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1 Introduction

This paper is devoted to the study of the asymptotic behavior of smooth solutions
to initial boundary value problems in the dynamics of a one-dimensional, viscous,
heat-conducting gas. The equations describing the motion of a one-dimensional
gas (in Lagrangean coordinates) are those of balance of mass, balance of mo-
mentum and balance of energy

u,—v,=0,
v,—0,=0,
UZ
<e+3> —(ov)x+4q,=0, (1.1)
t

while the second law of thermodynamics is expressed by the Clausius—-Duhem
inequality

n,+<g) >0 (12)

Here u, v, 0, e, , 0 and q denote the specific volume, the velocity, the stress, the
specific internal energy, the specific entropy, the temperature and the heat flux,
respectively. Note that u, 6 and e may only take positive values.

We shall consider the system (1.1) in the region {0<x<1,t=>0} under the
initial conditions

u(x, 0)=ug(x), v(x,0)=vo(x), 0(x,0)=00(x) xe[0,1]. (1.3)
As boundary conditions we consider
9(0,1)=4(1,¢)=0, =20 (14)

* Supported by the SFB 256 of the Deutsche Forschungsgemeinschaft at the University of Bonn



318 S. Jiang

and

v(0,t)=v(1,£)=0, t=0, (1.5.2)
or

a(0,t)=0(1,t)=0, t=0, (1.5.b)
or

a(0,t)=v(0, t), a(l,t)=—v(1,t), t=0. (1.5.¢c)

The condition (1.4) implies that the ends are thermally insulated. (1.5.a) means that
the gas is confined to a fixed tube with impermeable ends, and ( 1.5.b) describes that
the gas is put in a vacuum, while (1.5.c), boundary damping, implies that the ends
are connected to some sort of dash pot.

When the gas is polytropic ideal, i.e.

0 Ux x
e=cl, o= Ru+uu, q Ku (1.6)
with suitable positive constants c, R, u and k, the existence and the asymptotic
behavior of smooth solutions to (1.1) and (1.6) have been investigated by some
authors, e.g. see [7, 10~17] on initial boundary value problems and the Cauchy
problem.

Within moderate ranges of 6 and u, a real gas is well approximated by an ideal
gas. At high temperatures and densities, however, the specific heat, the conducticity
and the viscosity vary with the temperature and the density, the constitutive Egs.
(1.6) become inadequate. Here we consider a more realistic model than (1.6) (or
Newtonian fluid)

(0,0 = —p(,0) + 0, (1)
satisfying the Fourier law of the heat flux
q(u,0,0,)= —"(‘;’ 9, . (1.8)

where the internal energy e and the pressure p are interrelated by
eu(u7 9):' _P(u, 0)+0p9(u9 0) (19)

to comply with (1.2). We refer to [1, 20] for an exposition of such models.

We assume that e, p, ¢ and « are twice continuously differentiable on 0 < u < oo
and 0=<6 <. We impose upon e(u, 0), p(u, 0) and x(u, 0) the following growth
conditions: There are exponents re [0,1], =1+ and positive constants v, D1,
p2 and ko, and for any u>0 there are positive constants N(u) and k1 (u) such that
foru=zu and 620,

Ose(w,0), v(1+67)<ep(u, O)<N(u)(1+0"), (1.10)

£+(1—£)0+6'*r {+(1-£)0+6'r
_Pa(Z+( u2) )gp,,(u,ﬂ)_s_—pl( ( uz) )

, £=0,0r¢=1,
(1.11)
0=p(u,0), |po(u,0)|SN(u)(1+6), (1.12)

Ko(1+0%) <rc(u, 0) <ty (u) (1467), |k, (u, 0)] + | Kuu(u, )| Ski(u)(1 +0q)1§)
(1.
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The above assumptions are motivated by the facts in [ 1, 20] where it is pointed out
that e grows as 6* ** with r~0.5 and « increases like 6¢ with 4.5<¢<5.5. One can
easily find power laws of similar types in some books on physical chemistry, e.g. in
[19]. Note that for an ideal gas, r is zero.

For technical reasons we require that the viscosity u(u, 0) is independent of 6,
uniformly positive and bounded

O<po=sp(u)=p (1.14.b,c)
or, in the case of the boundary condition (1.5.a) even constant
wu)=pe>0. (1.14.a)

where and in what follows the label a (or b, or c) indicates that a certain condition
applies to the problem (1.1), (1.3), (1.4), (1.5.a) (or (1.1), (1.3), (1.4), (1.5.b), or (1.1),
(1.3), (1.4), (1.5.c)) only. The assumptions (1.14) are not physically motivated
because in general the viscosity of a gas varies with the temperature. Unfortunately,
our techniques cannot handle the situation where the viscosity depends on the
temperature. It should be noted that (1.14.b) can be replaced by the following:
There is a constant u,> 0, and for any u >0 there is a constant u, (u)> 0 such that
o= pu(u) < py(u) for u=u. We also make the additional assumption that for >0

p(u,0) -0 asu—oo. (1.15)

Under the assumptions (1.7)—(1.14) Kawohl [9] and the author [5] established
the existence of global solutions to the initial boundary value problems (1.1), (1.3),
(1.4) and (1.5). It is proved in [5, 9] that if

Ug, Uy, Vo, Vo, V5, B9, Oy, 06 C*[0, 1] for some ae(0, 1),
up(x), 8o(x)>0o0n [0, 1], (1.16)

then there exists a unique solution {u(x, t), v(x, t), 6(x, t)} with positive u and 6 to
(1.1), (1.3)—(1.4) and (1.5) on [0, 1] x [0, c0) such that for every 7>0

Uy Uy, Upy Uxyy U, Uxy Upy Uxxs 0, exa 0!’ Gxxeca,alz(QT)’ Uses Uy ereLz (QT) § (117)

Here C*[0, 1] stands for the Banach space of functions on [0, 1] which are
uniformly Holder continuous with exponent « and C**?(Q7) for the Banach space
of functions on Qr:=[0, 1] x [0, 7] which are uniformly Hoélder continuous with
exponent « in x and «/2 in t. The large-time behavior of solutions, however, is not
discussed in [5, 9].

