ~'=g*(Hessgu+ug) .

Now consider flows with F(#",v)=pu(v)tr(% ~!o % ). These are natural an-
isotropic generalisations of the mean curvature flow. More general flows
related to this, referred to as relative curvature flows, have speeds given by
p(V)F(% ~o %), where F may be any of the examples from the isotropic case
considered above. These flows have the desirable property that the
Wulff shape evolves trivially — the hypersurfaces at different times are identical
up to a scaling factor. Some other examples of natural anisotropic flows are
important in [A3]. Very general anisotropic flows are also considered in
[AG, GG1, GG2].

5 Harnack inequalities

The previous sections have set up the tools necessary to prove the main results
of this paper. The Gauss map parametrization reduces the main result to the
following short calculation:

Lemma 5.1 Suppose ¢ is a solution to (1.1) for which all the hypersurfaces
@:(M") are strictly locally convex. In the Gauss map parametrization, the

0
following evolution equation holds for the quantity P= % @, where we denote

0
Q==5EA.

(5.2) % P=2P+&(d)P+d(Q, Q)

where &(Z)e(TS" @ T*S") @ (TS" ® T*S") is defined by:

(5.3) D(Z) (B, )= 5‘35 % D(Z +bB +cF) X

=c=0
for every B and € in T*S"® TS™.

Proof. Note that P=d(Q). Differentiation of Eq. (3.9) yields the result im-

mediately, since the metric § and the connection V are independent of
time. [J
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Example. For the harmonic mean curvature flow this calculation is as follows:

afd \_ 0 .,

=<D2<Z(% ¢>+n(%rp>+2¢<§t ¢>(Z«D+n¢)

_(d T 2(0 V

If a function @:T*S" ® TS"— R satisfies the condition $(Z)(, o )<0
for all Z in Q and all &/ in T*S" ® TS", then ® will be called concave; if the
reverse inequality holds, @ will be called convex. If ®=sgna - B* where B is
positive and concave (convex), then @ is called a-concave (-convex). a-concav-
ity is equivalent to the inequality:

-1 . .
(5.4) < " d@d.
ad
These conditions become considerably more complicated when written in
terms of the principal curvatures and the function F. For example, concavity

of @ becomes:

(5.5) FX,X)+2F(Xow ~10X)20

for every symmetric map X in T*M ® TM.

Theorem 5.6 Suppose ¢ is a strictly convex solution to (1.1).

(1) Suppose @ is a-concave for o < 1. Then the following estimate holds in the
Gauss map parameterization for positive times t, as long as the solution exists:

0 oad
— — e L
(5.7) 7 D+ @1 <0

(2) If @ is positive and concave, then the following weaker estimate holds:

t

(5.8) sup <§ In <I>> is decreasing .

(3) Suppose @ is a-convex, for a> 1. Then the following holds at every x in
M" and every t>0:

(5.9) 7% i

(4) If @ is positive and convex, then the following holds:

(5.10) inf (% In d)) is increasing .
12
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Proof. 1 will prove the first two cases: The last term in Eq.(5.2) can be
estimated as follows, since @ is a-concave:

. a—1 .
B0, ) (@02

for any #in T*S" ® TS". For the case a =1, the following inequality holds for
0
the quantity R == In @:

aﬁR PR+ ; #(G*(VO ® VR)) .

The result (5.8) follows immediately from the parabolic maximum principle,
since the first term is an elliptic operator, and the second a gradient term. In

the case where a <1, one can estimate as follows, where R= tg D+ ;—(Dl
0 0
6_R ,Sf’R+< +d ot <P+<I>(Id)>

0 od
Since t;a- ¢°+—I is initially negative, the parabolic maximum principle

implies that it remains so as long as the solution exists. The proof for the
convex case is similar. [J

This calculation can easily be transferred to the standard parametrization,
by writing the various quantities in terms of the metric and connection on the
hypersurface. This is most easily done by considering the change in the
evolution equations coming from the modified parametrization. Here we
denote by II ~! the map inverse to II in the following sense: II is an element of
T*M ® T*M, so we can consider it as a map from TM to T*M. I ~! is then
a map from T*M to TM, and is therefore an element of TM ® TM.

Corollary 5.11 Suppose ¢ is a strictly convex solution to (1.1).
(1) If @ is a-concave for some a.< 1, the following inequality holds in the

standard parametrization:

(5.12) §F I~(VF, VF)+( T 2

(2) If @ is concave and positive, then the following holds:

20.

(5.13)  sup <% In|F|—FIO~(VIn|F|, Vln|F|)> is decreasing .

Sn

(3) If @ is a a-convex for o> 1, then:

<0.

