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0 Introduction

Immersed surfaces of constant mean curvature 1 in Euclidean three-space (hence-
forth: H-surfaces) have been found by many authors. We would like to mention
the following. In 1841 Delaunay determined all surfaces of revolution [D], which
are simply periodic except for the sphere. In 1970 Lawson described two doubly
periodic surfaces [L]. In 1984 Wente discovered immersed H-tori, and others
contributed to a further study of H-tori, namely Pinkall and Sterling achieved
a classification [PS]. Karcher obtained some triply periodic H-surfaces in 1989
[Ka]. In 1990 Kapouleas proved existence of a wealth of H-surfaces, compact
and non-compact [Kp1, Kp2]. Karcher’s and Kapouleas’ surfaces come in con-
tinuous families of the same topological type.

In this work we extend Karcher’s method — which is in turn based on Law-
son’s original ideas — to a broader class of surfaces, namely to surfaces with
ends. We get the full one-parameter family of certain symmetric surfaces. The
limiting cases for these families are as follows: surfaces whose Delaunay-shaped
building blocks have small necks and the centres are spherical, as described
by Kapouleas on the one hand, and surfaces with again small necks but a
new type of centre (which asymptotically is n-noid-shaped) on the other hand.
In between we find surfaces with maximal neck-size. For example we can embed
Lawson’s surfaces into a continuous one-parameter family of surfaces with the
same symmetry and we are able to prove that they are exactly those in the
family having maximal neck-size (Theorem 3.3). We obtain a similar result for
the symmetric surfaces with n onduloid ends, see Theorem 6.1.

The work is organized as follows. The conjugate surface construction for
H-surfaces is given in Sect. 1. Basically this is a geometric transformation which
reduces the free bundary value problem for desired fundamental patches of
H-surfaces to a Plateau problem for a geodesic polygon in the three-sphere
$°. If this polygon is embedded in the boundary of an H-convex set, Morrey’s
Solution to the Plateau problem in S followed by conjugation yields the desired
Euclidean H-surface patch. Since the Morrey solution minimizes we get H-
Surfaches provided their fundamental patch is small enough, ie. we have to
Suppose sufficiently high symmetry.
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In Sect. 2 we study particular surfaces in S3. First we describe the surfaces
associated to the Delaunay surfaces, the spherical helicoids. Their particular
significance is that any embedded end of an H-surface is asymptotic to a Delaun-
ay surface [KKS]. A foliation of S* without two great circles leads to a similar
result for spherical ends in Subsect. 4.4. Then we consider tori and Clifford
tori. The solid Clifford torus serves as an H-convex set in this work and replaces
the intersection of hemispheres used by Lawson and Karcher. In order to embed
arbitrarily long boundary contours we use the universal covering of solid Clifford
tori instead of subsets of S3.

The periodic H-surfaces we obtain are described in Sect. 3. For each surface
we specify the associated boundary contour and the H-convex set containing
it.

In the remaining sections we prove existence of surfaces with ends. Their
spherical boundary polygons are infinitely long. In Sect. 4 we approximate them
by a sequence of bounded polygons and prove convergence of their Plateau
solutions, using curvature estimates by R. Schoen and establishing local area
bounds. In Sect. 5 we apply this scheme to obtain H-surfaces with cylinder
ends, for which the H-convex barriers are easy to describe. In terms of the
parameter these surfaces are most distant to those of Kapouleas. In Sect. 6
we give examples of H-surfaces with ends of general Delaunay type.

1 Constant mean curvature surfaces in IR? and associated minimal surfaces
Q3
inS

1.1 Associated surfaces

Locally a surface in an oriented three-dimensional Riemannian manifold N
with metric g is an immersion f:Q?— N3 of class C?, where Q is a domain
in R2. f induces a metric {v,w):=g(df (v), df (w)) on Q. By the orientation
of Q and the induced metric the rotation by 90 degrees, R%®: TQ — TQ, is given
by R°Ce,=e, and R°%¢,= —e, for a positively oriented orthonormal base ¢;,
e, of the tangent space. We use the same notation R°° for the induced 90°
rotation in df (TQ)= TN, R°°df (v)=df (R°°v).

The second fundamental tensor S: TQ — TQ with respect to a continuous
choice of normal v: Q —» TN is defined by

<SU, w>=g(_Vdf(u) v, df(W)),

where V denotes the covariant derivative in N. The mean curvature of the immer-
sion is
H=1trace S=4{Se;,e;)+1{(Se,,e,),

for an orthonormal base e,, e, of the surface. f is an immersion of constant
mean curvature or H-surface if H=1 on , and a minimal surface if H=0.
Under these conventions the unit sphere S IR together with its inner normal
becomes an H-surface.