The aim of this paper is to study the asymptotic behavior of solutions to (1.1),
(1.3), (1.4) and (1.5).

We also mention the works by Kanel [6], Kawashima [8], Okada and
Kawashima [18], Zheng and Shen [21] who investigated the existence and large-
time behavior of smooth solutions to the Cauchy problem for sufficiently small
initial data. For a class of solidlike materials there are independent investigations
by Dafermos [2], Dafermos and Hsiao [3], and the author [4].

From a physical point of view, it is possible that the gas is rarified under the
conditions (1.5.b) and (1.5.c), so u or | (1) u(x, t) dx (the volume of the region occupied
by the gas) may grow to infinity, and a confined gas (1.5.a) will probably not
develop vacuous regions. We shall find this conjecture valid for smooth solutions of
(1.1) and (1.3)—(1.5). Our main theorems in this paper are following.
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Theorem 1.1 Consider the initial boundary problem (1.1), (1.3), (1.4) and (1.5.a) under
(L.7)~(1.15). Assume that u, v, and 8o satisfy (1.16). Also assume that uo(x) satisfies
the normalization condition éuo(x)dx= L Let {u(x,t), v(x,t), 0(x, t)} be a solu-
tion in the function class indicated in (1.17). Then {u, v, 0} decays to the constant state
{1,0, 6*} in H'(0,1) as t — 00, where the constant 0* >0 is determined by e(1, 6*)
= (1) Le(uo, vo)+v3/2](x)dx. M oreover, there are constants a, T, C >0, independent
of t, such that

Hu(®) =L+ 0(e) [+ 10() = 0* | < Ce™™  for 12T, . (1.18)

Theorem 1.2 Consider the problems (1.1), (1.3), (1.4) and (1.5.b) or (1.5.c) under
(L.7)~(1.15). Let (1.16) be satisfied for Uo, Vo and O, and let {u(x, t), v(x, t), O(x, t)} be
a solution in the function class indicated in (1.17). Then for (1.5.b) we have

1
1+fu(x, t)dx=Cyt fort=0, (1.19)
0

and for (1.5.c) we have [} u(x, t)dx S Cy(1+./t) for t=0 and

i Jou(x, t)dx:

.y P © , (1.20)

where Cy, C,>0 are constants independent of t.
We will prove Theorem 1.1 and 1.2 in Sect. 2 and Sect. 3, respectively.

Remark 1.1 The techniques in this paper work for the boundary conditions
v(0, t)=v(1, t)=0and 6(0, t)=0(1,t)=1,and a convergence of solutions like (1.18)
can be obtained.

Remark 1.2 The decay constant o in Theorem 1.1 may depend on the initial data, v,
P1; P2, Ko, g and po. From Theorem 1.2 we see that the boundary damping (1.5.c)
slows down the growth of [} (‘, u(x, t)dx (the volume occupied by the gas) to infinity.

Now we explain the notations used in this paper. || * || g: denotes the norm in the
usual Sobolev space H(0, 1) and [+ is the norm in L2 (0, 1). The same letter
C (sometimes used as C(a, b, - - *) to emphasize that C depends on q, b, - - ) will
denote various positive constants which are in particular independent of ¢. In
general and without danger of confusion we will use the same symbol to denote the
state functions as well as their value along a thermodynamic process, e.g. p(u,0),
and p(u(x, t), (x, t)) and p(x, t). )

2 Proof of Theorem 1.1

In this section we let the assumptions in Theorem 1.1 be satisfied. First we adapt
and modify an idea of Kazhikhov [11] (also cf. the survey article [17]) for the
polytropic ideal gas to give a representation of solutions of (1.1), (1.3)«(1.4) and
(L.5.a).

Let ¢(x, t):=[(, a(x, s)ds+ [ vo(y)dy. Then by (1.7) and (1.14.a), ¢,=v and
¢:=0=—p(u, 0)+ pov,/u. Thus ¢ satisfies

=26 —p(,6). @1
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Multiplying (2.1) by u and using (1.1),, we see that
(u¢)t_(u¢)x=.u0¢xx_up(u9 0)_02 . (22)

Keeping in mind that ¢,=v vanishes on the boundary, we integrate (2.2) over
[0,1] % [0, ¢] to obtain

1

}(ud))(x, t)dx={(ud)(x, O)dx—jE j{ (v2 +up(u, 0))(x, s)dxds=:®(t). (2.3)
) 00

0

It follows from integration of (1.1); over [0, 1] x [0, t] and use of (1.5.a) that

1 1

fu(x, t)dx=[ uo(x)dx=1. (2.4)
0 o

Note that u>0. If we apply the mean value theorem to (2.3) and use (2.4) we
conclude that for each t >0 there is an x,(t)€[0, 1] such that

P(xo(t), )= d(x, t)u(x, t)dx=d(t). (2.5

Therefore by the definition of ¢(x, t) and (2.3), we have

t Xo (1) Xo (1)

