D
[-A elt

Werk

Titel: On the geodesic connectedeness of Lorentzian manifolds.

Autor: Benci, V.; Fortunato, D.; Masiello, A.

Jahr: 1994

PURL: https://resolver.sub.uni-goettingen.de/purl?266833020_0217 | log14

Kontakt/Contact

Digizeitschriften e.V.
SUB Géttingen

Platz der Gottinger Sieben 1
37073 Gottingen

& info@digizeitschriften.de


http://www.digizeitschriften.de
mailto:info@digizeitschriften.de

Math. Z. 217, 73-93 (1994)

Mathematische
Zeitschrift

© Springer-Verlag 1994

On the geodesic connectedeness
of Lorentzian manifolds

Vieri Benci'**, Donato Fortunato®*, Antonio Masiello>*

! Instituto di Matematica Applicata, “Ulisse Dini”, Via Bonanno Pisano 25\B,
1-56126 Pisa, Italy
? Dipartimento di Matematica, Universita di Bari, Via Orabona 5, 1-70125, Bari, Italy

Received 2 April 1992; in final form 3 May 1993

1 Introduction and statement of the results

In this paper we study the geodesic connectedeness of Lorentzian manifolds.
We recall that a Lorentzian manifold (.#, g) is a smooth connected finite
dimensional manifold .#, equipped with a smooth (0, 2) symmetric tensor
field g, such that for every ze.#, g(z)[-,-]is a nondegenerate bilinear form,
having exactly one negative eigenvalue.

Geodesic curves play an important role in the study of the global geometry
of a Lorentzian manifold. We recall that a smooth curve y: Ja, b[ — M is said
geodesic if

Viy=0,

where j is the tangent vector field along y, and V,y is the covariant derivative
of y along y induced by the metric.
It is well known that if y is a geodesic, there exists a constant E (y) such that
EM=g((s)[¥(s), ¥(s)] Vsela, b[ .
Then 7y is said

timelike if E(y)<0;
lightlike if E(y)=0;
spacelike if E(y)>0 .

This classification is called causal character of geodesics.

The terminology of the causal character comes from general relativity.
Indeed four dimensional Lorentzian manifolds, which are called space-times,
describe gravitational fields of general relativity. The points of a space-time
are called events.

* Sponsored by M.U.R.S.T,, research founds 40%, 60%
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In particular a timelike geodesic represents the trajectory of a free falling
particle in a space-time. Lightlike geodesics represent the light rays. The
spacelike geodesics have a more subtle interpretation: for a suitable local
observer, they represent “Riemannian” geodesics consisting of simultaneous
events.

In global Lorentzian geometry, a problem which arises naturally is the
geodesic connectedeness. A Lorentzian manifold (or also a Riemannian mani-
fold) is said geodesically connected if every couple of points may be joined by
a geodesic.

This problem is quite different and more difficult than in the Riemannian
case. Indeed, the Hopf~Rinow Theorem guarantees that

Every geodesically complete Riemannian manifold is geodesically connected.

We recall that a Riemannian (or Lorentzian) manifold is said geodesically
complete if every geodesic can be extended to a geodesic defined in R. For
example every compact Riemannian or Lorentzian manifold is geodesically
complete.

In the Lorentzian case, the geodesic completeness does not imply the
geodesic connectedeness (see [Pe, p.7]), not even when the manifold is
compact (see [BP]).

Some results on the geodesic connectedeness have been obtained for
stationary Lorentzian manifolds, using variational methods (see [BF1, BF2,
BFG] and the survey paper [BFM]). Another result on the geodesic connec-
tedeness for a manifold with a linear connection has been obtained in [BP],
without using variational tools.

Another interesting global problem in Lorentzian geometry is the connec-
tedeness of two points by a timelike geodesic.

An important result was proved by Avez and Seifert in the class of the
globally hyperbolic Lorentzian manifolds, which were introduced by Leray in
the study of the well posedness of the Cauchy Problem (see [ON, p. 412] for
the definition a globally hyperbolic Lorentzian manifold). Avez and Seifert
proved (see [Av, Se]) that

Every couple of points causally related in a globally Lorentzian manifold, can be
joined by a timelike geodesic.

We recall that two points are causally related if there is a timelike curve joining
them.

