

Werk

Titel: 6 The multiplicative structure of W(k, n; ...X).

Jahr: 1994

PURL: https://resolver.sub.uni-goettingen.de/purl?266833020_0215|log46

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

in which the right square is a pushout square of path-connected open subsets of $F_j\xi(k,n;\Sigma X)$. All the maps in the diagram are inclusions. We have $F_1\xi(k,n;\Sigma X)\simeq TX$ from Lemma 2.3(ii). Since $(\tilde{w}_j,\tilde{q}_j)$ is a strong NDR-representation of $(F_j\xi(k,n;\Sigma X),F_{j-1}\xi(k,n;\Sigma X))$, the homotopy \tilde{q}_j restricted to P is a strong deformation retraction of P onto $F_{j-1}\xi(k,n;\Sigma X)$, which is assumed to be 1-connected. Hence P is 1-connected. The left square, together with Lemmas 5.7 and 5.8, imply that $\pi_1(P\cap Q)\to\pi_1Q$ is onto. Therefore, $F_j\xi(k,n;\Sigma X)$ is 1-connected by invoking the Seifert and Van Kampen Theorem again. \square

Proposition 5.10 Under the same conditions as in Proposition 5.9, $C_{k+n}X$, $F_jC_{k+n}X$ and $D_jC_{k+n}X$ are 1-connected.

Proof. The proof is a simpler modification of that of Proposition 5.9. We induct on *j* with the following diagram

$$\begin{array}{cccc} \tilde{U} \cap \tilde{V} & \longrightarrow & \tilde{U} \\ \downarrow & & \downarrow \\ \tilde{V} & \longrightarrow & F_j C_{k+n} X \end{array}$$

which is a pushout of path-connected open subsets of $F_i C_{k+n} X$. \square

Remark. In fact, the spaces in Proposition 5.10 are highly connected if X is [CT].

Corollary 5.11 If $r \ge 2$ and $j \ge 0$, then $\xi(k, n; S^{r+1})$, $F_j \xi(k, n; S^{r+1})$, $D_j \xi(k, n; S^{r+1})$, $C_{k+n} S^r$, $F_j C_{k+n} S^r$ and $D_j C_{k+n} S^r$ are all 1-connected.

6 The multiplicative structure of $W(k, n; \Sigma X)$

For $k \ge 2$, $W(k, n; \Sigma X)$ is naturally homeomorphic to $\Omega W(k-1, n; \Sigma^2 X)$, which give $W(k, n; \Sigma X)$ a loop space structure. In this section, we show that the multiplication ϕ_2 in $\xi(k, n; \Sigma X)$ (see Proposition 4.2) is compatible with the loop multiplication in $W(k, n; \Sigma X)$ for $k \ge 2$. This compatibility can be proved by a direct calculation, but since the notation becomes quite unmanageable, we break it down into a few lemmas. For k=1, we show that it is rarely the case that $W(1, n; \Sigma X)$ is an H-space.

6.1 For a space Y, there is a natural homeomorphism $\tau: P\Omega Y \to \Omega PY$. By definitions, $P\Omega Y = \operatorname{Map}_*(I; \operatorname{Map}_*(S^1; Y)); \Omega PY = \operatorname{Map}_*(S^1; \operatorname{Map}_*(I; Y))$. For $f \in P\Omega Y$, $\tau(f)$ is given by $\tau(f)(t)(s) = f(s)(t)$ for $t \in S^1$ ad $s \in I$. The inverse of τ is given by $\tau^{-1}(g)(s)(t) = g(t)(s)$.

Lemma 6.2 Let $\lambda: X \to Y$ be a pointed map, F be the homotopy fibre of λ , and G be the homotopy fibre of $\Omega\lambda: \Omega X \to \Omega Y$. Then there is a natural homeomorphism $\tilde{\tau}: G \to \Omega F$.

Proof. Recall that the homotopy fibre of a map has been explicitly defined in Sect. 5.1. In the following diagram,

400 S. Wong

the pullback square at the back is gotten by looping the pullback square

$$\begin{array}{ccc}
F & \longrightarrow & Py \\
\downarrow & & \downarrow \\
X & \stackrel{\lambda}{\longrightarrow} & Y
\end{array}$$

The map $\tau: P\Omega Y \to \Omega PY$ induces a unique map $\tilde{\tau}: G \to \Omega F$ such that the whole cube is commutative. Arguing with the universal property of pullbacks and the fact that τ is a homeomorphism, we see that $\tilde{\tau}$ is a homeomorphism. \square