[o(xo(t), s)ds=(xo(t), )= | vo(y)dy=@(t)— [ vo(y)dy

0 0 0

Xo(1)

1 x
(v* +up(u, 0))dx ds+ [ uo(x) [ vo(y)dydx— [ vo(y)dy
0 0 0
(2.6)

Oy
(=R W

for t=0. Using (2.6), we now prove

Lemma 2.1 For the problem (1.1), (1.3)~(1.4) and (1.5.a) we have the following
representation

1+—
Moo D(x, s)

2% t){ 27)

where
Xo (t)

1 x x
D(x,t):=uo(X)eXP{i<fuo(X)Ivo(y)dydx— [ vo(y)dy+ | (v—vo)dy>},
0 0

0 Xo(8)
(2.8)
1 t 1
B(t):=exp<——f | (v*+up(u, 0))(y,t)dydr> (29)
Koo o
and x4(t)e[0, 1] is the same as in (2.5).
Proof. In view of (1.7) and (1.14.a), we rewrite (1.1), as follows

v+ p(u, 0),=(uologu),, (>v,=0,). (2.10)
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If we integrate (2.10) over [0, ¢ ], then integrate over [ x,(t), x] with respect to x and
use (2.6), we obtain

t t1
Hologu(x, t) = [ p(x, ) ds=po loguo(x) — [ | (v*+up(u, 0)) (, s) dx ds
0 00

Xo(2)

1 x x
+[ uo(x)[ vo(y)dydx— [ vody+ [ (v—vy)dy,
0 0

0 Xo (1)

which, upon taking the exponential, turns into

14 D(x,
u(x, t)exp(—a.(f)p(x,s)ds>= l(;)(ct)t)

(2.11)

It follows from (2.11) and (2.8) that

p(x,t) 1¢ _u(x, 1) p(x, t) B(t)
Ho exp(ﬁj(;p(x, s)ds)— HoD(x,t)

Integrating the above identity over (0, t), one has

1. _ . L cu(x, s)p(x, 5)B(s)
exp(uo.gp(x, s)ds)—1+#0_£ B 5 ds . (2.12)

Inserting (2.12) into (2.11), we obtain 27. O

Next we exploit some relations associated with the second law of thermo-
dynamics to derive estimates for solutions.

Lemma 2.2 Let o and B be two ( positive) roots of the equation
O0—logf—1=Ey/v, (2.13)

where Eo> 0 is defined in (2.20) below. Then Jfor each t 20 there is an a(t)e[0, 1] such
that

O<a<b(a(t),t)<f . (2.14)

Furthermore, the following estimates hold.
1
0<a<[O(x,t)dx<p Vt=0, (2.15)
0

vz (1469)62
_+‘

1 t1
1+r 2
{(0-}—0 +v )(x,t)dx+£0<u0 e

)dxds_S_C Vi=20. (2.16)

Proof. Let y(u, 0)=e(u, 6)—6y(u, 6) denote the Helmholtz free energy function.
Then

%(“, 0)= _r’(ua 0)1 l/’u(u9 0)=a‘(u, 05 O)E _p(u9 0)9 9‘/’90(“, 0)= _eﬂ(ua 0) J
.17

We denote
E(u, 0):=(u, 0)—y(1, 1)— (1, D) (u—1)—(0—1)¢e(u, 0) . (2.18)
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Using (2.17), the Egs. (1.1) (also cf. (2.60)), (1.7) — (1.9) and (1.14.a), we deduce after
a straightforward calculation that

<E(u 0)+ >+“°”x+"(“’_")93=(ov)x+p(1,1)ux+<9‘_1 K(“’uo)(’*) . (19)

0? u6? 0
Integrating (2.19) over Q,:=[0, 1] x [0, t], remembering that v and 6, vanish at
x=0and x=1 and taking (1.13) into account, we arrive at

1

(B 00+ Jox e ] (Aot SO E N g
° 6 uf?

<j< (1o, 00) + >(x)dx=: E, for t=0. (2.20)
It follows from Taylor’s theorem, (2.17) and (1.10)—(1.11) that
1

E(u, 0)—y(u, 0)+y(u, 1)+(0—1)o(u, 0)=(u—1)* [ (1-7)
0

XYu(1+1(u—1),1)dr =0, (2.21)

(1=t [1+(0+1(1—0)y
b 0) =, 1)=(0= D 0)2v(1 0% | E = a2
_ v(0—logfh—1), r=0
_V(G_IOgg_1)+{0”’/(1+r)+[1/(1+r)—9’]/r, ro =0
Adding (2.22) to (2.21), one has
E(u,0)=v(0—logf—1), or E(u, 9)_ 0+ (011:) G, (2.23)

where we have used
ab<a* /A +b*/Ay Va,b20,A1,4,>1,1/A1+1/4,=1, (2.24)

which will be frequently used throughout the paper. From (2.20) and (2.23), (2.16)

follows immediately. To show (2.14)—(2.15) we substitute (2.23) into (2.20) to see

that
1

v[(0(x,t)—logl(x,t)—1)dx<E,, t=0. (2.25)

0
So, using the mean value theorem, for each t >0 there is an a(t)e[0, 1] such that
0(a(t), t)—logh(a(t), t)—1 < Ey/v, from which (2.14) follows. If we use (2.25) and
apply Jensen’s inequality to the convex function y—logy—1, we obtain:

foﬂ(x t)dx—log [, 0(x,t)dx—1<Ey/v, which yields (2.15). This proves the
lemma. O

~ Recalling the definition (2.8) of D(x,t), as a result of (2.16) and Schwarz’s
Inequality we have

