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0 Introduction

In this paper we follow the study of the relations among homogeneous
polynomials in the Thetanullwerte and theta series.

In particular we try to extend the results obtained in [11] for the full
modular group I, to the Hecke groups I, 0(q). We will be successful
putting some “natural” restriction on the weight. To be more precise let us
recall some definitions. For any commutative ring R, we denote by Sp(g, R)
the symplectic group and we write its elements ¢ in 4 blocks of gbyg
matrices, i.e.

A B
(1) az[c D:l.

We shall write I, for Sp(g, Z).
Let g be any positive integer we shall denote by I';(q) the kernel of the
surjective homomorphism mod g

(2) Sp(g, Z) - Sp(g, Z/qZ) .

If we add the conditions diag(4'B)=diag(C'D)=(mod 2q) we get Igusa’s
congruence subgroup I(q, 2q).

The Hecke group I o(q) is the subgroup of Sp(g,Z) defined by
C=0modg.

In general a subgroup I" of Sp(g, R) is called a congruence subgroup if it
contains some I;(q) as a subgroup of finite index.

Let 7 be a point of the Siegel upper half space of degree g IH,, Sp(g, R) acts
biholomorphically on H, by

A3) 6-1=(At1+B)(Ct+D)"'.
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Let v be a character of I' and k be a positive integer, then a holomorphic
function f defined on H,, satisfying

4 flo-1)=v(0)det(ct+d)*f(tr) Voel

is called for g> 1, a modular form of weight k, relative to I' and v. In the case
g=1 we add the usual condition at the cusps. The space of such functions is
finite dimensional and it will be denoted by [T, k, v], we shall write [I', k] if
vis trivial. We set e(t)=exp(2n./ — 11), let Q be a 2k by 2k symmetric, positive-
definite, even (i.e. diag Q =0mod 2) integral matrix, then the theta series

) Jo()= Y e(1/2tr(Q['G1v))

GeM, (Z)

belongs to [I} (q), k, x4]. Here g is the level of 0, ie. g0~ ! is even and
integral.
We shall denote by BJ(q, x¢) the space spanned by all theta series with
2*=1xg- In [3] Freitag has shown that for g> 2k [1;.0(q), k, x*1=B(q, x9).
Let m be a column vector of 0?9, and denote by m” and m” its first g,
respectively last g entries, then the series.

(6) In(D)= 3 e(1/2'(p+m')t(p+m’)+(p+m')m")
pEZ?

defines a Thetanullwert of characteristic m.
For any neZ?? we have

() Sm+n(t)=e('m'n") 9,,(z) .

Therefore we shall consider m in (Q/Z)?¢ and normalize the entries putting
them equal to a/s, 0<a<(s—1) providing that sm=0mod 1.

Le us denote by X; the subset of (Q/Z)% consisting of the above elements;
then when s is even we know that

(8) 3 9,€[I,(s% 252),1, ].

Forany I, 4(q) containing I,(s?, 2s2) we shall denote by [I3,0(q), Zs, k, x9] the
subspace of [I} (q), k, ¥?] spanned by homogeneous polynomials of degree
2k in the Thetanullwerte. .

The main result of this paper is the inclusion of [1;.0(q), Zs, k, x¢] in
B{(g, x°). We shall prove the equality when g is a power of 2 and s is large
enough,

These results are consequence of the surjectivity of the @ operator re-
stricted to [I}, o(q), Z,, k, x7].

The results of this paper are a generalization of those of [11], since the
method will be the same, we often will refer to them.

Moreover we shall give an application to coding theory, characterizing in
terms of thetanullwerte the theta series coming from codes of type A.
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1

In this section we recall some basic facts from [11], we refer to this paper for
the notations.

Let M=(m; . .. m,) be a sequence of elements of X, i.e. MeM,, (1/s Z/Z),
then for every ¢ in I, we get

D —Cl|Mm diag,(C'D)
M= 1/2 :
® d [—B 4 ][M”]+ / [diag,(A'B) :
this defines an action of I, on M,, ,(1/s Z/Z) that induces the action of
Sp(g, Z/sZ). We shall write 6o M for the unique element with normalized
element congruent to ¢+ M mod 1.
Let s=p(’,°. - p,"=so ... 5, be the factorization of s in primes with py=2

and assume /5> 2.
We have that

(10) Sp(g, Z/sZ)=Sp(g, Z/soZ) x . . . Sp(g, Z/sZ) ;

moreover a similar decomposition holds for the module M, ,(1/sZ/Z). This
induces a decomposition of the action described in (9) in such a way that on
the first factor it remains non homogeneous and it become homogeneous
on the others. We remark that the condition ;=2 is not a real restriction
since M, ,((1/s) Z/Z), s even, can be considered as a submodule of
M, ((1/2s) Z/Z). Clearly on this submodule the kernel of the surjective
homomorphism from Sp(g, Z/2s Z) to Sp(g, Z/sZ) acts trivially. For any
M in M,, ,(1/sZ/Z) we shall denote by G(M) the subgroup of X, spanned by
the columns of M. Moreover we say that

M
(11) M= .
M
0
is the extension of M of degree §; we put
(12) |M|=max|G(s°M)|

0eSp(g, Z/sZ)

with § > max{g, r}.
We know that | M| is equal to IGL(M)I or 2|G(M)| cf. [8].