6.3 We apply Lemma 6.2 to the map $\Omega^{k-2}E^n$: $\Omega^{k-2}\Sigma^kX \to \Omega^{k+n-2}\Sigma^{k+n}X$ with $k \ge 2$. Its homotopy fibre is $W(k-1,n;\Sigma^2X)$. The homotopy fibre of $\Omega^{k-1}E^n$ is $W(k,n;\Sigma X)$. Since $W(k,n;\Sigma X)$ is a subspace of $P\Omega^{k+n-1}\Sigma^{k+n}X$, there is a homeomorphism $\tau\colon W(k,n;\Sigma X) \to \Omega W(k-1,n;\Sigma^2X)$ which is the restriction of $\tau\colon P\Omega^{k+n-1}\Sigma^{k+n}X \to \Omega P\Omega^{k+n-2}\Sigma^{k+n}X$ defined by $\tau(f)(t)(s)(u) = f(s)(u \land t)$ for $f \in P\Omega^{k+n-1}\Sigma^{k+n}X$, $t \in S^1$, $s \in I$ and $u \in S^{k+n-2}$. We shall identify $W(k,n;\Sigma X)$ with $\Omega W(k-1,n;\Sigma^2X)$ by this τ . The loop-

We shall identify $W(k, n; \Sigma X)$ with $\Omega W(k-1, n; \Sigma^2 X)$ by this τ . The loop-multiplication in $\Omega W(k-1, n; \Sigma^2 X)$ induces a multiplication ψ in $W(k, n; \Sigma X)$. By iteration, $W(k, n; \Sigma X) \cong \Omega^{k-1} W(1, n; \Sigma^{k-1} X)$ is a (k-1)-fold loop space.

6.4 For a space Y, there is a natural homeomorphism

$$\tau' \colon \Sigma TY = S^1 \wedge I \wedge Y \to I \wedge S^1 \wedge Y = T\Sigma Y$$

given by $\tau'(t \land s \land y) = s \land t \land y$. Recall that for $k \ge 2$,

$$\phi_2$$
: $\xi(k, n; X, A) \times \xi(k, n; X, A) \rightarrow \xi(k, n; X, A)$

is a filtration preserving multiplication (Proposition 4.2) and that

$$\beta_2$$
: $\xi(k, n; X, A) \rightarrow \Omega \xi(k-1, n; \Sigma X, \Sigma A)$

is a weak homotopy equivalence. Let β'_2 be the composite

$$\xi(k, n; TX, X) \stackrel{\beta_2}{\to} \Omega \xi(k-1, n; \Sigma TX, \Sigma X) \to \Omega \xi(k-1, n; T\Sigma X, \Sigma X)$$

where the last map is induced by τ' . Notice that $\Omega \xi(k-1, n; T\Sigma X, \Sigma X) = \Omega \xi(k-1, n; \Sigma^2 X)$. With slight modifications (taking τ' into consideration), the proof in Proposition 4.9 shows that the following diagram, in which ϕ is the loop

multiplication, is commutative.

$$\begin{array}{cccc} \xi(k,n;\Sigma X)\times \xi(k,n;\Sigma X) & \stackrel{\phi_2}{\longrightarrow} & \xi(k,n;\Sigma X) \\ & \beta'_2\times\beta'_2\downarrow & & \downarrow \beta'_2 \\ \\ \Omega\xi(k-1,n;\Sigma^2X)\times \Omega\xi(k-1,n;\Sigma^2X) & \stackrel{\phi}{\longrightarrow} & \Omega\xi(k-1,n;\Sigma^2X). \end{array}$$

Lemma 6.5 For $n \ge 2$, the following diagram commutes.

$$E_{n}(TX, X) \xrightarrow{\tilde{\alpha}_{n}} P\Omega^{n-1} \Sigma^{n} X$$

$$\beta'_{2} \downarrow \qquad \cong \downarrow \tau$$

$$\Omega E_{n-1}(T\Sigma X, \Sigma X) \xrightarrow{\Omega \tilde{\alpha}_{n-1}} \Omega P\Omega^{n-2} \Sigma^{n} X.$$

Proof. Recall that $E_n(TX,X) = \xi(n,0;\Sigma X)$. This lemma is proved by a direct calculation. We write a little *n*-cube c as $c = c' \times c'' \times c'''$ with $c',c'':I \to I$, $c''':I^{n-2} \to I^{n-2}$; an element of TX as $w \wedge x$. For $t \in S^1$, $s \in I$, $u \in S^{n-2}$ and $y = [\langle c_1, \ldots, c_j \rangle, w_1 \wedge x_1, \ldots, w_j \wedge x_j] \in E_n(TX,X)$,

$$\Omega \tilde{\alpha}_{n-1} \circ \beta'_{2}(y)(t)(s)(u)$$

 $= \tau \circ \tilde{\alpha}_n(y)(t)(s)(u).$

$$= \begin{cases} * & \text{if } t \notin \bigcup_{r=1}^{j} c_{r}''(\dot{J}) \\ \tilde{\alpha}_{n-1}[\langle c_{r_{1}}' \times c_{r_{1}}''', \dots, c_{r_{i}}' \times c_{r_{i}}''' \rangle, w_{r_{1}} \wedge v_{r_{1}} \wedge x_{r_{1}}, & \text{if } c_{r_{q}}''(v_{r_{q}}) = t, 1 \leq q \leq i, \\ \dots, w_{r_{i}} \wedge v_{r_{i}} \wedge x_{r_{i}}](s)(u) & t \notin c_{r}''(J) & \text{if } r \notin \{r_{1}, \dots, r_{i}\} \end{cases}$$

