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1 Introduction

In this paper, we investigate the large time behavior of nonnegative solutions
of the initial-boundary value problem:

(P) U=u,—uZ+iu? —l<x<l, >0,
u(—1,t)=u(l,t)=0 t>0,
ux,0)=up(x) —1=x=1,

here 1>0, p>1, and uy(x) is a nonnegative prescribed function. Problem (P)
is an one-dimensional case for a model dealt with in [5], where Kawohl and
Peletier established a relationship between (P) and a so-called dead core problem,
and they proved that if 1<p<2, for each 1>0, every solution is uniformly
bounded; while for p>2 with any given initial data, there exists a A*>0 such
that if 2> A*, u blows up in finite time.

Their work was motivated by a recent study of Chipot and Weissler [2],
wherein the following problem was considered:

(Po) u=Au—|Vul'+u” 'u xeQ, t>0,
u(x,t)=0 xed®, >0,
u(x,0)=¢(x) xeQ,

with 1<p<(n+2)/(n—2) and 1<q=<2p/(p+1). For sufficiently large ¢(x), it
was shown that a solution to (P,) must blow up in finite time. Because the
upper bound for ¢ is arbitrarily close to 2 for large values of p, the consideration
for g=2 in [5] is a natural consequence, and not surprisingly, whether solutions
exist globally relies on the balance between the power of the damping term
and that of the source nonlinearity.

However, in contrast to the results in [5], our main objectives here are
to obtain the bifurcation diagrams for the stationary states of (P), to determine
the stability properties of these states, and to discuss the large time behavior
of solutions of (P). It should be pointed out that the stability analysis for the
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case 1 <p=<2 has already been made by Schaaf [7], but the argument is some-
what different from ours. It is also interesting to note that for p>2 with sufficient-
ly large 4 but small initial data the solution of (P) tends to zero instead of
blowing up and with certain 4 blow up in infinite time can occur.

By means of the transformation, v=1—e~* we have an equivalent problem
to (P) as follows:

(P) b=+ A=) [~In(1—0)]? —l<x<l, >0,
v(—=1,t)=v(1,t)=0 t>0,
v(x,0)=0vp(x)=1—e"%™® _1<x<1.

This time, without the presence of the gradient term, it is more convenient
to conduct our discussions. Therefore, in the sequel, we shall mainly concentrate
on (P’).

2 Stationary solutions

We begin with the study of classical stationary solutions. For simplicity, let
SW=(1—-w)[—In(1—w)]Pfor0<w<1. A stationary solution w(x) to P’ satisfies

(S) w (x)+Af (w(x)=0 —1<x<l,
w(—1)=w(1)=0.

Clearly w(x)=0 is always a solution of problem (S'). We are more concerned
with positive solutions of (S'), that is, 0 <w(x)<1 on (—1, 1). From the equation
in (S'), it follows that w”(x) <0 and thus w(x) can attain one maximum at some
te(—1,1).
Set F(w)= | f(s)ds. Then w(x) also solves
0

21 LW/ (x))? + AF (w(x)) = AF (u),
where u=w(¢).
Integrating (2.1) leads to
1 Hn
(22) 7 [ (F(u)—F@)™ "2 dn=)/AE—x|.
Then substituting the homogeneous boundary conditions for w(x) in (2.2) yields

2.3) —15 [(F@—F )2 dn=)/i(1+&=)/i(1—0).
0

Thus we find that =0, which follows also from [4].
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m
Let G(#)_V | (F(u)—F(n))~"/* dn. Then (2.3) is equivalent to
0

(2.4) G)=/".

From the above discussion, we conclude that w(x) is a positive solution of
(§")if and only if for —1<x<1

(2.5) V_j(Fm Fn)~ "2 dn=)/dlx

w (x)

with p determined by (2.4).

Therefore in order to establish the characterization of the set of stationary
solutions, we should only count the number of x in (2.4).