From now on we shall consider M as the extension of M of degree (g+ 1).
Let

N!
0
N

v

N:
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bein M; 4+ 1),,(1/sZ/Z) and conjugate to M under the action of I, 1 .0(q), then
asin [11], where it was considered the case of the full modular group I, 1, we
have the following

Proposition 1 Let M and N as above with q dividing s, then M and N are
conjugate under the action of I, o(q) if and only if [M|=|N|.

Proof. The first part of it is equal to that of Proposition 1 in [8], then we omit
it and assume M and N conjugate. We proceed as in Proposition 2 of [8].
First we use the decomposition (10) and consider the action on each factor.
We shall discuss only the first case, that is the more difficult, the other cases
are similar.

Let N and M on M, 4+ 1).,(1/50Z/Z), then there exist ¢ in Ty 1,0(9)/T(s0)
such that
Dy, Dy, —Cyy —Cy, [N’
—_ D D —-C —-C 0
(13) O'°NE = 21 22 21 22 )
—Bll -‘B12 All A12 N
_BZI —BZZ A21 A22 0

diag,(Cy1'Dy1+Cy5'Dy,) |
diag,(C51'D31 +C3,D,,)
diag,(A411'Byy+A1,'By»)
diag,(A31'By; + A3, B;5) n

If D,, belongs to (Z/syZ)*, then we set

0 D 0 0
(14) 2= o
0 —'Cy4 1, 0
_DZ—ZI C21 _C22 —D;ZIDZI DZ_Z1
Ay 0 By, 0
* 1 * *
(15) o1=0-0,=| _. _
11 0 11 *
0 0 0 1

(16) 5;[{“ lf“]

belongs to I} o(q)/I,(so) and G,° N =M.
A similar argument holds if 4,, belongs to (Z/s, Z)*.
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Assume that B,, or C,, belongs to (Z/soZ)*, then if g is odd we multiply
¢ by the matrix.

1, 0 0 0
(—gq+1) 0 —g¢q

17 E -
(17) 0.1(9) 5 { 0

°

0 q 0 g+1

and obtain one of the previous cases.
When g is even, B,, belongs to (Z/soZ)*, then as in [11] we consider

a3 with C=0,
A=[ il 0j|=,D_1 B=|: 0.'B,; ]
Ay 1 By, A22B3;

then o3 ° N=N and the element in the bottom of ¢- a3 is invertible.
When A,,=B,,=C,,=D,,=0mod 2 we can apply the same 3.
We recall that for M in M,, ,(1/sZ/Z), r even, the congruences

(18) sM'M=0mod1 and sdiag(M'M)=0mod?2

are preserved under the action of Sp(g, Z/sZ), cf. [5].

2

Let Q be the matrix of an integral positive definite, even quadratic form of
level g and r, even, variables.

Then, as stated in the introduction 94(t) belongs to B{ (g, x?) with x?=xg
and 2k=r. Here xj is trivial if g=1 and x0(0)=7yo(det D) if g> 1, where yq is
a real Dirichlet character modulo ¢ satisfying xo(—1)=(— DY xe(p)=

k
<%) if p is an odd prime with p not dividing g and x(2)=
25" er(z/’zzr e(1/4Q[x]) if g is odd cf. [1]. Assuming rg=0mod 8 and det 0
equal to a square number we have that the Dirichlet character depends only
from ¢ and we shall write ¢ for it, then we have (o) = y,(det D). x, becomes
always trivial except that when r=2mod4; in this case we have

=1
(19) Xo(—1)=—1 and xq(p)=<7>.

For any M in M,, ,(1/s Z/Z) we put
P(M) ()= 9, (7). . . In, (1) -

Let us assume Q = A'HH with H in M,(1/sZ) and 4 a natural number then we
learned from [9, p.218] the following formula relating theta series and
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Thetanullwerte
(20) p(r)=d ™1 ¥ P(M)(i7),
M’eK,,M"eK,
where K, =M, (Z)'H/M, (Z))H M, ,(Z), K, =M, (Z)H '/M, (Z)H '~
M, ,(Z) and d=|K,)|.

We remark that the coefficients of M’ and M” are not normalized,
however this can be easily done using (7). In the next section we shall prove
a converse theorem for the formula (20).