In this paper we study the geodesic connectedeness of Lorentzian mani-
folds. We consider a connected manifold

M=MyxR, (1.1)
equipped with the Lorentz metric

9L, {1=9() (& 1), (¢, D] =<x(2)¢, £> —B(2)7?, (1.2)
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forall z=(x, t)e M, {=(&, 1)eT, M =T, My x R, where {+,+)is a Riemannian
metric on #,, a(z)=a(x, ) is a positive linear operator on T, M, which
depends smoothly on z, and B is a smooth positive function on ..

These assumptions are not too restrictive. Indeed Geroch has proved that
every globally hyperbolic time-oriented Lorentzian manifold satisfy (1.1) and
(1.2) (see [Ge] and [U]).

The main result of this paper is the following theorem on the geodesic
connectedeness of (., g).

Theorem 1.1
Let (M, g) be a Lorentzian manifold which satisfies (1.1) and (1.2). Assume that:

(Ay) (Mo, <+,>)is a complete Riemannian manifold,

(A;) there exists a constant 1> 0, such that Jfor every z=(x, tye.# and for every
CeT, My:
A<E, 8 =<alx, g, &) ;
(A3) there exists two constants 0<v < C, such that
vSB(2)=C;
we set for simplicity C=1.

(Aq) sup {|B:(2), lleu(@) |} < + 0 ,

ze M

where B.(z) and a,(z) denote the partial derivatives of B and a;

(As) (i) limsup <oy (x, )¢, E> <0,

t— +o

(i) liminf {a,(x, £)¢, EY=0,

t— —oo
uniformly in xe My and E€T, M,.
Then (M, g) is geodesically connected.

Remark 1.2 Suppose that assumptions (A;)—(As) hold. Moreover, suppose
that .#, is not contractible in itself. Then, for every couple of points of .#,
there exists a sequence (7,,)men Of geodesics joining them, such that

lim E(y,)=+o0 .

m-— o

This result can be proved by using the estimates of Sect. 4 and the techniques
developed in [BF] in order to get infinitely geodesics joining two points of
a stationary Lorentzian manifold. So, we omit the proof.

Remark 1.3 1t is not difficult to see that assumptions (A;)—(A;) imply that
(4, g) is globally hyperbolic. However global hyperbolicity is not sufficient to
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guarantee the geodesic connectedeness. For example consider R? equipped
with the Lorentzian metric

1
2 _ 2 2_ 2
ds*=(1+1t*)dx e dt* . (1.3)
Notice that after the change of variables
X=X
t=tgt,
the metric (1.3) becomes
2.2
dsz=dx sz (1.4)
cos’t

with xeR and 7€] —g , g [. It can be seen that ]—g , g [ x IR, equipped with

(1.4) is globally hyperbolic. Nevertheless it is not geodesically connected (see
[Pe, p. 7]).

Remark 1.4 If |t; —t,] is sufficiently large (in dependence of x,, x; and t,), the
geodesic found in Theorem 1.1 is timelike. We recall that the existence of
a timelike geodesic joining two causally related points has been proved in
[A, Se].

2 The functional framework

In this section we introduce the functional framework in order to prove
Theorems 1.1 and 1.4.

Let (#, g) be a Lorentzian manifold which satisfies (1.1) and (1.2). By the
Nash imbedding theorem, the Riemannian manifold (.#,, < -,- )) is isometric
to a submanifold of the euclidean space RY, with N=%(n+1)(3n+11),
n=dim .#,.

Let ¢:.#, — R" be an isometric imbedding and .4, = ¢(.#,). Moreover,
we set M = J?o x R. We consider on .# the Lorentzian metric §, which is the
pull-back metric of g for the difftfomorphism

(x, ye M — (Y(x), )e M .

It is easy to see that g has the form (1.2) and the Riemannian metric on .#,
is the Euclidean one. Hence, without loss of generality, we may suppose that
My is a submanifold of RN and (-, ) is the usual Euclidean metric.

Now we introduce the functional manifolds in which we shall work. We set
I1=[0,1].

Let zo=(xo, to) and z; =(x,, t;) be two points of .#. We set

Q' =Q*' (Mo, xo, x4)
={x:1 - Mo|xeH"?*(I, R¥), x(0)=x0, x(1)=x,} . (2.1)
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We recall that for every keN, H*-?(I, R¥) is the Sobolev space of absolutely
continous curves in R¥, whose derivative is square summable. It is a Hilbert
space with norm

Pl d=lx12+11%02,

where X is the derivative of x, and | - || is the usual norm of L2 (I, R¥).
It is well known, see for instance [Pa], that Q' is a Riemannian submani-
fold of H"(I, R™). For every xeQ', the tangent space is

LQ'={& 1 - R¥EeH (I, RY), E(s)e Ty Mo Vsel } ,
where, for every kelN,
Hy?(I, RY)={¢eH" (I, R*)|£(0)=¢(1)=0} .
Now, we set
H'2(to, t;)={teH" (I, R)|t(0)=to, t(1) =t} .