0<C '<D(x,t)SC Vxe[0,1],t20. (2.26)



324 S. Jiang

By virtue of Schwarz’s inequality, (2.4) and (2.24), recalling that g>1+r, we find

1
IB(’+ 1)/2 (x’ t)_g(r+ 1”2(a(t), t)'§ Cj‘ onl o(r— 1)/2 dx
0

1n92pgr—-1 1/2
é%!@) screw, )
0
where
1 1 q\ 02
V(t) =] (%)(x, t)dx . (2.28)
o uf

(2.27) together with (2.14) yields
a’“/2—CV(t)§9’“(x, 1)<20"" 1 (a(r), H+CV()Z28" 1 +CV (1) (2.29)

for xe[0, 1] and t=>0. Now integration of (1.11) with respect to u over (u, 00) and
use of (1.15) imply

Pl +(1=0)0+ 0" 1<up(u, 0)<p,[£+(1—£)0+6*1],

£=0,0or /=1, (2.30)
which combined with (2.15) implies

1 1

[ up(u, 0)dx=p, [ (£+(1-2¢)0(x, t))dx=Cy>0 . (2.31)
0 0

Here C, is a constant independent of ¢. Recalling the definitions (2.9) and (2.28), if
we make use of (2.7), (2.26), (2.30), and (2.24), (2.31), (2.29) and (2.16), we deduce

t t1
u(x, t) < C [ up(x, s)exp(—ij'_f(vz+up)dydr)ds
0 Ho'so
t
SCI(1+0'"(x,5)) e C0~9 gg
0

t t
§Cj' (14+V(s)e Ct-945< cq +j V(s)ds)<C (2.32)
0 0
for all xe[0, 1] and t20. In the same manner we have

t t1
u(x,t)=C [ up(x, s)exp(—ﬂij' | (v2+up)dydr>ds
0 0s0

v

t1
c! 0”’(x,s)eXp(—CH(v2+1+0'“+0)dydr)ds
00

C—l

Ot n Ot

I

(%a” L CV(s))e‘C’"_"ds

t/2 t
2C ' (1—e ) —C | V(s)dse™ > —C [ V(s)ds=(2C)"1>0 (2.33)
0

t/2
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for any t=2T, and some T,>0. Here C, and C, in (2.32)-(2.33) are positive
constants. It follows from (2 7), (2.26), (2.30) and (2.16) that

Dx, 1)
LCDES

for xe[0, 1] and t=0. Putting (2.32)—(2.34) together, we have proved
Lemma 2.3 There are positive constants u and i, independent of t, such that
usu(x,t)su for any t=0 and xe[0,1] . (2.35)

In the sequel we derive Sobolev-norm estimates of derivatives for u, v, §. We first
observe that by (2.16) and (2.35)

—Ct

t1
—e <—c§j(uz+1+0+91+')a!yalr>;eT (2.34)
oo

1

t t t1 2
jmaxv2(°,s)ds§j{f|vx|dx} gH—" ds<C (2.36)
ol0.1] olo 00 0

Using (1.7) and (1.14.a), we write (1.1), as follows

v+ p(u, 0)x=[%vx} <=[%u] > . (2.37)

Multiply (2.37) by v and integrate over [0,1] x [0,¢]. Integrating by parts with
respect to x, and utilising Lemma 2.3, (1.11)—(1.12), (2.16), (2.24) (recalling g =1 +7),
and (2.36), we see that

P t luovi t1
lo(e)]] +”deds§C+Hlp(u,B)xvldxds
00 00

t1
SC+CI{[£+(1—=2)0+0"""]|u,l
00
+(14+07)6,} |v|dxds

t1
SCe)+ef[[£+(1—=£)0+0' " u2dxds
00

t 1
+C(e)_[ max uzf(l +0'*")dxds

1+9')92

t1
+CH dxds
00

t1

gC(e)+eH[{’+(1—f)9+0“']u§dxds. (2.38)

To bound u, we multiply (2.37) by u,/u and integrate. We apply the assumption
(1.11), (2.35), (2.24) and (2.16) to obtain

1y2 ITe+(1—- /)9+0”']ux

uoj dx<(,+Hv, Xdxds— p” - dx ds
t1
+CI§(1+9')|0x||ux|dxds
00
t1 t1 1 01+r
<C+[ v dxds H[“( O0+67 1wy as (2.39)
oo U 00 u?
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Keeping in mind that (u,/u),=(u,/u),, we employ integration by parts, and use
(2.35) and (2.16) to arrive at

t1
[ ] o
00

1
u u
“dxds=[v—=
0

t t1 U,
" . odx—j(;j(;vli;]xdxds

1
sC(e)+efuZ(x, t)dx+
(o]

1
Jvidxds.
0

ot~

IR | =

Inserting the above inequality into (2.39) and letting ¢ appropriately small, we getin
view of (2.35) that

1 t1 ¢ 1
fu2(x, dx+[ [[£+(1—£)0+6 ] u2 dxds<C+C|[vidxds. (2.40)
0 00 00

Letting ¢ appropriately small, then (2.38) +(2.40) x \/E implies

llo(e)]1% + ||u,(t)||2+j{} {024+[£+(1—£)0+0'*"Ju2} (x, s)dxds< C Ve=>0.
00
(2.41)