Basic for this work is Lawson’s

"
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Theorem 1.1 [L, p. 364] Let f:Q>— N3(1) be a minimal immersion of a simply
connected domain into a manifold of constant sectional curvature 1 with metric
g and second fundamental tensor S. Then there exists an associated H-surface
1:Q* > R* with metric ,,.>={.,.> and second fundamental tensor

(1.1) S=R%°S+id.

On the other hand for each H-surface in R? there is an associated minimal surface
in the 3-sphere S3 with S=R~°°(S —id).

Proof [Ka]. We verify the equations of GauB and Codazzi for the data of
T. The existence of the surfaces is then a consequence of the fundamental theorem
for hypersurfaces [doC, p. 236].

By the symmetry of S we have trace(R°°S)=0, and therefore

(1.2) det §=det(R°°S +id)
=det(R°°S)+ trace(R%° S)+1
=det S+ 1.

On the other hand f satisfies the GauB equation K =det S + R=det S+ 1, where
K is GauB curvature of the surface, and R sectional curvature of the space.
It follows K =det S. But the two surface metrics coincide and they determine
the GauB curvature, hence we have K =K. This establishes the GauB equation
K=det§+0 for f. For Codazzi’s equations we verify VySY=F §X (wlog.
[X, Y]=0). Since Vx SY =VF; SX and R°° commutes with ¥, we have F, R%°SY
=W R°°SX. Adding Vy Y =V, X, the claim follows.

Finally trace S=trace(R°°S+id)=2 by the symmetry of S and thus [ is
an H-surface. By the same calculations the converse of the theorem holds using
the fundamental theorem for hypersurfaces in S3. [

Remarks. 1. The same method yields H-surfaces in N*(c — 1) from minimal sur-
faces in N3(c), e.g. hyperbolic H-surfaces from Euclidean minimal surfaces.

2. Every rotation of the second fundamental tensor, $¢=R¢S +id, describes
an H-surface since (1.2) holds. In analogy to minimal surfaces this family of
H-surfaces is called the associated family. However ¢ = +90° leads to two differ-
ent H-surfaces, which are obtained as well by the two choices of v in (1.1)
and likewise by R®°S +id.

3. 8?<IR3 with §=id is the associated surface of the great sphere S?cS? with

. 0\ . . .

§=0. The cylinder in R?® with § =((2) 0) 1s associated to the Clifford torus
with S=( (1) _(1)) The Delaunay surfaces are associated to the spherical heli-
coids, see Subsect. 2.1.

1.2 Associated boundary curves

We denote by M2<IR?® an H-surface and by M?<$? its associated minimal
Surface. Let ¢ be a curve in Q.
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Lemma 1.2 5(s)=/(c(s)) is a curvature line and geodesic of the surface M cR3
iff the associated curve y(s)=f(c(s)) in M describes a geodesic of S, that is
a great circle arc.

Proof. We choose a normal v resp. ¥ in M resp. M. Let us use - for the scalar
product in R?® and S’<IR* and denote the covariant derivative V, along a
geodesic by d/ds in R® and by D/ds in S3. Since dV/ds is parallel to § we
have

e d ~ 90 %
(1.3) 0=—¥-R*j

=—(8¢ R%¢)=—{(R°°S+id) ¢, R%°¢) = —(§¢,¢)
Bv. _ — —
ds == ds ¥

As g=g, 7 is a geodesic of the surface iff § is. Hence Dy/ds is parallel to v,
and by (1.3) Dj/ds=0, that is y is a geodesic of S, and vice versa. []

:=g(V, v, R%%y) is called torsion and k:=g(V,},v) curvature of the curve y;
Eq. (1.3) then reads

T=—K.

The torsion of a geodesic in N is the rotation speed of the normal and thus
depends on the surface. We compute this speed in terms of the associated curve:

| =

(1.4) k=7

<

=%v-R9°'ﬁ+l=1+l.

]

(S

S
, 6> =((R°°S+id) ¢, ¢)=— (8¢ R%¢) +1

o

Since the sign of curvature and torsion depends on the normal let us fix orienta-
tions.

Definition 1.3 (i) (Orientation of S3) r, v, weT,S? are positively oriented, if
r, v, w, pelR* are positively oriented.

(i) (Choice of normal) The normal v of a surface f: 2 — N? orients df (v), df (W),
v positively if v, we TQ are positively ortiented. In particular df (v), R°°df(v)
v are positively oriented.

(iii) Let y be a geodesic in N and v a vector field along y. Then v right (lef!)
rotates with respect to the axis j if J, v, ¥, v are positively (negatively) oriented.