First we note that although the integral in (2.4) is improper, G(p) is continu-
ous for 0 < pu< 1 since F(u)— F(n)=d6(u—#) for some 6 >0 and # near p.

Because G (u) cannot be solved explicitly, we shall follow closely the argument
in [8] by Smoller and Wasserman, where they studied the bifurcation of station-
ary solutions of a problem similar to (P) but with the nonlinearity
f()=(@—a)(b—v)(v—c)(a<b<c). The same kind of idea has been applied to
the work by Aronson et al. for a porous medium problem [1] and to that
by the author on a singular plasma type equation [3]. It is worth mentioning
that discussions in this paper will become more complicated, since for any p>1,
our F(v) can only be represented implicitly, whereas in [8] some properties
were proved by elementary calculations using the explicit formula for F.

Lemma 2.1 G(u) is continuously differentiable on (0,1) and there exist p, and
Uy With 0 < p; <p, <1 such that G'(u) <0 on (0, uy) and G'(u)>0 on (u,, 1).
Proof. By the change of variable n=put, G(u) is rewritten in

1
(2.6) Go=="= [ (F() = F(u) ™' d.
O

Upon a formal differentiation on G(u), we find that

) le F'(w urF(#r)
27 G d
) Cme zlﬁg F()—F(uo))? '
l I ’ _ ’
=1G(u)— uF' (W) —nF (Z)d
K 2)/2po (F(w)—Fn)y

-— [ LQF(w)—puf W)—QFm—nf MILFw—Fm]1 >*dn.
220

Set H({)=2F({)—{f ({). Then we have

25 G- HO-HO)
22k Fu—Fo)
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A straightforward computation shows
(29) HQ=fO-{©
=(=In(1-0)"""(=In(1 =) —p0).
For any 7 close to p, by the Cauchy mean value theorem, there is a c(n<c < p)

|[Hw—H@)|_| —In(1—c)—pc |
| F(w—Fm)|~ |=c)(—In(l —e))| =

Thus the integral in (2.8) is convergent, and G'(weC(o, 1).

Moreover, from the fact that H’({) has exactly one zero u, on (0, 1), it follows
that H'({)<0 on (0,x,) and H'({)>0 on (11, 1). Since H(0)=0 and H(1)>0,
there exists a u,(>p,) such that H({)<0 on (0, 4,) and H()>0 on (u,, 1).
The proof is complete.

Lemma 2.2 G'(u) has a unique root on (0, 1).

Proof. Lemma 2.1 implies that G'(u) has at least one zero @ between u, and
K. We will show that G'(u) has at most one zero. For this purpose, we formally
differentiate G’(u) to obtain

1 “uH’(u)—nH’(rl)d
22126 (F(w)—F(n)y
3 FH@-Hm) 0l ) -pf ()
4)/2u2 5 (F(u)— F(n))?
:Gl(#)‘l‘Gz(ﬂ)-

(2.10) G"(w=

The feasibility of (2.10) can be verified as in Lemma 2.1, and hence we only
focus on the sign of G” (u) for u>p, .

For G, (), if {> u,, we calculate diC(CH’(C)) to have

d
ar

(=0 p(p—1)¢?
- 1-¢

+(=In(l—0)*+2p¢ lna—c)]

@.11) (CH’(C))=(—ln(1—C))"’2[

=<—1n(1—c))ﬂ-2{[1—”f—(—ln(1—o]<—1n(1—5)—po

+pL [lhfc+ln(1 —C)]}

>0,

since —In(1—{)> p{ when {>yu, and

1Ec-i-ln(l—C)>0if0<C<l.
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Thus for u; <u<1,
I (B uH (@) —nH
Gl(u)=—z‘{§ + }“_(“)"—(;7)(1;7>0.
2)/2u Lo i) (F—Fay

Then for G, (u), after rewriting it, we find

I _ 2
3 (H(1)—H (1)) d”‘gG,w‘

G (/.l)= 5
)26 (F—Famy M

Hence at any critical point of G(u), G,(1)>0.