(5.14) §F I~ 1(VF, VF)+( —: <
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(4) If @ is convex and positive, then:
(5.15  sup (6% In|F|—FI~*(VIn|F|, Vlanl)) is increasing .
s'l

Proof. Recall the Eq. (3.11) which relates the time derivatives of functions in
the Gauss map and standard parametrizations. Applying this to the function
F gives the following:

d 0
5.16 — = = —I! F).
( ) <at F)Gauss (at F>standard H (VF, V )

This expression immediately gives the results above from Theorem 5.6. []

Remark. 1t is possible to perform the calculations of Lemma 5.1 entirely in the
standard parametrization — this was done in the special cases proved in [Ha 3]
and [Ch3]. The calculations are then much messier, since the connection and
metric are time-dependent, and there are extra gradient terms in the quantities
of interest. Furthermore, these calculations were carried out only for isotropic
flows; in the case of anisotropic flows the calculations rapidly become un-
manageable. This extra complication in the calculations made the simplicity
of the results rather mysterious — particularly since the equations are fully
nonlinear. The results here are made easier because the evolution equations
have a very nice form in the Gauss map parametrization. This parametriz-
ation of the hypersurfaces seems more geometrically natural for this situation:
For example, solutions for which the hypersurfaces evolve by pure scaling
(homothetic solutions) have a very simple description in Gauss map parametr-
ization, but not in the the standard parametrization. The deep relationship
between these homothetic solutions and Harnack inequalities has been noted
before [Ha3, Ch3].
We can now obtain a Harnack inequality for many cases of interest:

Theorem 5.17 Suppose ¢ is a strictly convex solution of an equation of form
(1.1). The following inequalities apply in the standard parametrization for the
cases described, for any points x, and x, in M", any times t,>t, >0, and any
curve y joining (X, ty) to (x3,1t5):

(1) @ a-concave, 0 <0:

a

F(, 1) _ (1\" | P

(2) @ a-convex, a>1:

o

(5.19) tz

F(X2,t2) tl Bt 1 B .
m%(—) °"P<‘Z£IF| *H(v,v)dt).
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(3) @ convex and positive:
F(x3,t;)

1
> p—Ciltz—t1) _ = 3 ey
(5.20) F(xl,tl)ze exp( 4{ |F| |H(y,y)dt>.

0
where Cl=sup,=o<a1n|F|—FII“(V1n|F|,Vlanl)).

Proof. 1 will give the proof only for one case — the other calculations are
similar. Consider the case where @ is a-concave for « <0: Along a curve 7,

D;lnF:%lan()},VlnFy

This can be estimated using (5.12) and the Cauchy—Schwarz inequality:

D;lnF_ZFII‘l(VlnF,VlnF)+<)3,VlnF>—‘(afl)t

g_ F_IH();a‘);)_

o
(=1t~
Integrating along the curve y yields (5.18). [J

=

Example. For the mean curvature flow we have F 'l <1, and hence the
estimate (5.18) becomes

H(xa, 1)) t—léex &
H(xy,t)~ \t2 b 4(t;—ty)

where d is the distance from x, to x, with respect to the metric g at time ¢;.

The estimates in Theorem 5.17 have been obtained by Hamilton [Ha 3]
for the mean curvature flow, and by Chow [Ch3] for flows by positive powers
of the Gauss curvature. It should be noted that the integrals on the right hand
side of these inequalities are in general difficult to estimate — for the mean
curvature flow, there is a useful estimate as noted above, but for flows which
are homogeneous with powers other than one, more natural estimates can be
found by integrating the inequalities from (5.11) in a different way. The
following theorem summarises these results in the special case where the
second fundamental form can be controlled in terms of an appropriate powers
of the speed. This is automatically the case, for example, for speeds given by
powers of the power means H, with r>0, or for powers of functions for which

H . ..
— is bounded above on the positive cone [0, c0)".

f

Examples. In [A1] it is shown that solutions to a wide class of flows with

H
speeds F homogeneous of degree one satisfy a condition F <C, where C de-

pends on the initial hypersurface. Hence all these solutions satisfy the hy-
potheses of the following theorem.
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Theorem 5.21 Suppose o is a strictly convex solution to an equation of the form
(1.1), and the speed satisfies @ =sgn aB®, for some homogeneous degree 1 func-
tion B. Assume further that B(A)A™'<C,Id on the solution ¢, for some
constant C,. Then the following estimates hold for any times t,>t, >0 and any
points x, and x, in M":

(1) If B is concave and o< —1:

a+1 at+l o+l a+tl 2
241 B4l ol 2l 1)C,d
(522 5T F(xp,ts) © —01F(xy,1;) * s— @+ DG

