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4 Comparison with the Hilbert scheme of four points

The map [#]— Z(F) for reflexive sheaves gives us a rational morphism from
M (0, 2, 4) to the Hilbert scheme Hilb*(IP;) of 0-dimensional subschemes of length
4 in IP;. Using the normal forms of the last section we describe the fibres in
more detail and show that the generic fibre is IP,. Moreover, we study the
subvarieties of reflexive sheaves whose singular locus of length 4 has a multiple
structure.

4.1 Some facts about H=Hilb*(IP;)

Let HycH be the subvariety of 4-fold points p with structure sheaf 0,/m?.
It is known, see [LB, I, F] that

(i) H is irreducible of dimension 12,

(i) Hj is the singular locus of H.

We consider the following subvarieties of H. Let H,,c H,, be the subvarieties
of all ZeH such that there is a point peZ with dim T,Z=2 (resp. 21), and
let H,, be the subvariety of Ze H which are contained in a plane. Finally,
let H3, HY ,, HY, chH\H,zqu, be the subvarieties with exactly one point
of length 2 (resp. two points of length 2, resp. one point of length 3, resp.
one point of length 4), and let H,, H, ,, H;, H, be their closures in H.

4.1.1 Proposition. HycH,cH;<H, and HycH, ,cH,.

Proof. The inclusions Hy=H, and H, ,<=H, follow from the fact that 2- and
3-fold points can be split under deformation in their planes. H,cH, and
H, <= H; is easy by using the normal forms of Remarks 3.8.2 and 3.9.2, or follow
from D, =D, =D, below.

We are left to prove H,c H, ,. Let Ze H. By Remark 3.9.2 we can assume
that coordinates are chosen such that the ideal sheaf .% of Z is generated in
degree 2 by the six forms as in Remark 3.9.2, and that Z is supported on
Po- It is easy to see that then also z{ is a section of .%(4) and that, moreover,
J2. »o 18 generated by

2 4
Xp—AX{+ox; X, X3—pXy Xy, x3,

where x;=z;/z, are the local coordinates, u1+0. Let Z,c{zo%0} <P be the
family defined by the first two equations and x?(x, —t)%. This is a flat family
of deformations of Z=2Z, and defines a germ of a curve in H. For t%0, Z,
consists of two ‘double points. This proves that HJ<H, , and hence also
H,cH, ,.

4.2 The rational morphism M---~H

Let M,c M=M(0, 2,4) the open subscheme of reflexive sheaves % , and let
X cG4(k* ® V*)* be its inverse image. The dual of the universal homomorphism
(UF) in 1.1 gives us a subscheme Z = X x IP, by applying the functor A2:

AZ(A)(QPJ(—2)—+(9XXPJ—>@Z—»O.
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For each AeX the fibre Z(A)cIP; is the singular locus of the reflexive sheaf
% (A) and hence a point of H. Moreover, Z is flat over X. This gives us a
unique morphism X — H such that Z becomes the pullback of the universal
scheme over H. This morphism is SL(2)-equivariant since 42 kills the SL(2)-
action and, therefore, we obtain a morphism

M, H,

whose underlying map is [#] — Z(#)=Supp &x tY(Z, 0).
We let M = M x H be the closure of the graph of h and thus get two morph-
isms

M M- H.

Clearly o is birational and an isomorphism over M, and h maps
M\So,uUS,uS,uD,into H\H,,u H,, by Proposition 3.3, Lemma 3.4. It follows
from Proposition 4.4 that this map is also surjective. D} is mapped onto Hj.

4.2.1 Remark. For a point ([Z]), Z)eM we necessarily have Z< Z(¥F) if #
is stable and Z(%) is given by the Fitting ideal of the matrix 4. If & is only
semistable and [# ] =[£ @ .%.] then Z =/ u/'. Note that for a non-trivial exten-
sion 0 —» .4, » % — 4, —0 the variety Z(#) consists of £ and two points or
a double point on ¢, see Remark 1.8.

4.3 Notation. Let D9, DS ,, D}, DS=M\S,uU S, US,u D} be the inverse images
of HY, HS ,, HY, H} under h respectively and let D, D, ,, D3, D, be their
closures in M.

4.4 Proposition. The restriction of h induces surjective morphisms
DI~HY, DY,—H3, Di—HS, Df-HS.

Moreover, the first and second are fibrations with fibre k* and the third and
fourth are fibrations with fibre k.