H"2(to, t,) is a closed linear submanifold of H'2(I, R). Indeed, let f(s)=to +
s(ty —to) be the segment joining t, and t;. Then

HY2(to, t,)=F+HLY*(I,R).
Finally we set
Z=0" % H ({0, t1) .

Z is the manifold of the curves in H''2(I, R"* 1) joining z, and z, in .#. The
tangent space to a curve z=(x, t) in Z, is given by

T,Z=T.Q'x HY2(I,R) .

In & we consider the action integral

1
f@=1(x.t)=5 [ g(z(s) [£(s), 2(s)]ds

NI'—

¥ .
= | [Ka(2)%, x> —B(2)t*]ds . (2.2)
0

It is easy to see that f is a smooth functional on %. Moreover, its critical
points are the geodesics joining z, and z,.

The action integral f is indefinite both from below and from above, also
modulo compact perturbations. This fact creates difficulties in searching its
critical points.

In order to overcome this problem, we introduce a Galerkin approxima-
tion argument in the variable ¢. For every keN, we set

H 7 =span{sin(nls), 1<I<k} .
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Notice that H g:? is a finite dimensional subspace of H §:%(I, R). Moreover, we
set

Hyi(to, t)=T+HE}
which is a finite dimensional submanifold of H'-2(t,, t,).

Finally we set
Z=Q' xHy i (to, t1) - (23)

Now we state a critical point theorem, which is a particular case of the
Rabinowitz saddle point theorem.
Let xeQ! fixed and f the segment joining t, and t,. We set

S={(x,f), xeQ'}cZ . (24)

Moreover, for every keIN, R>0, we set
Q(R)={(x,)eZ||t—illi<R}, (2.5)
QuR)={(x,eZilllt—Fl, <R} . (2.6)

Notice that Q and Q, are Hilbertian submanifolds of 2 and Z, respectively,
whose boundaries are

0QR)={(x,)eZ||t—t|l, =R}, 2.7
0Ok(R)={(x, )e Z|[t—7ll,=R} . (2.8)
Now we recall the well known Palais—Smale (PS) condition.

Definition 2.1 Let f:.# — R be a functional defined on the Riemannian mani-
fold M. f satisfies (PS) condition if for every sequence (Xm,)men: such that

(i) (f(xm))men is bounded;
(i) 1Y/ Gem) | —— 0,
there exists a converging subsequence.

We recall that Vf(x) is the gradient of f in x, with respect to the Riemannian
structure of .#. .

We have the following slight variant of the saddle point theorem (see
[R, BF1]).

Theorem 2.2 Let 1:Z — R be a C* functional and I the restriction of I to Zy.
Assume that

a) I, satisfies (PS) condition for every keN,;
b) 3R >0, such that:

(i) supI(Q(R))< + o0 ;
(i) supI(3Q(R))<infI(S).
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Define, for every keN:
ck=hi:1rf sup I'(h(Qk(R))) ,

where
Ie={heC(Zy, Z})|h(z)=z for every zedQi(R)} .

Then every c; is well defined, c,e]inf I(S), sup I (Q(R))], and is a critical value
Of Ik-

3 The (PS) for the penalized functional

In Theorem 2.2 the (PS) plays a basic role. Unfortunately we are not able to
prove the (PS) condition for the action integral and actually we think that it
does not satisfy this condition.

In order to avoid this difficulty, we introduce a penalization argument. We
consider the function y: R, - R, defined in the following way:

0 0=s=<1

-/f(s)={(s_1)2 =1, (3.1)

It is clear that y is C!.

Now, for every 6 >0, we consider the penalized functional f;: 2 — IR, such
that for all ze%

o .. . o .
fa(2)=f(2)+t//<§Mlx||2>—w(§ ||r||2), (32)
where 4 is defined in assumption (A,) of Theorem 1.1. We set fo=1.

By the choice of the penalization, it is easy to prove the following

Lemma 3.1 For every >0, let z;=(x;, t5) be a critical point of f5, such that

sup { 1%, 1£5]1} < + o0 . (3.3)
>0

Then, if 6 is small enough, z; is a critical point of f.

We want to prove the (PS) condition for the penalized functional f;. To this
end, we need the following lemma, whose proof is contained in [BF2].

