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the essential uniqueness of development, is equivalent to the standard inclusion
map which misses exactly one point. Let f; be no] where 7 is the covering
projection from S" to N. But E" is an infinite covering space of M whereas
§" is a finite covering space of N. This leads to a contradiction since one way
we can conclude that for any point y in im f the number of fi-preimages of
y is infinite whereas the other way it is finite.

Next suppose N is hyperbolic. By passing to coverings we may take M
and N to be developable. So f extends to f: M — N. Now 0o M has only one
point say a, and d,N has at least two distinct points say b and c. Take two
disjoint arcs y, and y, starting from a point in im f and tending towards b
and c respectively. Then the maximal partial lifts of ¥» and y. in M must tend
towards a. But then f(a) would belong to both 7V {b} and y,U{c}. This is
not possible. q.e.d.

(2.11) We end this section by noting some relationships among the ideal bound-
aries of the developable quotient spaces of a single simply connected Mdbius
manifold. Let M be a simply connected Mébius manifold, and fix a development
map dev: M"—S" and p: Aut(M, ¢) - .#(n) the holonomy homomorphism
which is equivariant with respect to dev. Let x be the kernel of p. It is easy
to see that « is discrete (with respect to compact-open topology) and acts freely
on M. Let M, be the quotient of M by «. It is easy to see that all developable
quotient spaces of M are covering spaces of M, and they form a lattice in
the usual manner inversely isomorphic to the lattice of subgroups of k.

Clearly the components of d, M lie over those of 0o M. Let a be a component
of doM, and 1,: M,—M, U {a} the canonical inclusion. If K, is the kernel of
the homomorphism on the fundamental groups induced by 1, then the compo-
nents of 0, M lying over a« form a (not necessarily connected) covering space
of o with covering group x/k,. -

3 The spaces of round balls

(3.1) A characteristic notion in the Mbius category is that of a round ball,
ie. if we consider S" as E"U{co} then a round ball is any image of the open
unit ball in E" under a M&bius transformation, or more generally if M" is
a developable Mébius manifold then any subset of M” which is mapped by
dev on a round ball is also considered as a round ball. Still more generally
if M" is any connected Mobius manifold and M” is its universal cover then
a subset B of M" is a round ball if it is an image of a round ball in M".
Notice that by the essential uniqueness of the development map it follows that
dev is injective on any round ball in any developable M Gbius manifold. Consequent-
ly the two apparently different notions of a round ball on a non-simply connected
developable Mobius manifold coincide. Notice also that a round ball is by
definition always open. By a closed round ball in a developable Mébius manifold
M we shall mean the closure of an (open) round ball in M. We shall have
no need to talk about a closed round ball in a non-developable M6bius manifold.
A pointed round ball is a round ball with a base-point. For any Mdobius manifold
M we introduce two basic spaces.

(3.1.1) B(M) = {the set of all round balls in Mj}.
(3.1.2) B, (M) = {the set of all pointed round balls in Mj}.
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(3.2) To introduce the topology and geometry on B(M) and B*(M) and for
computational purposes it is convenient to consider the light-cone model of
(S", # (n)) in the (n+2)-dimensional Minkowski space. Consider a real vector
space V of real dimension n+2 equipped with a nondegenerate quadratic form
Q of signature (1,n+1). In terms of appropriate coordinates x
=(Xg, X1 +--» xn+1)~

0x)=x3—x%, —, ..., x24 ;.

The associated inner product will be denoted by <{x,y), and Q(x) will be some-
times shortened to |x|2. The positive light-cone is

L, ={x||x|=0, x,>0}.

Let O(Q) denote the orthogonal group which preserves Q. It has four compo-
nents. Let O, (Q) denote the two out of these four components which preserve
L,. It is easy to see that O, (Q) acts transitively on L, in particular it acts
transitively also on the space of rays contained in L, . As is wellknown O, (Q)
~ ./ (n) and the action of O, (Q) on the space of rays in L, is equivalent to
that of .4 (n) on S, cf. [T, Chap. 1]. Let

L+:{x||x|2207 x0>0},
H"*'={x||x|*=1, x,>0},
D" ={x| —|x2<1, xo=0}.