_ We proceed to get estimates concerning derivatives of solutions. Let
0(t):=06(a(t), t), where a(t)e[0, 1] for t 20 is defined in (2.14), then « <6(t)<Bin
view of (2.14). It thus follows from (2.28) and Schwarz’s inequality that

|01 +(g+r)/2 (x, t)_o_l +(q+r)/2(t)'2§<j‘ 0(q+r)/2 Iexldx>2
0
1 1
S[077202(x, t)dx [ 02 (x, t)dx
0 0

1
=< V(t)_[ 07*2(x, t)dx (2.42)
0
for 0<x<1 and t=0. Similarly, by (2.16),
|9(r+ 1)/2 (X, t)_a_(r+ 1)/2(t)|2 , |0r+ 1 (X, t)_é‘r+ 1 (t)lz ,
10(x,t)—0(t)*<CV(t) Vxe[0,1],t=0. (2.43)
Using (1.9), (2.30), Lemma 2.3, (1.12)~(1.13), and (2.24), (2.16), (2.41)-(2.43), we get

|

K(u, 0)
u

O =

t1
10| leu(u, 0| |uy|dxds < C [ [ (1+6777+1)|6, || uy| dx ds
00

(071702 +0' " u2)dx ds

Q e

t
=]
0

VKo t1 t1
+5=f [0 02dxds+C[ [ 09+ 2 u2 dx ds
2050 00
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Vi EL
SC+——[[69%"02dxds
20 g%

t1
+Cj'j'{(01+(q+r)/2__01+(q+r)/2)2
00

+§q+1 (0(1 +r)/2_§(1+r)/2)2+0_q+ 1 0r+1}u§

VKo t1
SC+=2([ 69" 02 dxds
28 9%
t 1
(2.44)

+C[V(s)[ 0 "%(x,s)dxds .
0 0

In the same manner we can show

1 t1
fud(x,s)dxds<C[ [ 6" (s)u2(x,s)dxds
0 00

O~

<C (042 Fa 22 42 dxds+ C[ | 01 rud dxds<C (2.45)
00 00
Now note that
p(u, 0)v.e(u, 8)=[p(u, 0)—p(u, 0)]v.e(u, 0)+[p(u, 0)—p(1, )] ve(u, 6)
+p(1, 0)v.[e(u, 0)—e(u, 6)]
+p(1,0)v.[e(u, O)—e(l, 6)]
(2.46)

5
+p(1,0)ve(1,0)=Y Ij(x,1t).
i=1

We want to bound every term in (2.46). By virtue of (1.10)—(1.12), (2.43), and (2.16),
(2.4), Poincaré’s inequality and (2.45), I, and I, can be estimated as follows

SC[[10—0](1+6%*1)|v.|dxds

I,(x,s)dxds

Oy
O =

(0—0)*(1+6%**2)dx ds

1A
a

v2(14602")dx ds

Ot m O Ot

IIA
a

+
TN Ot e OFin O

t 1 t
1+[V(s)f 6**2rdxds+ [ maxv? ds) , (247
0 0 0l0. 1

1
SC[lu—1]|vel(1+6'*")dxds
)

1
[ I:(x, s)dx ds
0

O -
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t1 t
SC[[uldxds+C [ maxv2ds
00 0[0.1]
t
§C<1 + | max v? ds) . (2.48)
00, 1]
Similarly,
t1 t1 t
| [ Is(x, s)dx ds|+ [ [ 1a(x, s)dxds §C<1+_[maxu§ds>. (2.49)
00 00 ol0.1]

Finally, since v(0, t)=0(1, t)=0, it is easy to see that
t1
[ 11s(x,5)dxds=0. (2.50)
00

If we integrate (2.46) over [0, 1] x [0,¢] and combine (2.47)—(2.50), we find

t1
§ I p(u, 8) v.e(u, 0)dx ds
00

t
§C<1+jmaxv§ds>
0 [0, 1]
t 1
+C[ V()] 022 (x, s)dxds .  (2.51)
0 0
We rewrite (1.1)3, using (1.1), and (1.8), as

e,—avx—[x(l: 9)9,‘} —, 2.52)

Multiply (2.52) by e, integrate over [0, 1] x [0, t] and employ partial integration. In
view of (1.7) we make use of (1.10), (1.13), and (2.35), (2.44), (2.51) and (2.16) to
deduce that

21 t1 t
L0202y (x, z)dx+v—"_°jj(1+eq+')0§dxds§c<1+j maxvﬁds)
8o 20 50 o [0.1]

t 1 ‘+ t zle(u, 9)
+CfV(s)fo "(x, s)dxds+ po | max vZ [ ——dx ds
0 0 ol0:11 "% u

t1 t

1
SC(e)+Cef f vidxds+C| V(s)[ 0***dxds, &e,1), (2.53)
00 0 0

where we have also used (2.41) and the inequality (Sobolev’s imbedding theorem
w1(0,1) 5L (0, 1))

1 1
{gaévi(-, 8)S Cf (vF +1vx| [vxal) dX S Cle) +& [ v2,(x, t)dx . (2.54)
, 0 0

In order to bound [ {; v2, dx ds we multiply (2.37) by —uv,, and integrate. By virtue
of (1.11)~(1.12), (224), (2.35), and (2.41), (2.43), (2.45) and (2.54) with appropriately
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small ¢, one has

t1 t1
loe(8) 12 + H v2,dxds<C+CJ [{uZvi+uZ(1+6>"2)+602(1+6%)} dxds
00 00

II/\
-b-l’:
<

t1 t1
2 fv2edxds+C[ [ u(0' T —0*7)? dxds
00 00

t1
+C[[(1469"7)02dxds
00

II/\

O""-"‘

“r
Cgal] v

Combining (2.53) with (2.55) and letting ¢ appropriately small, we obtain

xds+Cj' j' (1460977 0%dxds . (2.55)