Lemma 3.2 Let (x,,)men be a sequence in Q* such that
Xm— X, weakly in H2(I, R"Y) .

Then there exist two sequences (ép)men ANd (Vo)men in H2(I, RY), such that:

xm_x=ém+vm; (34)
¢m€Ty, QY vueHy (I, RY) ; (3.5
Em— 0 weakly in H2(I, R") ; (3.6)

Vm— 0 strongly in H*?(I, RY) . (3.7
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In the following we shall assume for simplicity that

a(2)¢, &> =a(2)<¢, &),

i.e. o is a smooth function on .#. Moreover we assume that the constant A in
assumption (A;) of Theorem 1.1 is equal to 1. The same calculation can be
carried out also in the general case, with some more technicality.

Next proposition shows that the penalized functional f; satisfies (PS)
condition.

Proposition 3.3 Assume that (A;)—(A4) of Theorem 1.1 hold and fix 6> 0. Let
(Zm) =(Xm> tm)men be a sequence in Z such that

Solzm)=c; (3.8)
If5(zm)l e 0. (3.9)

Then (z,)men cOntains a converging subsequence.

Proof. The Frechet differential of f; at z=(x, t)e 2 and { = (&, 1)e T; Z is given
by

1 .o 1 1
PO~ | a1 €3+ G5 X> CFatEh O 5 G e s+
0
~{ | poie 52 CvB0, 45 e o
0

o - : d .o\+.
+oy’ (5 IIXIIZ>I (%, £>ds—oy’ (5 Nt||2>§ tids ,
0 0

where Va(z) and Vf(z) denote respectively the gradient of « and # with respect
to the Riemannian structure of .#,.
For every meN, we set

Tm=tm—I. (3.10)
Denoting by o(1) an infinitesimal sequence, from (A,) and (3.9), we have:

oM [Itmll1=f5(zm) [0, Tm)]

11
=§j

(Zpm) {Xom; X,..>rmd3~} Bzm)iminds+
0 0

A B i tds— oy’ (é i NZ) (iutnds
23 2 !
1 1 .
<M tnlloLltn 2+ linl21— Bm)iZds+ [ Bzn)inids+
0 0

S 1 S5 1 .
—oy’ (— I ||2> | thds+oy’ (— 1 m II2> [ tmtmds
2 0 2 0

where || T, || =SUp;es |Tm(s)].



Geodesics in Lorentzian manifolds 81
Putting 4=t, —t,, we have:

1
O tmlls Ml tmlloo [ X 1? + 1121 — | Blzm)E2ds +
0

o . . . o .
—M'(E ”tm”2> ”tm”2+A“tm”+5A2'//(§ Htmllz)- (3.11)
Now, from (3.8) and (3.11) we get
o) tmll4

; . (0 . . .
SMtmlloo Ll X 12+ 1 12— 89" (5 1 e l12 ) 1 24+ A e
2

roa7y (g i ||2)+2c—2w (g % ||2>+2w @ i, ”2> .61

So we have:

2y @ I Xm ||2>—2!// (g I t'mllz)+5¢’ (g Ilfm||2> w12

. : : e
SM| Tl [l %mlI?+ 1 EmlI2T+ A || || + 4% (5 “tm”2>

+e—o() | tmlly (3.13)
From (3.13) we deduce that the sequences (|| Xy | )men and (|| Eml)men are
bounded. Indeed, for every meNN such that g [ %m|I?=2 and g [Emll?>=2, we

have:

il @ ||x,,,||2>—2z// <g I f,,,||2)+6¢' @ llt',,.||2> 12

; - o .
§M|I1,..Hoo[HJ€mll2+III".IIZ]+AIItm||+25AZ[§ ”tm”z_l]

+2c—o(1) | Tmll; - i
Moreover, straightforward calculations show that for every s=1

sY'()—y(s)=s>—1, (3.14)

so we get

2
2 (3150423 fi*=1|

: . o .
SMtmllo Ll X124 1 Em 12T+ Al i | +204° [5 “tm”Z_l:I

+2c—o()[ltmlly -
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Finally, since
Y (s) 2c,s? —C

for suitable positive constants ¢; and c,, we get:

6% . 6% .
i |Ixmll4+7 e ll*

, . ; o .
SEM|tmll o[ Xm 1>+ 1 Eml*1+ A £ | +264° [5 ”tm”2—1:|

+2c—o()[tmll1+2+2c,,

from which we deduce that the sequences (|| %, )men and (||p | )men are
bounded.