The space H"*!' which may be identified with the space of rays in intL, is
a model of n + 1-dimensional Riemannian hyperbolic geometry. Indeed —Q ;!
induces a complete Riemannian metric of constant curvature —1. Also 0. (Q)
preserves H" ™!, acts transitively on it, and may be identified with the full group
2|dx|
1—|x|?
a model of n+ 1-dimensional Riemannian hyperbolic geometry. The radial pro-
jection from (—1,0, ..., 0) maps D"*! isometrically onto H"*'. If x and y are
two points of H**! then the hyperbolic distance among them is cosh ™! ({x, y).

of isometries of H**!. As is wellknown D"*! with the metric is also

(3.3) Proposition. (i) B(S") may be considered as the * De Sitter space
(3.3.1) {x||x|*=—1}.

As a homogeneous space it is ~SOq(1, n+1)/SOq(1, n) where SOy(1, n+1) den-
otes the identity component of O(Q) and SO, (1, n) denotes the identity component
of the subgroup of O(Q) which fixes the x, y-axis.

(ii) B, (S") may be considered as the “Stiefel manifold of Lorentzian 2-frames”’

(33.2) {x Y Ix>=~11y*=1<x,y)=0}.

It may also be considered as the unit tangent bundle to H"*'. As a homogeneous
space it is ~SOy(1, n+1)/SO(n). Here SO(n) is the identity component of the
subgroup which fixes the x-th and the x, . ,-st axis.

Proof. (i) A round ball in S" canonically defines a half-space in H"*' bounded
by a totally geodesic hypersurface which in turn canonically defines a half-space
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in V bounded by a hyperplane through the origin which cuts L, transversely.
It is easy to see that the induced metric on this hyperplane is of type (1, n)
and so its outer unit normal vector at the origin of V has length —1. This
shows the first part. For the second part observe that SOy(1, n+1) acts transiti-
vely on the set of half-spaces bounded by the hyperplanes through the origin
with the induced metric of type (1, n) and the identity component of the stabilizer
subgroup of the half-space x,, , <0 is obviously SO, (1, n).

(ii) Let (B, p) be a pointed round ball. As in (i) B corresponds to a half-space
in V bounded by a hyperplane = through the origin which cuts L, transversely.
Let x be the outer unit normal vector to 7 through the origin. Now the point
p in B corresponds to a ray [ lying in L, . Let ¢ be the 2-dimensional subspace
of ¥ spanned by x and I It is easy to see that the induced metric on oNm
is positive definite and so it contains a unique unit vector y lying in intL, .
In this way we have associated to a pointed round ball (B, p) a pair (x,y)
with [x[*=—1, |y|®?=1, (x, y>=0. Conversely given such a pair (x, y) let =
be the hyperplane through the origin orthogonal to x. In the half-space bounded
by n which does not contain x there is a unique ray, namely the one defined
by positive multiples of y—x, which lies in L. This data in turn canonically
determines a pointed ball in S". This proves the first part.

For the second part let a pointed ball (B, p) be given. Then B determines
a half-space in H"*! bounded by a totally geodesic hypersurface say h. Now
the pair (B, p) determines a unit tangent vector to H**1, namely the outer unit
normal vector to h at the foot of the perpendicular from p to h. Conversely
given a unit tangent vector to H"*! by reversing the above process we obtain
a pointed ball in S".

Lastly it is again obvious that SO, (1, n+ 1) acts transitively on the set of
pointed balls or equivalently on the set of pairs (x, y) with [x]?=—1, |y|*=1,
<X, y>=0. Moreover the identity component of the stabilizer subgroup of the
pair x=(0,0, ..., 1) and y=(1, 0, ..., 0)is SO(n). q.ed.