<

}(02+02”’)(x, t)dx+j[ }(1 +0"+')9§dxds§C+Ci V(s)} 62+ (x, s)dx ds ,
0 00 0 0
from which, (2.16) and Gronwall’s inequality, it follows that
}(92 +6%*2)(x, t)aix+]E } (1+6777)02(x,s)dxds<C Vi=0. (2.56)
0 00
Putting (2.55), (2.56) and (2.54) together, we conclude that
lve(2)]1 +£ max v2(, s)ds+_§) i 02, dxds<C Vt=0. (2.57)
Next we employ the bounds obtained thus far to estimate | 6,()||?. To this end let
Y(t)= [max j'(l +0%9)0%(x, s)dx, X(t) =j:i(1 +6097") 02 dxds . (2.58)
Thus, (2.56) implies

1
9q+2+r(x, t)_e_q+2+r(t)§j' 0q+r+1 |0xldx
(]

1 1/2 /1 1/2
g(j 624 92 dx) (j 02'+2dx> SCYY3(1)
0 0

whence (also by (2.14))

max < C+CylVatasan (2.59)
Q,

where Q,=[0,1] %[0, ¢t]. Using (1.1);—(1.1),, (1.7)-(1.9) and (1.14.2), we rewrite
(1.1); as follows

eo(t, 0)0,+ Opo(u, 0)0, —ﬁu?vz [”(‘:B)ex] . (2.60)

Define K(u, 0): j" (k(u, &)/u)dé, and consider K to be a function of x and t.
Multiplying (2.60) by K, and integrating over Q,, we perform partial integration to
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conclude

(o

1 t1

[ (e08:+0pyo~E002) K, dxds+[ [ £0, K, dxds=0 . (2.61)
0 u ool

We have to estimate every term in (2.61). Note that

K,=Kuv,+£9,, Kx,=[§0x] +Kuun+Kwuxux+[§] wb,. (262

u

It follows from (1.13) and (2.35) that IKy|, Kyl SC(1469*1). Therefore using
(1.10), (1.12)~(1.13), and (2.35), (2.24), (2.56)-(2.57) and (2.41), we infer

[ L
(=R W

t
eeo,K,dxds;’%VX—c”(l+04+'+1)|0,1|ux1dxds
00

KoV t1
2o X—C[[(1+69**2)p2 dx ds
2u 00

S Koy

=y ——X— C(1+max0"+’+2) (2.63)

{14074 2) 2 4 (1469 1) |v, | dx ds

Oty
O = =

(Opyv, ——UZ)K dxds|<C|
0

Q = =

+(1+0"+'”)lvx||0,|+(1 +0")v§]9,l}dxds (2.64)
<C(1 +mqax9"+“’)+ C(1+man()‘1“)
t
xjmaxv,,flvxldxds+4—X

t 1
+C(1+max077") f max v? [ v2 dx ds
Q, 0[0,1] 0

<C(1+max0"+“’)+w€°

tIK K % 1 5 .
g(j);o, ue dxds>—2-j [(1+6%9)62](x, t)dx—C, (2.65)
th t1
] =0:(Kyve+ Koy v u,)dx ds|< C [T H+029 1) 10, (1vax] + 05| Jug]) dx ds
ool 00
<C

O'.u-

i

<C(1+mqax9”3‘”2) , (2.66)

o)
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rlK K t1 K 2
”—BX[—] u.0, dxd3<—X+C“.|:—6x} (1409 " u2dxds
ool U oolu

2
KOVX+C(l+max6“ ’)j'max[x()x] (+,s)ds

~16a 0 [0.1]

t1 K 2
e a-r i
16_X+C(1+maxt9 ){{{[u()x]

[Ef)x] }dxds
u | X

16 X+C+Cmax02" 2')+C(1+max6“ ry

<fffeed 5]

The last integral in the above inequality can be estimated as follows, using
Schwarz’s inequality, (2.60), (1.10), (1.12)—(1.13), (2.56)~(2.57) and (2.24) (recalling

qz1+r),

i

20,

dxds . (2.67)

K
_.HX
u

K
_gx
u

'1 kP 1/2
dxds<C{H(l+0" ") |: 0 :I dxds}
00 u x

«

1/2
+(14677")vi] dxds}

1
j’[(l+6q+r 02 (1+9q+2+r)UJ2‘
0

o=~

SCX'2+C+Cmax 047272 4 Cmax 04~/
<CX'?24C+ Cmqax patz+niz
which together with (2.67) and (2.24) gives
j' }Eﬂx [—] u0,dxds
ool u

Inserting (2.63)—(2.66) and (2.68) into (2.61), using (2.59) and (2.24), we obtain

<XV ¥t c+Cmaxptt . (2.68)
8u [}

%X+§—2Y<C+C méix 291 < C 4 CY Ga+D/2ata+2n

whence X (t)+ Y (1)< C for any ¢t =0. Thus we have proved the following estimate.