Hence (X,,)men and (t) men Weakly converges respectively to xe H!'?(I, RY)
and teH"2(I, R).

By (A,), 2! is a complete submanifold of H!'2(I, R"), so xeQ'. Moreover
te H"(to, t,), because it is a closed linear submanifold of H''2(I, R).

Now we prove that

Xm— x strongly in H''2(I, R¥), (3.15)
tm——t strongly in H"%(I, R) . (3.16)

Let (n)men and (v,)men be two sequences which satisfy (3.4), (3.5), (3.6) and
(3.7) (see Lemma 3.2). Moreover, let

Tm=tm—t.
From (3.9) we have:

o()=1"(zm)[(Em> —Tm)]

=_‘. [a(zm) <X'?m, ém)‘% <xma xm>a;(zm)1m
0
+3 G ) CValen) £ |5
| Pemdiatot 3 o) a3 (TR, €03 i
0o

1 1
+ oy’ <§ | % u2> [ Gims Emdds+Y (g | £ ||2> [ Eminds . (3.17)
0 0
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Since the weak convergence in H!-2(I, RV ) implies the uniform convergence,
from (3.6), (3.10) and (3.17), we have:

o(l)= [a(zm) +oy’ (g [p H")] (s Emds
0

3 o . .
+f [ﬂ(zm) +oy’ (5 I uZ)] Emtmds
0
Finally, from (3.4), (3.7) and (3.10) we get

o(h)=] [a(zm) oy @ I uﬂ o Endds
0o

! 0
+J [ﬂ(zm) +oy’ <- [l £l 2)] tads .
o 2
Since ¥ is nondecreasing, we deduce that

1€ml? ——0,
m—

|*——0,

m— ©

[l Zm

from which we deduce (3.15) and (3.16).

Remark 3.4 For every ke, let f; , be the restriction of J5 to the submanifold
Z of Z, defined in (2.3). With the same proof of Proposition 3.3, we have that
Js.x satisfies (PS) condition, for every keNN and 6>0.

4 Some apriori estimates on the critical points of the penalized functional

In this section we shall prove some estimates on the critical points of the
penalized functional, defined in (3.2).

Let z=(x, t) be a critical point of f;, §=0. Straightforward calculations
show that z is smooth and satisfies the following system of differential
equations:

V(%) G X)Vala) +3 2B+ 0 (g ||x||2) V,%=0
35 B0 +5 G D5 2+ ov (31 1) =0,

where V; is the covariant derivative along x, induced by the Riemannian
metric ¢ -, - ).
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Multiplying the first equation by X, the second by £ and subtracting, we get
d - LT T (9 12\ 2
— | a(2)<X, XD =B+ oy | 5 1 X]1* | <X, XD =y | 5 [1£]1" ) £* |=0,
ds 2 2
hence there exists a constant E;(z), such that
. . ; (0, . .. (0 . ;
Es(2)=a(2)<x%, X ) —P(2){* + oy (E Il % ||2> (X, X)—oy (5 llt|l2> 2.
The main result of this section is the following apriori estimate on the critical

points of the functional f;, 6 =0.

Theorem 4.1 Let ceR and 6,>0, then there exists a constant K >0, such that
for every critical point z=(x, t) of f5, d€[0, do], with Es(z)<c:

%l =K, (4.1)
Iilo<K, (4.2)

where

X1 o =sup [<X(s), X(5) )1 ,

sel

1]l =sup |£(s)] -

sel

Remark 4.2 Set
Ey(2)=a(a) (%, 2> —B(a)i* —ov/ (2 u fn2> 7

Since E;(z) < E;(z), we may prove Theorem 4.1 assuming that
Es(z)<c. (4.3)

Remark 4.3 Assume that (4.2) holds. Then (4.1) holds, too. Indeed, if for some
constant K

lilosK,
from (A,) and (4.3) we also get (4.1).
In order to get (4.2), we first prove the following lemma.