(3.4) The topologies on B(S") and B, (S") are those of the corresponding homo-
geneous spaces. They are in fact differentiable manifolds of dimension n+ 1
and 2n+1. Now let M be a developable Mébius manifold. Then dev: M—-S"
induces the maps of sets B(M)— B(S") and B, (M)~ B, (S") which will be again
denoted by dev. These maps are locally injective. We topologize B(M) resp.
B, (M) so that dev is a local homeomorphism onto its image in B(S") resp.
B, (S") resp. Let By (M) resp. By (M) be the subset of B(M) resp. B, (M) consist-
ing of those balls whose closures in M do not have a point on the ideal boundary.
The image of B,(M) resp. By ,(M) under dev is an open subset, and so in
fact it may be used to introduce the structure of differentiable manifolds on
By (M) resp. B,, (M) respectively so that dev is a local diffcomorphism. If M
is not developable let p: M, — M be its some developable cover. Then p induces
a locally injective map on the corresponding spaces of balls and we use it to
topologize B(M) resp. B, (M) so that the maps induced by p are local homeo-
morphisms. The following proposition summarizes the basic properties of these
spaces.

Proposition. Let M" be a developable M obius manifold.

(i) The base-point-forgetting map (B, p)— B of By(M)— B(M) is a fibration with
fiber H".

(i) B, (M) can be canonically identified with an open subset of B(M)x M.
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(iii) There is a (noncanonical ) homeomorphism ¢ of B(M) into M x R. The image
of Bo(M) under ¢ is an open subset whereas the image of B(M) is only locally
closed. In particular B(M) is locally compact.

(iv) For M=S" or E" the map (B, p)—p of B,(M)— M is a fibration with fiber
B(E"). In general B,,(M) is an open subset of the total space of the pullback
of the bundle B, (S")—S" under dev whereas B,(M) is a locally closed subset,
hence it is locally compact. Or in view of (ii) and (iii) By ,(M) may be identified
with an open subset of M x M xR and B,(M) lies in its closure as a locally
compact subset.

Proof. The part (i) is clear. The part (ii) is also clear by a dimension count.
As for (iii) let g, be a standard metric on S", and g=dev*(g,) the induced
metric on M. With respect to g the center and the radius of a round ball has
a meaning. The map ¢ simply associates to a round ball its center and radius.
The assertion (iii) is now clear; the only point to note is that a round ball
by definition has a positive radius so the image of ¢ does not contain any
point of M x {0}, whereas M x {0} clearly lies in the closure of im ¢. As for
(iv) notice that the round balls in S” or E" containing a given point p are,
by taking interiors of the complements, in a natural 1—1 correspondence with
the round balls in S” not containing the given point p. The latter set is clearly
B(E". So the assertion is true for S" or E". The assertion for general M may
be left to the reader. q.e.d.

(3.5) Let M be a developable M&bius manifold. As noted in (3.3) the space
B(S™ may be identified with the De Sitter space of dimension n+ 1. As is well-
known the De Sitter space is a linear model for a complete Lorentz manifold
of constant negative curvature — 1. It is diffeomorphic to S” x R. Via the develop-
ment map this structure may be pulled back to B(M). It is independent of
the choice of a development map. In particular a tangent vector to B(M) being
timelike, or lightlike, or spacelike has a meaning, namely it is a vector v such
that (v, v) is positive, or zero, or negative respectively. A piecewise smooth
curve in B(M) is called timelike, or lightlike, or spacelike if all of its tangent
vectors are such.

(3.6) The geodesics of the De Sitter space are wellknown, cf. [On] for the
description of these spaces. The geodesics of the De Sitter space are given by
its intersections with the two-dimensional linear subspaces of the (n+ 2)-dimen-
sional Minkowski space, cf. (3.2). In terms of the round balls in S" they may
be described as follows. A complete family of concentric round balls (w.r.t.
a standard metric on S") and its .# (n)-translates are precisely the timelike geodes-
ics. The complete families each consisting of round balls which touch each other
at a fixed point are precisely the lightlike geodesics. And finally the complete
families each consisting of round balls passing through a fixed round S"~? are
precisely the spacelike geodesics. If M is a developable M&bius manifold, and
B(M) is equipped with its canonical Lorentz structure as above then these con-
siderations carry over to it in a local fashion. Thus for example a curve of
round balls in B(M) passing through a fixed round S"~? is a possibly reparame-
trized spacelike geodesic segment.

(3.7) We note here a simple method of doing elementary computations in the
space B(S"). For this purpose it will be convenient to take S" as the unit sphere
IX|*=1 in E"*!. A round ball in S" has a boundary which is a transverse
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