1
[ (1+6%9) 03(x, t)dx+jj(1+9"+')62dxds+max6<C vi=0. (2.69)
0
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It follows from (2.60), (2.35), (1.10), and (1.12)~(1.13), (2.41), (2.57), (2.69) and (2.56)
that

t1 t t1 t1
J 1 02u(x,5)dxds < C+C max 02ds SC+C | [16,]10,ul dxds<C+2 [ [ 02, axas
00 ol0. 1] 00 250
which implies
t1
I 62:(x,s)dxds<C for t=0. (2.70)
00
Similarly, by (1.1),, (2.45), (2.56)—(2.57) and (2.41),
t1
| [v2(x,s)dxds<C for t=0. (2.71)
00

Now we are able to show the convergence of {u,v,0} to the constant state
{1,0,6*} in H'(0, 1) as ¢t goes to infinity. To this end we observe that by (2.45),
(L1)y, (2.57), (2.69)~(2.71), and the equalities (v, v, dx= — [ovxxvidx and
Jo0:0xdx=—[16,.0,dx, we have

o d
{{ 7 1ox(0)17

which combined with (2.41), (2.45) and (2.56) yields
()% + ox() 12+ [ 6:(2) > 50 as t —o0 . (2.72)

By virtue of (2.4) and Poincaré’s inequality, |u(t)—1 |4 + v(t)|g: =0 as t —o0.
So, in view of (2.72), in order to complete the proof of the convergence of solutions
it remains to show that 10—6*| -0 as t - o0. Recalling the definition of 0*, we
integrate (1.1); over [0,17x [0, ] to get

1

j{(e(u, 0)+%2)(x,t)—e(1,0*)}dx=0, (2.73)

0

+

d d
7 1)1 +ld_t 16x(2) ]2

Jase,

which together with Poincaré’s inequality, (2.35), (2.57) and (2.69) implies
I(e(u, 0)—e(1, 0*)+v2/2) (1) 12 < C | (euux + €, 0, + voy) () [|?

SC(Jusl*+ Hﬁxllzﬂg‘al)](vz loxll?)

SClux(O) 1+ 1102(2) 12 + [ vy(2)[12) . (2.74)
It follows from the mean value theorem, (1.10), (2.35), (2.69), (2.74) and (2.72) that
16(6)—6* 2= C |le(1, 0)—e(1, 6%)|2< C | e(u, 0)—e(1, 6%)+v?/2|2
+C(lle(u, 0)—e(1,0) 2 + | v*||?)
SClu(O) 1%+ oa(£) 12 + [ 02(2) | 2) >0 (2.75)

as t »oo0. Thus we have proved that llu(t) =11 g+ [ o(t) | g + [16(2)—6* || 4: =0 as
t —o0.

We have known that u—1, » and §— §* become small in H'-norm for large t,
thus we can apply arguments similar to those used in [18, Theorem 2.2] to obtain
(1.18) in Theorem 1.1 (the exponential convergence of {u, v, 6} to the constant state
as t —oo). This completes the proof of Theorem 1.1.



Motion of a one-dimensional real gas 333

3 Proof of Theorem 1.2

We start with the following identity which follows from integration of (1.1); over
[0,1] x [0, t], and use of (1.5.b) and (1.5.c).

1 2

2 t 1
f(e(u, 0)+%)(x, t)dx+ [ [v*(0,s)+v*(1, s)]ds={ (e(uo, 00)+U—20(x))dx=:eo ,
) )

0

(3.1
where A =0 for the condition (1.5.b) and A=1 for (1.5.c).
Lemma 3.1 We have
t1 1 n
§ § [v*+up(u, 0)](x, s)dxdsgC{ (ju(x, t)dx) +1 }, t=0, (3.2)
00 0

where n=1 for (1.5.b) and n=2 for (1.5.c).

Proof. Integrating (1.1), over [0, x] (xe[0, 1]), using (1.5.b)—(1.5.c) and (1.7), and
then multiplying by u, we obtain

u(x, t) [jf v(y, t)dy] +[up(u, 0)](x, t)+ Av(0, t)u(x, t)
0 t

= p(u) u, (x, 1) =[Au(x, )], , (3.3)

where A=0 for (1.5.b) and A=1 for (1.5.c), and Au :=-‘.:nin Im(_),u(é) d&. We distinguish
two cases.

(1) In the case of (1.5.c). Recalling (1.5.c), we integrate by parts to get

t1 x t1 x 1 x t
Hu(f vdy> dxds=—{ (v, [ vdydxds+ [ u [ vdydx
00 t 00 0 0 0

0 0

t 1 1 x
vidxds—[v(1,s)[vdyds+[ufvdydx
0 0 0 0

(34)

O &
O t—

t
0
Keeping in mind that Au< u,u for u>0 by virtue of (1.14.b,c), we integrate (3.3)

with A=1 over [0, 1] x [0,t], and use (3.4), (3.1) and Schwarz’s inequality to arrive
at (note u>0)

t 1 t 1
(V* +up(u,0))dxds—[ v(1,s) [ vdxds+[v(0,s) [ udxds
0 0 0

0

© oy 4
o=

t

1 1 1 x
=(Audx—[ Augdx—[ufvdydx
0 0 0 0

§C<jl'udx+1> . (3.9)
0

0

To estimate the second term on the left hand side of (3.5), we observe by integrating
(1.1);~(1.1), and using (1.5.c) that

<jl'u(x, t)dx) =v(1,t)—0(0,t), (j{u(x, t)dx) =—(v(1,t)+v(0,t)) . (3.6)

0 0
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It follows from (3.6) and Schwarz’s inequality that

O ey

jl'(—v(l, s)v(x, s)+v(0, s)u(x, s))dx ds = —j' } (v(1,8)4v(0, 5)) v(x, 5)dx ds
0 00

t 1
+[ (0, 5) [ (u+v)dxds
0 0

1'd 1 2 1 1 2
=§OE{<E‘;UdX> —5<£(H+U)d)€) }ds

1 1 2

g—C——(]‘(LH—v)dx)
2\ o

1

1 2
g—C~fvzdx—<_[udx> . (3.7
0 )

Inserting (3.7) into (3.5), and taking (3.1) into account, we obtain the estimate (3.2)
for (1.5.c).