Lemma 4.4 Let ceR and 8,>0, then there exists a positive constant K’ such
that for every critical point z=(x, t) of f5, 6€[0, do], with Es(z)<c:

Itllo=K",

where
]l =sup |£(s)] .

sel
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Proof. By assumption (As), for every &> 0 there exists a constant M, >0, that
we may choose big enough, such that:
Vt>M,, VxeHy: o (x, t) <ea(x,t), (4.4)
Vi< —M,, Vxely: o (x, ) = —ea(x, t) . 4.5)

Moreover, by assumptions (A,), (A3) and (A,), we may choose a positive
constant A >0, such that for every ze M

|B:(2)]
52 =4, (4.6)
@l _ o @7
o(z)

Now, choose

: v ;
e<min {1, <m> } (4.8)

and M, in order that M,> {|t,|, |t,|}. We recall that v is defined in (A3).
We claim that for every critical point z=(x, t) of f;, 5[0, 5,] (we set for
simplicity do=1), such that with E;(z)<c, we have:

ltllo=M,+1. (4.9)

Arguing by contradiction, suppose that there exists a critical point z=(x, t) of
some f3, 6e[0, 1], such that

[t o>M,+1 .
First suppose that | t||,, is achieved in a point s,€]0, 1[, and

It]lo=t(s))>M,+1. (4.10)
Let
A={sel|t(s)>M,} .

Then A is an open subset of I, and s, is an internal point of A.
Since z is a critical point of f;, ¢ satisfies the equation

dl oo (6 N1, . 1,
I [ﬁ(l)t+5¢ <§ Iltllz) t]+§ <X, X0z} —3 ?B(2)=0.  (4.11)

Now, we set 5
u(s)=p(2)i+ oy’ <§ Ilfllz>f .
From (4.3) and (4.4), for every se A, we have:

A D@ Sea(d)Ch 2

<ec+ef(2)i2 +edy’ (—g— [ f||2> {2 <e|c|+eut . 4.12)
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Hence, from (4.11) and (4.12), we get for every se A:

= =5 G D) +3 @2

o A,
g—slcl—sut+§t2ﬁ,(z), (4.13)
and, from (4.6) and (4.13),

—uL A% +é¢lc|+euf . (4.14)

Now, let B be the maximal component of A containing s;, and § be the
infimum of B, so that

§<51 ,
t(5)=M,.

By the mean value theorem, there exists re B, §<r<s,, such that (r)>1.
So there exists also a point soeB, s, <s;, such that

f(so)=+/ 4.15)
0§t'(s)§\/§, for every se[so, 51] .

Indeed, we have so=sup {r<s<s,|i(s)= \/E}
Integrating (4.14), we get

81
u(so)—u(sy) S Ae+elc|+e | uids

So

=A£+£|c|+e]: [ﬂ(z)t'2+6x//’ <g llf|lz> t'Z:Ids

So

S(A+|c|)e+e? l:l +oy’ <g IIfIIZ)] ; (4.16)

On the other hand, since £(s;)=0, we have

; 0. .2):
u(so) —u(s1) = B(z(s0))i(so) + oy’ <§ (I I|2>t(So) : (4.17)

Hence, from (4.16) and (4.17), we have:

B(z(s0))i(s0) + 0y’ (g e ||2> £(so)

S(A+(cl+ De+e2dy’ (g llt'll’) ,
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and from (4.15)

Bso)V/e=(A+ el + et (62— /e)oy (g ||f||2>§(A+|c|+ De.
Finally we get
v
VeR T

which is in contradiction with (4.8).
The lemma is proved when (4.9) holds. In the other case, i.e.
ltllew=t(s1)< —(M +1),

the proof is similar. Notice that in this case we use (4.5), which is obtained
from ii) of assumption Ajs).

Proof of Theorem 4.1 Let z=(x, t) as in the assumptions of Theorem 4.1. Then,
by Remark 4.3, it is enough to prove (4.2).
Let u(s) as in the previous lemma; from (4.6), (4.7) and (4.11), we have:

U= —% (X, )&)a,(z)+% 2B.(2) < Aa(z)<{x, XY + AP(z) >

; o . : ; ;
<A [ﬁ(z)t2+6lp’ <§ ||ti|2>t2+ |c|:|+Aﬂ(z)t2§2Aut+Alcl . (4.18)
We take for simplicity 4=1.
Consider the set
B={sel||i(s)|>1} .

Let ]so, s;[ be a maximal component of B and suppose that £(s)>0in Jso, s,[
(the other case is similar).
Dividing (4.18) by u, and integrating from s, to s, se]so, s1[, we get:

501
logu(s)—logu(so) <|c| | @dr+2[t(s)—t(so)]

C C
<rapilian,

where M is an upper bound for |t||,.
Moreover, recalling the definition of u, we have:

og| et +ov' (3101

<log [ﬁ(Z(sO))t'(So) +6y’ (g I f“2> f(s°)] +|iv|+4M

=log [ﬂ(z(so))+5w’ (g ||t'[|2>:|+'—€—|+4M ; (4.19)
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because {(so)=1. Taking the exponentials, from (A3), and (4.19), we get
. 2 = o . o
vi(s) S (s)i(s) < M + 6y (5 It ||2> [M—i(s)], (4.20)
where M is a fixed constant (the exponential of Iivl-f-4M )

Now, if £(s)> M, from (4.20), we get:

i(s)<

<=

Hence, we have proved that
. - M
”t”ooémax {1, M’T} )

from which we deduce (4.2). By Remark 4.3, also (4.1) is true and the proof of
Theorem 4.1 is complete.