From the above, we rule out the possibility that there are more than one
zero of G'(p).

Lemmas 2.1 and 2.2 show that G(u) first decreases and then increases. To
study the behavior of G(u) near the two endpoints, we notice that for small
w (F(u)—Fm)~"?=(f(e)""*(u—n)"""* with n<o<u. Thus G(u) -+ as
u—07%. On the other hand, since

) (1—;1)2(—111(1—’7)),)_
(2.12) MR F)

(213)  (F()=F@m)~ "?=0(1—-n""(=In(1—n)""?) as n->1".

Hence lim G(u)=+ o0 if I<p<2and lim G(u)<oo for p>2.
n=1- n=> 1=
To sum up, we state the following:

Theorem 2.3 For 1 <p<2, there exists a critical number A(p) such that
(i) If 0< A< A(p), there are none positive stationary solutions of (P);
(i) If A= A(p), there is a unique positive stationary solution;

(iii) If A> A(p), there are two positive stationary solutions.

Theorem 2.4 For the case p>2, there are two positive numbers A, (p) and ,(p)
(A, < A,) such that
() If A<, (p), there are no positive stationary solutions of (P);
(ii) If A=2,(p) or A=A, (p), there is only one positive stationary solution;
(iii) If 2, (p) < A< A,(p), there are two positive stationary solutions.

Let s(x), or sometimes s(x,A), to denote the stationary solution of (P). For
some A if there are two positive solutions, we note that they are ordered, and
54 (x) will be written for the larger solution while s_(x) for the smaller one.
Since s(x, 1) depends on s(0, 1) continuously and s(0, ) is a continuous function
of 4, s(x, A) is a continuous function of 1.

Finally we turn our attention to the existence of singular stationary solutions
s, of (P), i.e. solutions in C?((— 1, 1)\{0}) with lim s,(x)=oco. The corresponding
solutions of (S') should satisfy =0

1
(2.14) —"/— [ (F()—Fn)~ 2 dn=)/2Ix]

ws(x)
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with
1 1
2.15) — | (F(1)—F “2dn=1/A.
( 7 g( ()—F@m)~"2dy=)/2

Taking (2.13) into account we conclude

Theorem 2.5 If 1 <p<2 (P) has no singular stationary solutions. For p>?2 there
is exactly one when A= 1, (p).

Remark. In [2] the authors mentioned without proof that if g>2p/(p +1), there
can exist singular solutions. Here we show that such claim need not be valid
for all p>1. Furthermore, our result contrasts sharply with that in [6] where
Levine proved that for (P) with the nonlinearity u” replaced by e** there is
one singular solution if 1 <a <2 while none for =2,

3 Stability and large time behavior

At the beginning of this section, we recall the result in [9], a solution of problem
(P) remaining uniformly bounded must converge to its steady state. We first
establish stability-instability results. Without making any confusion, sometimes
we shall write the solution of (P) as u(x,t, 4) or u(x,t;uy) with u, being the
initial datum.

We begin by formulating the precise notion of stability.

Definition. A stationary solution, s(x), of (P) is stable from above if for any
given £>0 there exists a positive function z(x)eC5(—1,1) such that if u(x, t)
is a nonnegative solution of (P) with s(x)<u(x,0)<z(x) on (—1, 1), then
flu(-,t)—s(-)|, <efor all t=0, and Jim u(x, t)=s(x) for each xe[ -1, 1].

t— o

The stability from below can be defined analogously, and we say that a
stationary solution s(x) is stable if it is both stable from above and below.

Theorem 3.1 Suppose that 1<p<2 and A>A(p) or p>2 and Ai(p)<i<iy(p).
Then s, (x) is stable whereas s_(x) is unstable. If p>2 and A= 1,(p), the unique
positive stationary solution is unstable.
Proof. We shall prove it only for 1<p<2, the other case can be argued in
a similar manner.