We conclude this section with the following

Lemma 1 Let g be a power of 2 and det Q a square then 94(t) can always be
expressed as linear combination of monomials in the Thetanullwerte.

Proof. Clearly it is enough to prove that there exists some
H in M,(1/2"Z) such that Q='HH .

This fact is an immediate consequence of the statements on p. 243 and p. 247
of [6]. We conclude this section, remarking, in general that if Q ="HH with
H in M,((1/s)Z) then H™'=Q~''H belongs to M., ((1/sq)Z).

3

We recall some basic fact about the transformation formula of Thetanull-
werte, for details we refer to [6] or [11].
We have for any M in M,, (Z)).

(21) P(0°M)(0-T)=k(a)’g<i wmi(6)>€(—tr((0'°M)'(0°M—0°M)”))
i=1

xdet(ct+d)*P(M)(z) .

Here k(o) is a character of I(1, 2), is trivial on I,(4) and k(c)* = (— 1)"B'C) for
every ¢ in I cf. [6] and [7].

Moreover we have
(22) @m(o)=(—1/2)("bd[m’] —2'm""bem” +'ac[m"] —'diag(a'b)(dm’ —cm")) .

We know that P(M)(z) belongs to [I,(s), k] if and only the matrix M satisfies
(18) cf. [5]; moreover the elements of [I550(q), Zs, k, x¢] are symmetrizations of
the previous elements, in the following sense

(23) . M@= Y xidetD)y(s, M)P(c™ "o M)(x)
ael} o(q)| Ty(s)
where

24 x(o, M)=k(0')’§<i %,(6))2(“(’(6”1°M)'(N—0”’°M)”))-
i=1

Here we have set n;=¢~!-m; and N=¢~'. M.
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As an immediate consequence of the transformation formula we have
(25) 10102, M)=y(01, M)y(02, 01 ' ° M).

For any M in M,, ,(Z,) we shall denote by S(M) the subgroup of I}; o(¢) that
stabilizes M. Clearly I')(s) = S(M).

Moreover assuming M satisfying (18) we have that y(o, M)=1 for every
o in I(s), therefore from now on we often shall consider S(M) as subgroup of
,.0(@)/Ty(s).

Lemma 2 Let M in M,, ,(Z), rg=0mod 8 and fy(7) doesn’t vanish identically,
then we have

(a) M satisfies (18)
(b) x(0, M)=yi(det D) for every o in S(M)
(©) x(o, M)=y2""(det D) for every g in S(M).

Proof. It is similar to that of Lemma 7 in [8]. (a) and (b) are trivial. We write
(26) 1o, M)=k(0) Y(a, M) .

As cited in the reference it can be proved that Y (o, M)=1.
We have to prove that k(a)" =" '(det D).
Using the decomposition (10) we have that if =15+ yymodse. Then

(27 k(o) =x¢*'(detD)=1 since o belongs to I}+1(4) .

Thus we assume o in Sp(g + 1, Z/soZ). In this case we still get (27) except that
when r=2mod 4. We remark that we are in the same situation of (13), once we
set M = N, then we have to compute k(c)? for all "6” appearing in Proposition
1. To be more precise we need some p in I 4 o(q) with p=a mod s, and then
compute k(p)?.

We know that there exists p; =6, mods, of the form (15) without con-
gruences then it is a well known fact that in this case k(p,)>=k(p1)*=
1¥(det D)= y,(det D), the second equality is a consequence of (b).

From (14) we obtain that p, belongs to I+ (1, 2) and B=0mod 2, then
confronting the transformation formula for $,.4,(1) and 95(tr) we obtain
k(o)> =y **(det D). Moreover E, 1(q) belongs to I+ (4) and p; can be taken
with C=0 and in this case the result follows from [6, p. 181].

For any holomorphic function f. We define the Siegel operator @ as

v 0
2 V= 1li A "
(28) df(t) ;.L“Boof<() ii)’ t"in H,,
then the @ operator is a linear map from [l Lo@ k xd*'] to
[1;.0(q), k, x¢]. In particular let M 0 be the matrix obtained from M deleting
the last row of M’ and M"”, then we have

P(M°)(z') if the g-th row is (0,...,0)
0 otherwise,

(29) ¢P(M)(t’)={
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and
(30) (PIo)(r")=9p(1') .

Theorem 1 Let M in M. (Z) such that fy(7) is not an identically zero element
of [Iy.0, Zs, k, x§1, then there exists g in [Lg+1.009), Zs, ky 271 such that
D(9)(t)=/u(1), i.e. the ® operator restricted to these spaces is surjective.

The proof is by induction on |M|=2a.

When a=1, M=(m,m,. .., m), with 2m integral.

In general we know that there are two I, orbits. 5 and X; (even and odd
characteristics accordingly as e2'm'm")=+1or —1).

It is a well known fact that 9,,(1)=0 if and only if m is an odd character-
1stic.