Proof. The surjectivity in the first two cases is obvious by 3.6 and 3.7 since
double structures on points are determined by the tangent lines. Then the normal
forms give us sheaves over a given O-dimensional scheme in HY or HY ,. In
the last two cases surjectivity follows from the Remarks 3.8.2 and 3.9.2: the
ideal of any Z is obtained by a normal form. The structure of a fibration follows
directly from the statements in Lemmas 3.6.1, 3.7.1, 3.8.1, 3.9.1. In the case
of Lemma 3.8.1 the coefficient a does not occur in the Fitting ideal and in
case 3.9.1 the same is true for the coefficient f. With some more effort one
should be able to verify that the fibrations are in fact locally trivial.

4.5 Theorem II. (a) The varieties D,, D, ,, D3, D, are all irreducible and smooth
along DY, D9 ,, D3, DY respectively.

(b) DycD,=D3=D, and Dy=D, ,<D,.

(¢) dim D,=10, dim Dy=dim D, ,=11, dim D,=12.

P r(_)of. The subvariety HJ consists of schemes Z which are determined by 3
points and a line through one of them, not contained in a plane with the other
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two. It follows that HY is an orbit under the action of PGL(4) and has dimension
11. By Proposition 4.4 the statements (a), (c) follow for D,. A similar argument
works in the case of D, ,. Now by Remark 3.8.2 a scheme ZeHY is in 1:1
correspondence with a tuple (p, Z, P, g, 1), where £ is the tangent line of p and
P the plane containing the 3-fold point p, A#+0. Again we conclude that HY
is smooth, irreducible of dimension 3+3+42+1+41=10. Then D; satisfies (a),
(c). An analogous argument applies to H} by using 3.9.2. Here P becomes the
osculating plane.

In order to derive the inclusions we consider l-parameter deformations of
the normal forms: Dy = D, and D, < D; follow from the families

Zy z; z3 O Z4 Z, zZ3 tz,
and
tzg 2z, 2z, zj Zotazy+Pz, Azy pz, zj
which give points in D resp. D9 for ¢ 0.
The inclusions D,<=D, , and D, D, ,<=D, follow from the corresponding

inclusions in H and the dimension of the fibres of M,-" H. Let us prove this
in the less obvious case D,=D, ,. By Proposition 4.4 the fibres of h over HY
and HY , are isomorphic to k*. Since D, ,=h"T(H 9.2), we consider the restric-

tion a=h|D, ,. As for any dominant morphism we obtain for D, ,5H,,:
any component Y of a~ ! (H?) has

dim Y 2 dim H3 +dim D, ,—dim H, , = dim HO+1.
Now a™!(H})<D, , Nh™'(H})=D, ,nD,=D,, and therefore we obtain
dim HJ+ 1 <dim Y=dimD,=dimHJ+1.

Since D, is irreducible, Y= D, ,nD4=D,, hence D, D, ,.

4.6 Fibres of M- H

As a last part we discuss the fibres of the projection # in the different cases.
It turns out that all the fibres over H \H,, U H,, are isomorphic to P,.

4.6.1 Case of 4 simple points. Let Z = {Po> ..., p3}€H. Then by 3.5.1 the reflexive
sheaves over Z are parametrized by A€k\{0,1} by the normal forms

Zo zy 2z, 0
(0 Azq 2, 23)'

We consider now the morphism P, >n~'(Z)cM defined by <4, uw
= ([#4.,], Z) where Z,_, is presented by

Zo Mzy z, O
0 Azy 2z, z;

and Z is the given scheme. For Ay #+<0, 1), <1,0), <1,1> clearly
@< uyen " (Z)n M, and @ is an isomorphism away from the three points.
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It follows that ¢ is an isomorphism at all. The three extra points in 1~ !(Z) <
M x H consist of the three possible pairs of lines through the four points, namely

((ZOU f23)’ Z)’ (({02’ /13)5 Z)’ (({123 /03)’ Z)

according to the classes of matrices
Zo 2y z; O Zo 2z z, O zg 0 2z, O
0 0 Zy Zj3 ’ 0 Zy 2y Z3 ’ 0 Zq Zy Zj3 '
4.6.2 Case of a double and 2 simple points. Let Supp Z ={p,, p,, p3} with double

structure in p, defined by the line ¢, . In this case the isomorphism IP, -~ !(Z)
is defined by the normal form, see Lemma 3.6.1,

zy z; pzz O
zo 0 Azz zy)°
For the exceptional points corresponding to <0, 1) and <1, 0) we obtain

(015223, Z) and (o2, 703), Z).