5 Existence of a critical point of the penalized functional
In this section, we shall prove the existence of a critical point of the penalized
functional f;, using Theorem 2.2. We have the following

Lemma 5.1 With the notations of Sect. 2 (see (2.4), (2.5), (2.6), (2.7) and (2.8)), we
have:

a) inf f(S)> — o0;
b) sup f(Q(R))< + o0, VR>0;
¢) 3R>0, such that

sup f(@Q(R))<inf f(S) .

Proof. a) By virtue of (As), for every z=(x, f)eS, we have:

1 1
f(2)=§I [a(z)<x, ) —P(z)4*]dsz — 4%,
0 o

where A=t; —t,.

b) By assumption (A,), there exists a positive constant M and a continuous
function a(x) on .#,, such that for every z=(x, t)e.:

a(x, )Sa(x)+M|t| . (5.1)

Hence, for every z=(x, t)eQ(R), we get:
1 1 1
f@=Zci [ aX)ds+ce M | |tlds—v | {2ds, (5.2)
0 ) 0

where c, is a suitable constant. From (5.2) we deduce b).
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¢) From (5.2) we have for every zed(Q(R)):
f@=c2tesllill—v|E]? > —c0 as | ] - + o0,

so we get ¢) for R sufficiently large.
Similar calculations show that this lemma holds for the penalized func-
tionals f;, too. Next lemma gives more precise results if & is sufficiently small.

Lemma 5.2 a) 36, >0, such that V6 < d:
inf f(S)<inf £;(S) ;
b) 36, >0 such that V56 <5,, VR>O0:
sup f5(Q(R))<sup f(Q(R)),
sup f5(0Q(R))<sup f(Q(R)) ;
¢) If R is the number defined in c) of Lemma 5.1 and 6 <min {d0, 01}, we have:
sup f3(0Q(R))<inf f;(S) . (5.3)

Proof. a) For every z=(x, i)eS, we have:

fs@)=f(@)+¢ (g ||xn2)—w (g ||f||2>=f(z)+np (g ||x|12>_.p @42)
-+ (31x1)2 1.

2
Hence, we get a) if 6<F (if 4=0, we may choose ¢ arbitrarily). In the same
way we have b). Finally c) is consequence of a), b) and of ¢) of Lemma 5.1.

From these two lemmas we get the existence of a critical point for the
functional f; ;. for all keIN and & small.

Theorem 5.3 For every & small enough and keNN, the number

s, = inf sup f(h(Qx(R)),
hel,
where

I,={heC(Z,, Zh(z)=z, VZG@Qk(R)} >
is a critical value of f;,, such that

inf f(S)<csx<sup f(Q(R)) . (5.4)

The proof follows from Theorem 2.2, Remark 3.4 and Lemma 5.2.

Now, let (z;,«, t5 ) be a critical point of f; , at level ¢5,x- Our aim now is to
show that the sequence {(z;,, ts,k)}kenw CODVerges, up to a subsequence, to
a critical point of f;.

We need the following approximation result, whose proof is contained in
[BF2].



90 V. Benci et al.

Lemma 54 Let (Xn)men be a sequence in Q' which converges weakly to
x in HV2(I, RY). Let EeT Q' and let &, be the orthogonal projection of &
onT, M.

Then the sequence (£,,) men contains a subsequence weakly convergent at & in
HY2([ RY),

Theorem 5.5 Let z;, be a critical point of f, at level cs ;. Then there exists
a subsequence of (z5 ;)xen converging to a critical point zs of f5, such that:

inf f(S)< f5(z5)) Ssup f(Q(R)) .