2 2
2a(1—a)[t£““—t}_“]

where d is the distance from x, to x, with respect to the metric g at time t,.
(2) If B is concave and a= —1:

F(x3,t2) _ [t} C,d?
6-23) F(xl,zl)g(E)“p(‘ct(tz—n))

where d is the same as in (1)
(3) If B is concave and —1<a<0:

a+1 a+1 a+1 at1 2
a+1 atl  atl 2+l 14+a|C,d
(524) 5 TF(xy,15) * —13-1F(xy,1y) * <—11+%Cs

2 2
2|a(1—a)|[t§,‘°‘—t‘1—“]
where d is the same as in (1).

(4) If B is convex and a>1:

a+1

(5.25) ta—1

f‘{—‘_tii—} wil (x+1)C,d?>
1

a_>__

F(x,, 1) F(xy,ty) 5 )
2a(1 —a)[t"l‘“ —tg"‘]
where d is the distance between x, and x, with respect to the metric g at time t,.

Example. Flows with F = H* satisfy the required conditions with C,=1.

Proof. Consider the case (1). The estimate (5.12) can be written as follows:

a+1 .

— +1 atl +1 atl
5(,—§fiF—“Il)> AR = ),V(t:—‘Fa“ ).
ot = a+1

This can be used in the same manner as in the proof of Theorem 5.17 to yield
the following inequality:

a+1 a+1 a+1 a+1 2 a+l

2 = = = C ne = .

t571F(xz,t2) * —t3 1F(xy,ty) * = — Z(Z: )jta—lg,,(y, y)dt.

t

The result follows by minimising the integral on the right hand side over
all paths joining the two points. The calculations for the other cases are
similar. [J
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In some instances where Harnack inequalities are obtained, one also
obtains an integral estimate or entropy estimate by integrating the evolution
equation from Lemma 5.1 over the whole manifold M". This is true, for
example, in the case of the Gauss curvature flow [Ch3]. In this next theorem I
describe an entropy estimate which holds for a class of flows including the
Gauss curvature and the harmonic mean curvature flow. This estimate was
pointed out to me by Gerhard Huisken in the case of the harmonic mean
curvature flow.

In [A4], it is shown that entropy estimates are intimately related to the
Aleksandrov-Fenchel inequalities for convex bodies. Entropy inequalities are
proved, by a different method, for a much wider class of flows (including
anisotropic flows). Some applications of these results are also given.

Theorem 5.26 Suppose that @ is a-concave for some a0, and also that the map
V(@ 20): TS"® T*S" ® TS"—R satisfies the following condition:

(5.27) V(@ 2d)1d @ u)=0

for all ueTS". For any strictly convex solution {M,}, the following evolution
equation holds under an isotropic flow (1.1) with speed ®(A):

0 2
=1 :
§(Fomsr) o

Consequently the integral can be estimated in terms of the maximum interval of
existence T of the solution:

0 o
—_ <
(529) s'[.((?t ln|‘p|>‘i“=(m+1)|s"|r

where |S"| is the volume of the manifold S".

a+1

0.0
2 == >
(5.28) atsfn 5 (In1P)dpz

The condition (5.27) says that the trace of V(® ~2®) over the first two
arguments is identically zero — in local coordinates, V;(® ~2d%)=0.
The entropy estimate (5.29) amounts to a kind of Poincaré inequality for
the speed —for example, in the case of the harmonic mean curvature flow:

1 =
(5.30) ns*(,.(H'l)zduéZIS"|T+sj.n|VH"1lzdﬂ'
The only reference to the flow in this inequality is in the time of existence T.
For a compact convex initial hypersurface this can be computed exactly for
these special flows. This calculation is carried out in [A3].

The only isotropic homogeneous speeds which satisfy the condition (5.27)
are the following special functions:

Corollary 5.31 Suppose ¢=e™""1 (and hence also f=e™" 1) for
k=1,.. ., n. Then Theorem 5.26 holds with o.=k.