$$= \begin{cases} d_{r}w_{r} \wedge z_{r} \wedge v_{r} \wedge x_{r} & \text{if } c_{r}'(d_{r}) = s, c_{r}''(v_{r}) = t, c_{r}'''(z_{r}) = u \\ w_{r} \wedge z_{r} \wedge v_{r} \wedge x_{r} & \text{if } s \geq c_{r}'(1), c_{r}''(v_{r}) = t, c_{r}'''(z_{r}) = u \\ * & \text{otherwise} \end{cases}$$

$$= \tilde{\alpha}_{n}(y)(s)(u \wedge t)$$

Lemma 6.6 For $k \ge 2$, the following diagram commutes.

$$\begin{array}{cccc} \xi(k,n;\Sigma X) & \stackrel{\omega}{\longrightarrow} & W(k,n;\Sigma X) \\ \beta'_2 \downarrow & & \cong & \downarrow \tau \\ \Omega \xi(k-1,n;\Sigma^2 X) & \stackrel{\alpha_\omega}{\longrightarrow} & \Omega W(k-1,n;\Sigma^2 X) \; . \end{array}$$

Proof. The diagram in this lemma naturally injects into the diagram in Lemma 6.5. \Box

Theorem 6.7 For $k \ge 2$, the following diagram commutes.

$$\begin{array}{cccc} \xi(k,n;\Sigma X)\times \xi(k,n;\Sigma X) & \stackrel{\phi_2}{\longrightarrow} & \xi(k,n;\Sigma X) \\ & & & \downarrow \omega \\ W(k,n;\Sigma X)\times W(k,n;\Sigma X) & \stackrel{\psi}{\longrightarrow} & W(k,n;\Sigma X) \ . \end{array}$$

402 S. Wong

Proof. Consider the following diagram:

The top square commutes from Sect. 6.4. The bottom square commutes from the definition of ψ . The squares on the right side and the left side commute from Lemma 6.6. The back square commutes from the naturality of loop multiplication. The map τ is one-to-one. All these imply that the square at the front commutes. \square

The following proposition shows that if $W(1, n; \Sigma X)$ has an H-space structure, then the mod p homology of X is that of a sphere if $\tilde{H}_*(X; Z/p) \neq 0$.

Proposition 6.8 If for some prime p, $\sum_{i>0} \dim_{Z/p} H_i(X; Z/p) > 1$, then for n > 0, $W(1, n; \Sigma X)$ is not an H-space.

Proof. We make use of the Samelson product and the fact that the suspension of a Whitehead product is nullhomotopic in this proof. In the following, $H_*(-)$ stands for $H_*(-; \mathbb{Z}/p)$, W stands for $W(1, n; \Sigma X)$.

Consider the fibration sequence

$$\Omega W \xrightarrow{\lambda} \Omega \Sigma X \xrightarrow{\Omega E^n} \Omega^{n+1} \Sigma^{n+1} X .$$

To show that W is not an H-space, it suffices to show that $H_*\Omega W$ is not a commutative algebra.

There is a map $\bar{\kappa}$: $\Omega Y \times \Omega Y \to \Omega Y$ given by $\bar{\kappa}(f,g) = ((f \circ g) \circ f^{-1}) \circ g^{-1}$ which when restricted to $\Omega Y \vee \Omega Y$ is nullhomotopic. Thus it induces a map κ : $\Omega Y \wedge \Omega Y \to \Omega Y$. Define a map Ω^2 as the composite

$$X \wedge X \xrightarrow{E \wedge E} \Omega \Sigma X \wedge \Omega \Sigma X \xrightarrow{\kappa} \Omega \Sigma X$$

and inductively define $\operatorname{ad}^j\colon X^{[j]}\to\Omega\Sigma X$ as $\kappa\circ(E\wedge\operatorname{ad}^{j-1})$ where $X^{[j]}$ is the j-fold smash product of X. Let \overline{X} denote $\bigvee_{j\geqq 2}X^{[j]}$. Collecting the ad^j together yields a map $\operatorname{ad}=\bigvee_{j\geqq 2}\operatorname{ad}^j\colon \overline{X}\to\Omega\Sigma X$. Let ad^j and ad be the adjoints of ad^j and ad respectively. Let $\phi\colon\Omega\Sigma\overline{X}\to\Omega\Sigma X$ denote the multiplicative extension (see Sect. 3.1) of ad. Then $\phi=\Omega(\operatorname{ad})$. It follows from the inductive definition of ad^j and the fact that $E\circ\operatorname{ad}^2$ is nullhomotopic [A, Proposition 3.2] that $\Omega E^n\circ\phi$ is nullhomotopic. Therefore, there is a lift $\ell\colon\Omega\Sigma\overline{X}\to\Omega W$ such that $\lambda\circ\ell=\phi$.

Consider the following commutative diagram.