We first show that s, (x, 1) is an increasing function of 1. To this end, let
A(p)<A' <" and w, (x, A) be the corresponding solution of (S'). Combining (2.3)
and (2.5) produces

w(x)

2 T F@—F) " dn=)/i(1— ).
v

0
Thus

wi(x,4")

[ (Fu@)—=F@)~ "2 dn=)/7"(1—|x|)

0

>)/x(1=|x)=

Nk

1 wy(x, A

4}
[ Fu@)—F@m)="2dy,

0

N
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since F(u(4"))> F(u(2)),

Wy (x,4")

[ (F)—Fum)~'"?dn>0,

Wy (x,47)

which implies that w, (x, 1”")>w, (x, A), and consequently, s (x, 2")>s, (x, A)
on(—1,1).

We now prove the stability of s, (x). Let u(x,t, ') be a solution of (P) with
uo(x)=s4(x, 1”). By the definition for stability, it suffices to show that u(x, t, 1)
converges to s, (x, A'). Turning our attention to problem (P’) we then have that
on(—1,1)

0,(x,0, )=vg+ A f(vo)
=W (6 A+ 2 (W (x, A7)
< w+xx(x’ /1”) + ;‘”f(w+ (xv ’1”))
=0.

Since v, satisfies a linear problem with homogeneous boundary conditions, v, <0
on (—1,1) x {t>0}, and so is u,. Moreover, by the comparison principle

Sy(x, A)VSu(x, t,A)<s,(x, A").

Noticing the opening remark of this section, we can see that ¢(x, 1)
= lim u(x, t, A') is a stationary solution of (P) bounded by s, (x, /') and s (x, 1"),
t— o0

and in particular that s, (0, 1)< ¢(0,1)<s,(0,1"”). But ¢ is a steady state of
(P) with 2, and so ¢(x, A) is either s, (x, ') or else the other solution s_(x, A').
From the graph of G(u)=1/z, it follows that s_ (0, ') <s, (0, A'), which excludes
the possibility ¢(x, A)=s_(x,A). We thus show that s, (x, 1) is stable from
above. From A’'> 1", using a similar argument we can also prove that s, (x, 1)
is stable from below.

Then for s_(x,4), we know that s_(x,1")<s_(x,A) in [—9,8] for O0< X’
<A”<A(p). Let u(x,t,A") be a solution of (P) with ug(x)=s_(x, ). Then by
similar reasoning, we have 4,20 on (—1,1)x {t>0}. Therefore u(x,t,A") is
increasing in ¢, which indicates that s_(x, 2”) is unstable from above. Similarly,
it can be shown that s_(x, ") is unstable from below. [

Next we study the large time behaviour of solutions of (P).

Theorem 3.2 Let 1<p<2.

(i) For 0<A<A(p), every solution tends to zero as t — .

(i) For A=A( p) lf 0<u0(x)<s(x A(p)) on (—1,1), then 11m u(x, t)=0; while
hm u(x, t)=s(x, A(p)) if uo = s(x, 2(p)).
(111) For 1> A(p), zf0§u0(x)<s_ (x, A), then u converges to zero, but u approaches
S4(x, 4) if ug (x)>s_(x, A).

Proof. (i) Recalling Theorem 2 of [5], sup{u(x,t)|—1<x=1,t=0} < oo, since
there are no positive stationary solutions of (P), the assertion holds.

(ii) For uo(x)<s(x, A(p)), we choose a y(y>A(p)) so close to A(p) that uy(x)
Sug(x)=s_(x,7), then by comparison, u(x, t;uy) Su(x, t;i,). Since u,(x, t;1,)
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=<0, lim u(x, t;,)=0, and it follows that lim u(x, t; uo)=0. If s(x, 2(p)) S ugy(x),

s(x, )f(p()ﬁgu(x, t)< oo, hence lim u(x, t)=s(¥,ﬁ(p)).
t— oo
(iii) Proof for the case uy(x)<s_(x,4) is similar to that in (ii). However,
if u(x)>s_(x, 1), we can find a y(y <) such that ug(x)Ziy(x)=s_(x,7), then
u(x,t;ug)2u(x, t;iy).  Because  u,(x,t;i)=0 and u(0,t; i) >s_(0, A),
lim u(x, t; 4g)=s, (x, A), thus lim u(x, t; Ug)=5,(x, ).
t— o0 t— oo

Theorem 3.3 Suppose p>2.