1.3 Geometric data of H-surfaces

We construct H-surfaces invariant under a group of planar symmetries. A fundd-
mental patch generates the comlete surface by the group of reflections. We assum¢
the patch is simply connected. Its boundary consists of planar curves 7; which
must be symmetry lines (S7; || §;). See images in Subsect. 3.1 for an example.
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A fundamental patch, bounded by n curvature lines §; (parameterized with
unity speed), defines the following geometric data:

(i) The length T; of the curvature line 7;, also denoted by |7
(ii) The vertex angle &= n/(m;+ 1), m;eN, of two edges J;, 7, ; satisfies

cos &=c08 L (§;, Fi+1)= —F:(T)- ¥:+,(0).
(iii) The tilting angle t;eR of the normal 7,

V-9, da.

I3

-l
Il
Oty
QU
&=~

This angle measures the total turn of the normal, cos t;=7(5;(0))- ¥(5;(1)).

Vertex and tilting angle modulo n are determined by the symmetry type, that
is by the boundary polygon. However the lengths are unknown. If in addition
the position of the normal at the vertices is prescribed then the tilting angle
can only be chosen modulo 27.

By Lemma 1.2 the associated contour is a geodesic polygon in S*® with
the same lengths [;=T; and the same vertex angles

(15) ;=8

because the metrics coincide. An integration of (1.4) along a geodesic arcy,
yields:

1
(16) E=
(0]

Here we used the notation

1
__¢b 90
ri= gds v(y)-R°°jdo

for the rotation angle of the tangent plane along a geodesic arcy=S>. Indeed
reR measures the total rotation of the normal with respect to parallel transport.

;is positive for right rotations (y, v, Dv/ds= — R°°§ positively oriented). Given

i»€;, t; the associated contour in S* can be found arcwise: Prescribing a length
L=T; to y:» the position of the normal v(y;(/})) at the endpoint is determined
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by (1.6). Then (1.5) gives the correct vector ;. ,(0) in the tangent plane v*(y,(l,)).
In Subsect. 1.5 we prove there exist lengths, such that the boundary contour
closes.

1.4 Hopf vector fields

Karcher [Ka] introduced the idea to measure the angles of rotation in S3 with
respect to rotating vector fields. In terms of such fields the right hand side
of (1.6) does not contain the unknown length any more. In S® such vector
fields exist:

Definition 1.4 A vector field t: S — TS? is called Hopf vector field if t(x)=T-x
with a skew symmetric orthogonal 4 x 4-matrix T= —'T=—T !,

According to Definition 1.3(iii) T right rotates along the great circle cossx
+sinsy, if y, Tx, Ty, x is positively oriented for x_Ly. By a homotopy argument
this orientation agrees for all x, y it is defined for. Hence right and left rotating
Hopf vector fields are well defined.

Lemma 1.5 (i) Hopf vector fields are Killing fields whose integral curves are
great circles.

(ii) The angle of a Hopf field with a great circle is constant.

(iii) If a Hopf field is not tangent to a great circle it rotates with constant speed
and once around the great circle.

(iv) Furthermore two right rotating Hopf fields make a constant angle with each
other and are thus determined by their values at one point xeS>.

Proof. (i) Since TxLlx the integral curves of T are the circles s~ (cos s)x-
+sin s) Tx.
(i) Let y(s)= —7(s) be the great circle. Then we have

d . .. .
a(TV'V)—TY'V-FTY’V—O-

: . . d .
(iii) By (ii) Ty rotates around 7 provided y#+ + Ty. The velocity vector s Ty=T)

. D "
projected to the tangent space of S3, s Ty=Ty—(Tj-7) 7y, is of constant length

D = . . -
(1.7) }E Ty| =|T5|>—2(Tj-y)* +(T5-7)*|y|*

On the other hand Ty has a component orthogonal to  with length
(1.8) | Ty —(Ty-9) 91> =1=2(Ty-5)> +(Ty-9)* |3/

By the skew symmetry of T (1.8) and (1.7) coincide. Therefore the rotation
speed of the orthogonal component of Ty is + 1.

(iv) is a consequence of (ii) and (iii). [
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We can find an orthogonal basis of three right rotating fields

0-1 0 0 0 0 0 1 001 0
1 00 0 0 010 0 0 0 —1
UNA=ts 001 B\ 01 00) 2100 of
0 01 0 1 00 0 010 0

where Ax, Bx, Cx, x are positively orientated. For a?+4 f%+72=1 a linear
combination a4 + fB+7yC again is a right rotating Hopf field. In the following
all Hopf vector fields are right rotating unless stated otherwise.