Remark. For k=1 this is the harmonic mean curvature flow; k=n gives the
Gauss curvature flow.
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Proof of Theorem 5.26 Integrating using Eq. (5.2) yields the following:

at
+[ @ 1 ®(g*Hessy @ +1d ®, G* Hessy &+ 1d @) dy
sn

1 0 2
|l '@ ;
(oge) o
Now integration by parts yields the following, after using the a-concavity
condition and Eq. (5.27):

0 0 a+1 0 2

— | (=In|® 2— | (=In|® .

ot Sj (at n| |>d“_ o sjn (atlnl I) an

The result follows by applying Hélder’s inequality and comparing with the
ordinary differential equation

Jd .0 . 0 0
3) 214 =[ o @ 2dg* 52 PG
(5.32) % 5(.. P n|®|du 5[" (cb o7 <Hessv ¢+gat <D>>du

(5.33)

0 a+l ,
—X=—X
ot o

since the integral must remain finite as long as the solution exists. []

Acknowledgement. The author is pleased to thank Gerhard Huisken for his expert guidance
and advice, and also Klaus Ecker, Richard Hamilton, Steven Altschuler, and Lang-Fang
Wu for discussion and encouragement. This work forms a part of the author’s doctoral
thesis for the Australian National University.

References

[A1] Andrews, B.: Contraction of convex hypersurfaces in Euclidean space. Preprint
no. MR 20-92, CM.A,, Australian National University 1992, 35 pages Calculus
of Variations and P.D.E. (to appear)

[A2] Andrews, B.: Contraction of convex hypersurfaces in Riemannian spaces.
J. Differ. Geom. 39, 407-431 (1994)

[A3] Andrews, B.: Curvature Flows and the Aleksandrov-Fenchel inequalities. (to
appear)

[A4] Andrews, B.: Entropy estimates for evolving hypersurfaces. Commun. Anal.
Geom. 2, 53-64 (1994)

[AG] Angenent, S., Gurtin, M.: Multiphase thermodynamics with interfacial structure
2. Evolution of an isothermal interface. Arch. Ration. Mech. Anal. 108, 323-391
(1989)
[BMV] Bullen, P.S., Mitrinovi¢, D.S.: Vasi¢, P.M. (Eds.). Means and their inequalities.
Mathematics and its applications series. D. Reidel, 1987
[CHT] Taylor, J.E., Cahn, J.W., Handwerker, C.A.: Geometric models of crystal growth.
Acta Metall. Mater. 40, 1443-1474 (1992)
[Ch1] Chow, B.: Deforming convex hypersurfaces by the nth root of the Gaussian
curvature. J. Differ. Geom. 23, 117-138 (1985)
[Ch2] Chow, B.: Deforming hypersurfaces by the square root of the scalar curvature.
Invent. Math. 87, 63-82 (1987)
[Ch3] Chow, B.: On Harnack’s Inequality and Entropy for the Gaussian curvature
flow. Comm. Pure Appl. Math. 44, 469483 (1991)



Harnack inequalities 197

[Ch4] Chow, B.: The Yamabe flow on locally conformally flat manifolds with positive
Ricci curvature Comm. Pure Appl. Math. 45, 1003-1014 (1992)
[G] Gerhardt, C.: Flow of nonconvex hypersurfaces into spheres. J. Differ. Geom. 32,
199-314 (1990)
[GG1] Giga, Y., Goto, S.: Motion of hypersurfaces and geometric equations. J. Math.
Soc. Japan 44, 99-111 (1992)
[GG2] Giga, Y., Goto, S.: Geometric evolution of phase-boundaries. On the evolution of
phase boundaries, IMA volumes in mathematics and its applications 43. Spring-
er, 1992, pp. 51-65
[Hal] Hamilton, R.S.: The Ricci flow on surfaces. Mathematics and General Relativity,
Contemporary Mathematics 71, American Mathematical Society, Providence,
RI
[Ha2] Hamilton, R.S.: Heat equations in geometry. Lecture notes, Hawaii, 1990
[Ha3] Hamilton, R.S.: The Harnack Estimate for the Ricci Flow. J. Differ. Geom. 37,
225-243 (1993)
[Hul] Huisken, G.: Flow by mean curvature of convex hypersurfaces into spheres. J.
Differ. Geom. 20, 237-268 (1984)
[Hu2] Huisken, G.: On the expansion of convex hypersurfaces by the inverse of
symmetric curvatures functions. (to appear)
[LY] Li, P, Yau, S.T.: On the parabolic kernel of the Schrédinger operator. Acta
Math. 156, 153-201 (1986)
[M] Moser, J.: A Harnack Inequality for Parabolic Differential Equations. Commun.
Pure Appl. Math 17, 101-134 (1964)
[Ts] Tso, K.: Deforming a hypersurface by its Gauss—Kronecker curvature. Commun.
Pure Appl. Math. 38, 867-882 (1985)
[U1] Urbas, J.ILE.: An expansion of convex surfaces. J. Differ. Geom. 33 (1991), 91-125
[U2] Urbas, JLE.: On the expansion of star-shaped hypersurfaces by symmetric
functions of their principal curvatures. Math. Z. 205 (1990), 355-372






	
	Harnack inequalities for evolving hypersurfaces.