Proof. Arguing as in the proof of Proposition 3.3, the sequence (z;)ken
converges, up to a subsequence, to z;€ 2. We claim that z; is a critical point of
Js. Indeed, let {=(¢, 1)e T, Z, & the orthogonal projection of ¢ on T, , #,,
and 7, the orthogonal projection of  on HgZ(I, R). Then, up to a subse-
quence, we may suppose that £, converges weakly to &, by virtue of
Lemma 5.5. Moreover, 7, converges to t in H }'%(I, R). Putting {, = (&, %), we
get
[3(zs)[E1=f5(zs) [ = Cd +(f5(25)— [ 5(25,)) [Ei] -

Since {; weakly converges to {, we have:

f3z) [{=Cd=0(1).

Moreover, since (z;,;) converges strongly to z, we have:

(f5(z8) = f5(zs.:)) [L]=0(1) ,
so f5(z5;)[{]1=0. Therefore, z; is a critical point of f;.

6 Proof of Theorem 1.1

In this section we shall prove Theorem 1.1.

Proof of Theorem 1.1 In order to prove Theorem 1.1, we have to show that the
action integral f has a critical point.

In the last section, we have proved that for every 6>0 sufficiently small,
the penalized functional f; has a critical point z;=(x;, t5), such that for every
¢ sufficiently small

fo(zs)<sup f(Q(R)), (6.1)

where R is defined in c) of Lemma 5.1.
By virtue of Lemma 3.1 and Theorem 4.1, it suffices to prove that there
exists a real constant ¢, such that if § is small enough,

Es(z;)<c, (6.2)
(see Sect. 4 for the definition of Ej).
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For every 6 we have:
= 5 %) ' 6 5 2 % . ’ 6 F N2 \1+2
Es(z5)=a(z5){Xs, X5 ) — P(z5) 15 + Y 5 %511 ) <X, X5 > — Y 3 lesl1° )e5 ,

and integrating

1

E;(z5) =f [o(z5) (X, X5 —ﬂ(z,;)t}]ds

0

ey (G it -ov (J1a) 1
o [
=26te0+2| 315w ($1501°) - (3107) |+

-2 B sy’ (g (13 |I2>—l// (g I t'ollz)] :

o
Put, for every seR, p(s)=sy'(s)—y(s), and put for simplicity Sx=3 [ %5112

o, . .
and s,= || {5/ %. Then, in order to prove (6.2), we have to show that for & small
enough

p(sx)—p(s,) is bounded above independently on § . (6.3)
We distinguish some cases:

a) If s.<s,, then p(s;)—p(s,) <0, because the function p is nondecreasing
(indeed it is equal to 0 if se[0, 1] and is equal to s2—1 if s> 1, see (3.1)).
In particular if y(s,)=0, then p(s,) — p(s,) <0.

b) If [ § [a(z5) <5, %5 — B(25){2]ds <0, then assumptions (A,) and (A) gives
sx=s, (recall that we have set A=1), then (6.3) is true.

Then we have to consider the cases in which y(s,)>0 and jé [a(z5)< X5, X5
—P(z5)i3]1>0. Notice that in this case, by (6.1) there exists a constant
¢ independent on 6 >0, such that y(s,) —y(s,) <c.

¢) Assume that Y(s,)>0, [§ [a(zs){%s, %s> —B(25){2] >0, and Y(s,)=0. In
this case, we have y/(s,)<c, hence by the definition of y

(s:—1)*=c,
from which we get
$x<c’=c!2—1. Then we have
P(sx)—p(s)=p(s:)Sp(c),

because p is monotone.



92 V. Benci et al.

Finally, we have to consider the last case

d) l//(sx)>05 d’(sr)>0’ Sx > St, ,‘.(1) [(Z(Za)()&a, X5>-—ﬂ(25)t§] >0.
From (6.1), we have:

(5x—12—(s:— 1) =y (s)—yY(s;)=c,
where c is a suitable constant, independent on 6 >0. So we have:
S3—57—25,+25,=(5,—5)(sx +5—2)<c.

On the other hand (6.3) is equivalent to show that there exists a constant c’,
independent on J, such that

p(sx)—p(s)=si—s?<c'.
Now, if (s,—s,)=1, we get s, +s,<c+2, hence s,<c+2, so
p(sx)—p(s)=s3—s? <3< (c+2)°.
If (s,—s;) <1, since s2—s?—2s,+ 2s5,<c, we have:
P(sx)—p(s)=53—57 Sc+2(s,—s)Sc+2.

The proof of (6.3) is complete. Then by Lemma 3.1, Theorem 5.5 and (6.3), the
proof of Theorem 1.1 is complete.

Remark 6.1 From Lemma 3.1 and (6.4), we get a critical point z=(x, t) of f,
such that

f(2)<sup f(Q(R)) . (6.4)
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