(i) In the case of (1.5.6). We note that by integrating (1.1),, jév(x, t)dx
=[ovo(x)dx. Therefore (if necessary we take f=v—[lvodx as an

unknown function instead of v), we may assume L‘) v(x, t)dx=0. Hence, analogous
to (3.4), one has

t

0
t1 3|
gjjuzdxds—c<judx+1>, (3.8)
00 0
)

where Schwarz’s inequality and (3.1) have been used. Recalling that Au = pyu for
u>0, we integrate (3.3) with A=0 and make use of (3.8) to obtain (3.2) for
(L.5.b). O

To show Theorem 1.2 we first note that for #=1 in the assumption (1.11) we
have by virtue of Lemma 3.1 and (2.30) that

1 n t1
C{(Iu(x,t)dx) +l}gjjup(u,0)dxdsgplt, t=0
00

(0]

with the same n as in Lemma 3.1, which implies (1.19) and (1.20) in Theorem 1.2.
Moreover, for (1.5.c) we integrate (1.1); over [0, 1] x [0, t], use Schwarz’s inequal-
ity and (3.1) with A=1 to infer that _[(‘) u(x, t)dx<C(1 +\ﬂ). Therefore, to prove
Theorem 1.2 it suffices to show that (1.19) and (1.20) hold for #=0 in (1.11). We
divide the proof in two steps.
(1) In the case of (1.5.b). Using (1.7), we rewrite (1.1), as follows

vi+p(u, 0),=(Mu),, . (3.9)
Here Mu :=j"in uo{_)p(f)/édf. By virtue of (1.14.b), Mu is a strictly increasing
function which maps (0, 00) onto (— co,00). If we integrate (3.9) over [0, x] x [0, t],
and utilise (1.5.b), the fact that p=0, Schwarz’s inequality and (3.1) with =0, we
infer that

Mu(x, t)=Mu(x, 0)+jp(x, s)ds +f(v(y, t)=vo(y))dy= —2. /e, .
0 0
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Hence, u is bounded from below
u(x,t)2u>0 for any xe[0, 1] and t=0, (3.10)

where u=u(minu,, E,, u0)=M‘1(—2\/e_0) is independent of ¢. In view of (1.9)
and (2.30) with /=0 we find that J,e(u(x,t),0)=e,(u,0)u,= —p(u, 0)u,=0.
So [gelu(x,t),0)dx=[;e(uo(x),0)dx. Denote co:={(e(uo,o)—e(uqg,0)+
v3/2)(x)dx>0. Then it follows from (3.1), (3.10), the mean value theorem, (1.10) and
(2.30) with £ =0 that

1 1 1
co=| (e(u, 0)+v>/2)(x, t)dx— [ e(uo(x), 0)dx = (e(u, 0) —e(u, 0)+v?/2)(x, t) dx
0 0 0

=C

O C—

1
(0+060"*"+0?)(x,t)dx < C [ [v*+up(u, 0)](x, t)dx for t=0,
0

which together with Lemma 3.1 proves (1.19).
(i) In the case of (1.5.c). Similar to (2.18) we define
En(u, 0):=y(u, 0)—y(m, 1) =, (m, 1) (u—m)—(0—1)Yp(u,0), (3.11)

where m>0 is a constant determined later. The same procedure as used for (2.23)
yields

E.(u, 0)=v(0—logf—1). (3.12)

By the same calculations as in derivation of (2.19) we obtain

2 2 2 _1
a' Em(u’ 6)+v_ +:u(u)vx+x(u, Oz)ex:(av)x-l-p(m, l)ul+ 9 K(u’ H)GX '
2 t uf uf 0 u 5

(3.13)

Integrating (3.13) over [0, 1]x [0, ¢], utilising (1.5.c) and (3.12), and applying
Jensen’s inequality to the convex function y—logy—1, we deduce that

p(m, 1)
v

1 | 1
[ 0(x, t)dx—log [ O(x, t)dx—1< fu(x, t)dx+C. (3.14)
0 0 0 :

We prove (1.20) by contradiction. If (1.20) does not hold, then there are constants
Ty, A>0 such that

1

fu(x,t)dx<Alogt foranyt>T,. (3.15)

0

Since p(u, 1) =0 as u — 0o, we choose m large enough such that p(m, 1) A/v<1/2.
Thus, inserting (3.15) into (3.14), one gets

O =

1
1
6(x, t)dx—log[ O(x, t)dx—1—7logt—C<0, VizTo. (3.16)
0

Since x —logx—logt/2—1—C>0forO0<x <t 2¢ %O and t > T,, we conclude
that [, 0(x, t)dx=t""2e~*9 for any t=T,. Using this and (2.30) with £=0,
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inserting (3.15) into (3.2), we see that

t1

Cl(Alogt)*+112p, [ [ 0(x, s)dx ds
00

: 2 t— /T
2pye1¥0 | s—l/zdszpﬁl(\"ém_‘ﬂ V=T, ,
To

which is not true. Therefore, (1.20) holds. This completes the proof of Theorem 1.2,
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