4.6.3 Case of two double points. Let Supp Z={p,, p;} with double structures
in p, and p; defined by ¢, and £,5. Again we get an isomorphism P, -~ 1(Z)
by the normal form, see Lemma 3.7.1,

zy 2z, uzz O
zo 0 Az, z4)°
The exceptional points are now

(01,223, Z) and ((£o3,703), Z).

4.6.4 Case of a 3-fold and a simple point. Starting with the normal form Lemma
3.8.1 for Supp Z={p,, p5} with triple structure in p,, then Z=2Z(# (4, ,)) has
the ideal .#, generated by

2 2
2023, 2122, 2123, 2223, 23, AZ1 — 202,

which depends on A but not on a. It follows that ., =.%, if and only if A=21".
Therefore, if we fix 4 we also get an isomorphism P, —»#~!(Z) by using the
parameter o. For a =00 we get the only exceptional point ((£o,, Zo3), Z) repre-
senting the tangent line of Z at p, and the line connecting p,, ps.

4.6.5 Case of a 4-fold point. Let Z=Z(F) be a 4-fold point in p, where F is
given by the normal form in Lemma 3.9.1. Then the ideal .%, , , is generated by

2,2 2
Z1 23,2523, 23, 23, 2023 — AZ1 + 021 25, Z0 23— P21 25

and does not depend on f. Again A, g, o is uniquely determined by .%, , , as
it is easily verified (note that Z is not contained in a plane). Therefore, if we
fix (4, u, ®) we get an isomorphism IP, »#~*(Z) by using the parameter f. For
B=o00 we get the only exceptional point ((£o,, Zo1), Z) representing the tangent
line of Z at p,.



314 R.M. Mir6-Roig, G. Trautmann

4.6.6 If # €D, and reflexive, then the fibre of a singular point Ze H, is isomorph-
ic to the IP of all conics in the plane dual to Supp Z, see 2.4.

4.6.7 Fibres over schemes ZcH ¢- Let §, be the “proper transform” of S, = M,
ie. §, is the closure of §9=¢- (S2\So) in M. The points of 59 consist of pairs
([#], Z) where # has a representation 0 —».% —20 — 0¢(1) -0 with smooth
conic C=Z(%#) and Z<C. Since here [#] is determined by C, the fibres of
the morphism S, —» H pe consist of conics through fixed 4 points in a plane,
and thus are again isomorphic to P,.

4.6.8 Remark. The fibres over points Z €H,, arise from limit points in M. We
omit the details for this.

In addition to the results on the subvarieties S; in Proposition 2.3 and D,
in Theorem 4.5 we have the following proposition on the relation between them.

4.7 Proposition. Soc=D, 5; §4,S,=Dy; SonD;cSy.
It follows from the last statement and from So<=Dj that SnD,=S,N D, =85.

Proof. (1) For t+0 it is easy to see that
Zy z; zz 0 tzy z; z3 0
Zo 0 t*z, z zo 0 tz, z

and that the matrices represent a sheaf F,in DY ,. For t=0 we obtain a given
sheaf #,=9, @ 4., 10 8o\ Sp. This proves S, = D, ,.
(2) A sheaf #;in S\ S, resp. S\ S, can be represented in normal form by

Zo 2z z3 O Zo zy z3 O
0 Z2 Z3 resp. (0 %1 %3 .
zi 0 z, 2z zy z; 0 z4
The 1-parameter families
Zo 2z, z3 tz Zo 2z z3 O
0 Z2 Z3 1) resp. (0 F1 %
zy 0z, z4 Zy Zp tz, zy

show that in each case %, can be deformed into a reflexive sheaf %, with
a 4-fold point. This proves the second statement.

Q) f m=[4%®4.]eSenD; we can find a l-parameter family 4, of matrices
such that 4, represents m and % (A)eDlfort+0,ie. Z(F (4))) has a curvi-linear
3-fold structure in one of its points. Let Z,eHj; be the limit in H, so that
we get a point (m, Z,)e M, in particular Z,=/ U/, see Remark 4.2.1. We distin-
guish the following cases. If Zo¢H,,nH,,, then Z,eHY or HJ. In both cases
the lines # and ¢’ of m meet by 4.6.4 and 4.6.5. If Z,eH,, then Z, contains
a point p with dim T,Zy22, and since Z,c/ U/ the two lines must meet
in p. If, finally, Z,eH pe then meS, by 4.6.7, and again the lines meet. This
proves the last statement of the proposition.
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