Let us consider the orbits for the I, 0(q) action on Z5 .

We have one orbit if g is odd, two orbits Gy and G, if q is even

(31) Go={m|m' =0}, G;={m|m’ +0} .
Thus when q is odd we have
(32) fu= Y 9% r=8t.

meven

If r=0mod4 it is easy to prove that we have

(33) fMo= Z ‘9:‘, r=4t and fM1= Z 33’, r:8t

meG, meG,

If r=2mod4, then we

=Y 92, r=2t.

meG,

It is immediate that for all then we have

(34) (Pfi) () =2fu(7) .
Now the proof follows as in Theorem 2 of [8].
From the surjectivity of the @ operator we deduce the following

Corollary. (a) [I;,0(q), Zs, k, 21 < B{(x2) for all g and gk=0mod 4.

() [I;,0(q), Zs, k, x£] is spanned by the Theta series 9¢(t), such that QO='HH,
with H and H™' in M,(1/sZ).

(c) When q is a power of 2, and s is large enough then in (a) the equality holds.

Proof. 1t is an immediate consequence of Freitag’s result [2], of the above
theorem and of Lemma 1.

4

In this section we shall consider some relation with coding theory. We recall
that a binary code is a subspace C of IF; of dimension k. Let d denote
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the minimal weight

(35) d= min {'o-a}.
aeC\{0}

A linear code of length n, dimension k and minimal distance d is said to be
a [n, k,d] code.
A linear code C may be specified by a generator matrix.

It is an n x k matrix M such that the row of M are a basis of C. For more
details we refer to [2] and [10].

We say that two codes are equivalent if there is a permutation S, that maps
one code in the other.

It is always possible to find in each class a code having generator matrix of
the form

(36) M=[2‘} AeM, i «(IF2) .

The dual code C* is the orthogonal subspace to C.
A code is self dual if C=C*, this implies n even and dim C =g. A code

double even if the weight of each codeword is divisible by 4. In particular if
C is doubly even then C = C*. Self dual doubly even codes exists if and only if
8 divides n.

We shall associate lattices to codes, we consider lattices coming from
construction 4 of [2].

Let i : Z"—>IF; the canonical morphism, then we put

(37) A(C) “HC)=R".

1
=ﬁ¢

If C has generator matrix (36), then

1 1w o
o) 5T Sl o]

is a generator matrix for A(C).
Given a lattice A we define the dual lattice

A*={xeR": 'x-yeZ for all yeA} .

We say that A is integral if A <= A*.
We recall from [2] the following well known

Lemma. Let C be a linear code of dimension k, then
(i) det A(C)=2""?k
(i) A(C*)=A(C)*

(ili) A(C) is integral if and only if C= C*
(iv) A(C) is even if and only if C is doubly even.
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For each code C of type A let Q=1/2'T T be the positive definite matrix
associate to C.

Then the theta series 94 (r) belongs to [1}(2, 4), g, x] cf. [4]. From now on

we shall assume 7 even, to simplifying our argument. Since 7T is the form (38)
we have that 277! is integral and the same is true for 2071,

If C is doubly even then 3o (7) belongs to [1;'0(4), g, xf{] and it belongs to
[1;,0(2), g] if and only if diag(4'4A+1,_,)=0mod 2. In particular if C is self
dual 9, belongs to [Fg, g]

We put 9 g (T)=9[g](2‘r), then applying the formula (20) for (39)

4
p= (g )2(%) we obtain that 9,(r) belongs to c[s [g](‘c)]. It is a well

known fact that the space spanned by 9 g -9 [g], o, pe(1/2Z)%/Z7 is equal

to that spanned by 92, me(1/2Z)%9/Z%.

Let [I;0(q), 2 - x4] the subspace of [} (q), Zs, k, x4] spanned by
homogeneous polynomials of degree k in the 92, m half integral. It is stable
under ¢ operator.

Clearly when C is doubly even 9, belongs to this subspaces. In [10] it has

been proved that [Q, z2, g] is generated by theta series coming by a self dual
code. More generally as a consequence of the above discussion and of

Theorem 1 we have.

n

Corollary. (a) I:Fg,o(4), %3, >

r xﬁjl is generated by theta series associated to

doubly even codes.

2
even codes A in (36) satisfying diag(A'A)=1,_, mod 2.

(b) [1},0(2), 3 - > ], n=0mod 4, spanned by theta series associated to doubly

(¢) [Fg, 3. g] n=0mod 8 is spanned by theta series associated to doubl 'y even,

self dual codes.

Proof. Let fbe a modular form in one of these spaces then by Theorem 1 we
can assume g =n, moreover we have f(t)=)  a, 8o(7), now considering the
Fourier’s coefficient of f(z) as in [11] we have that if ag is different from 0, then
Q is necessarily of the form (39).
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