(i) For 0<A<A,(p), if 0<uo(x)<sy(x,4,(p)) on (—1,1), the solution tends
to zero as t — co.

(ii) For A=2A,(p), if 0=ug(x)<s(x, A,(p)), lim u(x, t)=0; whereas lim u(x, t)
=s(x, 24(p) i (x, 4y (P) S (X) <5,(x. 1, (p). o

(i) For A(p)<A<iy(p), if O=Zup(x)<s_(x,4), lim u(x,t)=0; while
lim u(x, t)=s, (x, ) if s_ (x, 1) <ug(x) <s,(x, 4, (p)). t=*ic0

e o)

(iv) For 2=4;(p). if 0= uo(x)<s(x, A5(p)), lim u(x, )=0; if s(x, 2, (p)) <uo(x)
<s4(x, 45(p)), the solution blows up in infinite time and lim u(x, t)=s,(x, 4,(p)).
t—

(V) For A>A,(p), if 0=<uq(x)<s(x, ), u approaches zero as t — oo if ug(x)
>s(x, A), u blows up in finite time.

Proof. (i) Since uy(x)<sy(x, A,(p)), there is a Ao(A1(p)<Ay<2,(p)) such that
Uo(x)Stlp=s, (x, Ag). Then by the comparison theorem, u(x, t;ug) Su(x, t; ).
Because u,(x, t;1,) <0, u(x,t;i,) tends to the null stationary solution of (P),
and the same is true for u(x, t; ug).

(ii) Proof for the case uqy(x)<s(x, 4,(p)) is the same like that in (ii) of Theo-
rem 3.2. If s(x, 4, (p)) Suq <s,(x, 1,(p)), a number o(4, (p) <o < A,(p)) can be deter-
mined to make u,(x)<i(x)=s,(x,0). As a consequence, lim u(x, t; ug)
=lim u(x, t; d,)=s(x, 4, (p)). GEA

(ii)) Proof for the case uy(x)<s_(x,1) is omitted If s_(x, A)<ug(x)
<$4(x, 4,(p)), there are a y(y<4Z) and a o(o>1) such that o(x)=s_(x,7)
Suo(x)Sdo(x)=s, (x, 0). Then, by the comparison principle,

u(x, t; i) Sulx, t;ug) Su(x, t;ily).

On the other hand, u(x,t;i,) is monotonically increasing while u(x, t;i,) is
monotonically decreasing. Hence, lim u(x, t; ii,) = lim u(x, t;ig)=s,(x,A), the
conclusion follows. = £=re

(iv) For the case s(x, 4,(p))<uo(x), we can select a y(y<4,(p)) to ensure
uo(X)2io(x)=s_(x,y). Then u(x,t;u,) is bounded from below by u(x, t; ).
Since u,(x, t;i1y) 20, u(x, t;1,) blows up in infinite time, and so does u(x, t; ug).

(V) If uo(x)>s(x, A), set iiy(x)=s(x,y) with y < such that Uo(x) =1y (x). Then
w(x, t580)20 and u(x, t;u)Zu(x, t;i,). Because u(0, t;iy) = iy (0)>s(0, A),
u(x, t;iig) must blow up in finite time, which implies that u(x,t;u,) can only
exist locally.

Remark 3.1 In view of Theorem 4 in [5], we can treat Theorem 3.3(v) as its
counterpart.

Remark 3.2 By the strong maximum principle, Theorems 3.2 and 3.3 remain
valid if each “ <(>)” in the conditions on the initial data is replaced by “ <(=)”.

Acknowledgement. The author would like to thank the referee for several helpful comments.
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