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in which the right square is a pushout square of path-connected open subsets of
Fil(k,n; 2X). All the maps in the diagram are inclusions. We have
Fy&(k, n; 2 X) ~ TX from Lemma 2.3(ii). Since (W}, ;) is a strong NDR-representa-
tion of (F;&(k, n; ZX), F;_, &(k, n; 2 X)), the homotopy g; restricted to P is a strong
deformation retraction of P onto F;_,¢&(k, n; 2X), which is assumed to be 1-
connected. Hence P is 1-connected. The left square, together with Lemmas 5.7 and
5.8, imply that 7, (P n Q) - m, Q is onto. Therefore, F;&(k, n; 2X)is 1-connected by
invoking the Seifert and Van Kampen Theorem again. []

Proposition 5.10 Under the same conditions as in Proposition 5.9, Cy,X, F;Cy,, X
and D;Cy,X are 1-connected.

Proof. The proofis a simpler modification of that of Proposition 5.9. We induct on
j with the following diagram

OnvV —s U
l |
V  — FiCaX

which is a pushout of path-connected open subsets of F;C,.,X. O
Remark. In fact, the spaces in Proposition 5.10 are highly connected if X is [CT].

Corollary 5.11 Ifr = 2 and j 2 0, then &(k,n; S"*1), F;é(k,ny S™ 1), D;E(k, ny ST,
Ci4nS", FiCy4,S" and D;Cy . ,S" are all 1-connected.

6 The multiplicative structure of W(k, n; £ X)

For k = 2, W(k, n; £X) is naturally homeomorphic to QW(k — 1, n; £2X), which
give W(k, n; ZX) a loop space structure. In this section, we show that the multipli-
cation ¢, in &(k, n; Z X) (see Proposition 4.2) is compatible with the loop multipli-
cation in W(k,n; ZX) for k = 2. This compatibility can be proved by a direct
calculation, but since the notation becomes quite unmanageable, we break it down
into a few lemmas. For k = 1, we show that it is rarely the case that W(1, n; ZX) is
an H-space.

6.1 For a space Y, there is a natural homeomorphism 7: PQY— QPY. By
definitions, PQY = Map, (I; Map,(S%; Y)); QPY = Map,(S'; Map,(I; Y)). For
fePQY, t(f) is given by t(f)(t)(s) = f(s)(t) for teS* ad sel. The inverse of t is
given by ' (g)(s)(t) = g(t)(s).

Lemma 6.2 Let 1: X — Y be a pointed map, F be the homotopy fibre of A, and G be
the homotopy fibre of Qi: QX — QY. Then there is a natural homeomorphism
T: G- QF.

Proof. Recall that the homotopy fibre of a map has been explicitly defined in Sect.
5.1. In the following diagram,
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Or QPY
G \ PQY
ax £ Qv
o | =
Qx g Qy

the pullback square at the back is gotten by looping the pullback square

F — Py
1 ) !
X — Y.

The map t: PQY — QPY induces a unique map %: G — QF such that the whole
cube is commutative. Arguing with the universal property of pullbacks and the fact
that 7 is a homeomorphism, we see that 7 is a homeomorphism. [

6.3 We apply Lemma 6.2 to the map Q% 2E": @ 23kXx - Qktn-2xk+nyx wwith
k = 2. Its homotopy fibre is W(k — 1, n; £2X). The homotopy fibre of Q% 1E" is
Wik, n; £X). Since W(k, n; £X) is a subspace of PQ**"~13**nX there is a homeo-
morphism ©: W(k,n; XX)— QW(k — 1,n; £2X) which is the restriction of
T P izkiny L QPQkn-25ktny defined by < f)(t)(s)(u) = f(s)(u A t) for
fePQktn-lzktny eSSt sel and ueSk "2,

We shall identify W(k, n; 2X) with QW(k — 1,n; £2X) by this 7. The loop-
multiplication in QW(k — 1, n; 22 X)) induces a multiplication y in W(k, n; 2X). By
iteration, W(k, m; X) = Q"' W(1, n; Z* "1 X) is a (k — 1)-fold loop space.

6.4 For a space Y, there is a natural homeomorphism
T ZTY =S'AIAY-SIAS'AY=T3Y

given by T'(t ASAY)=SALAY.
Recall that for k = 2,

$a: &k, 15 X, A) X E(k,m; X, A) > E(k m; X, A)
is a filtration preserving multiplication (Proposition 4.2) and that
B2: E(k,m; X, A)— QE(k — 1,n; ZX, ZA)

is a weak homotopy equivalence. Let 8, be the composite
B
E(k,m; TX, X) 5 QEk—1,m 2TX, 2X)—> Qk — 1,n; TZX, 2X)

where the last map is induced by 7. Notice that Q&(k — 1,n; TEX, £X)
= Q&(k — 1, m; 22 X). With slight modifications (taking 7’ into consideration), the
proof in Proposition 4.9 shows that the following diagram, in which ¢ is the loop
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multiplication, is commutative.

£(k, m; ZX) x E(k, m; EX) 2L tkmzX)

Bax Py | LB
Qfk — 1 m: Z2X)x QE(k — 1,m 52X) —  QE(k — 1, m; 22X).

Lemma 6.5 For n = 2, the following diagram commutes.
E(TX, X) ", porizix
Byl s = |1
QE, (TZX,ZX) — % QPQ"23"X.

Proof. Recall that E,(TX, X)= &(n,0; XX). This lemma is proved by a direct
calculation. We write a little n-cube ¢ as ¢ =c¢ x¢"x¢" with ¢, c¢": -1,
¢ I"25 "2 an element of TX as w A x. For teS!,sel,ueS" ? and

]

y=[Le1s o). Wi A Xy, .., Wi A X]EE(TX, X),
Q,—y ° B2 (y)(1)(s)(u)

d .
. if t¢ () ci(J)
r=1
={ G-y [ Ot X €t o o s Cr X )Wy AUy A Xy, B (B)=t15qg5]

Ce W A U A X ](S)(1) té cy(J) if re¢ {r,....ri}

"e

drwr NZy AU AN Xy if (;‘(dr) =5, ¢/(v)=t ¢ (z)=u
={ W, A Z AU A X, if s=ci(1), ¢/(v,)=1t, ¢/ (z.)=u

* otherwise

=&, (y)(s)(u A 1)
=10 &,(y)()(s)(w). U
Lemma 6.6 For k = 2, the following diagram commutes.
E(k, m; £X) 2 Wk, n; X)
Byl . =l
Q&k — 1,n,22X) —> QW(k —1,n,Z%X).

Proof. The diagram in this lemma naturally injects into the diagram in Lemma
6.5. O

Theorem 6.7 For k = 2, the following diagram commutes.
$2
Ek,m; ZX)x E(k,n; X)) —— &k, m; ZX)

oxw | lw

Wik, n; 5X) x Wik, m; EX) —— Wik, ZX) .
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Proof. Consider the following diagram:

Q€(k — 1,n; 52X)? £ Q€(k — 1,n; £2X)
G sl
£(k,n; £X)? [ .2 £(k,n; TX) Qu
w? QW (k - 1,n; 22X)? QW (k - 1,n;£2X)
W (k,n; £X)? * W (k,n; £X)

The top square commutes from Sect. 6.4. The bottom square commutes from the
definition of Y. The squares on the right side and the left side commute from
Lemma 6.6. The back square commutes from the naturality of loop multiplication.
The map t is one-to-one. All these imply that the square at the front com-
mutes. []

The following proposition shows that if W(1, n; 2X) has an H-space structure,
then the mod p homology of X is that of a sphere if H,(X; Z/p) + 0.

Proposition 6.8 If for some prime p, Yiso dimg,,H{(X; Z/p) > 1, then for n >0,
W(1, n; 2X) is not an H-space.

Proof. We make use of the Samelson product and the fact that the suspension of
a Whitehead product is nullhomotopic in this proof. In the following, H,(—)
stands for H,(— ; Z/p), W stands for W(1, n; 2X).

Consider the fibration sequence

QE"
QWL Qsx L grigntiy

To show that W is not an H-space, it suffices to show that H, QW is not
a commutative algebra.

There is a map ©: QY x QY - QY given by &(f, g) = ((feg)ef~1)eg~! which
when restricted to QY v QY is nullhomotopic. Thus it induces a map
k: QY A QY — QY. Define a map ad? as the composite

EAE K
XAX— QXX A QXX— QXX

and inductively define ad’: X' QXX as ko(E A ad’~!) where X! is the j-fold
smash product of X. Let X denote \/; . , X'/ Collecting the ad’ together yields
amapad=\/;,,ad’: X > QXX. Let ad ’ and ad be the adjoints of ad’ and ad
respectively. Let ¢: QXX — QXX denote the multiplicative extension (see Sect. 3.1)
of ad. Then ¢ = Q(ad). It follows from the inductive definition of ad’ and the fact
that Ecad? is nullhomotopic [A, Proposition 3.2] that QE" ¢ is nullhomotopic.
Therefore, there is a lift /: QXX — QW such that 1°¢ = ¢.
Consider the following commutative diagram.
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