Using property (iv) of the preceding lemma we define angles between Hopf
fields pointwise:

L (A, B):=aq,

if A-B=cosa for 0<a=<180°. Let the oriented angle of two fields B, C with
respect to a third field AL(B, C) be L ,(B,C)=+ L(B,C), depending on Ax,
Bx, Cx, x being positively resp. negatively oriented in R*. Finally let the oriented
angle of two fields B, C with respect to a linear independent field A be defined
by the projection of B, C to A*:

L 4(B,C)=L(B—(A-B) A, C—(A-C) A).

Thus £ ,(B, C) is the dihedral angle of the planes span{A, B} and span{A4, C}.
If a right rotation by +90° leads from B to C with respect to the axis 4 in
the sense of Definition 1.3(iii) then £ ,(B, C)= +90°, provided A4, B, C are posi-
tively oriented. All computations with respect to oriented angles are modulo
2m so that we have identities like £ (B, C)= L ,(B, D)+ L 4(D, C).

1.5 Existence of closed associated boundary polygons

Theorem 1.6 Let n=>4 angles 0<e;< 180° and n angles t;€R be given and suppose
e,_,=e,_1=90°and t,_, +0 mod n. Then there is a closed polygon I" consisting
of n geodesic arcsvy; in S*, with n normals in the vertices, having

(i) vertex angle L (y;,7;+,)=e; (indices mod n) and

(i) rotation angle of the tangent plane along an arc y; satisfying r;—|yil
=t; mod 2.

(i) We can prescribe any lengths 0<l,, ..., l,_3<m except for isolated values
lo have I" embedded.

Proof. We claim that if we take y; to be an integral curve of A4; with y;(0)
=%:-,(l;_1), where A, satisfies

(1.10) L(—A;, Ay y)=¢;

; and L, (—A;_;,A;+,)=t;mod 2,
then (i) and (ii) hold, no matter which lengths 0 <[;=|y;| <n we choose.

Clearly the first equation of (1.10) implies (i). To compute r; we split the
Totation into two parts: A rotation of 4;_; to A4;,, at y;(0) and the rotation
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of A;,(yi(s)) along y;(s). For the latter we let A* be the Hopf field orthogonal
to A;=7;and 4;,,. We obtain

1.
''D
r,~= LA;(—Ai—l’Ai+l)_ j aAl'Rgo?idG mOd 2”.
0

Since both r; and £ (.,.) are positive for right rotations with respect to the
. : . D .
axis A;, the sign of the first term is correct. But a(Aly,-)=Al)5i and since

A'y, is orthogonal to y;, A*y;, y; we must have 41j,= +R°°},. In fact A'y,=
—R®%j,; since A" is right rotating, that is j;, A*7;, A*y;, 7; is positively orientated
as is j;, R°%y;, v=A4"y,, y; by Definition 1.3(ii). This yields (ii) for the claim:

L
ri=La(—Ai_y, Aixy)+ | AV At jido=t;+1; mod 2m.
0

We now prove we can satisfy (1.10) and find lengths such that the polygon
closes. To start we choose A, and A, such that £ (—A4,, A,)=e,. Then we
determine fields 4;,, for 2<i+1<n—1 from (1.10). We fix a point y,(0) and
choose lengths 0</,, I, <n. Furthermore we choose lengths I, ..., I,_s and
I¥_4, I¥_3 small enough so that no self-intersections occur. Let 9 be the great
circle passing through vy,(0) with tangent vector 4, and @* be the great circle
through 7, _;(l¥_5) tangent to 4,_,. We look for an integral of 4,_, meeting
both 3 and @* in an angle of e,_,=e¢,_,=90° and defining thereby lengths
ln-—2, ln—l, ln'

First we rule out that 3 and @* intersect eachover. By assumption on ¢,_,
they do not coincide. By Lemma 2.6 either we can find a length [,_; (close
to [¥_;), such that @, defined as the great circle along 4,_, passing through
Yn-3(l,—3), does not intersect 3. Or y,_5, @*, 3 are contained in a torus 07,.
However this can occur only for n=5, since y,_5 is then Clifford-parallel to
9. Thus there is an edge y,_,. If y,_, is contained in 4T, then y,_, left rotates
with respect to 0T, and changing [*_, to I,_, gives y,_ 34 0T,.. The same conclu-
sion holds if y,_,4¢0T,. Hence we can assume 31 @ =g for lengths I,_; and
l,—4. The same argument shows we obtain an embedded polygon for [, ...,
l,— 3 any numbers less than 7 except for isolated values.

Yn-3(5_3)
Tn-3 (l'n—3)

Two disjoint great circles 9, @ have two perpendicular great circles ¢ and
@, which meet the former in a distance of n/2. Namely let 3(s) and O(t) be
two points in minimal distance and let ¢ be the great circle containing these
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two points. ¢ meets 3 orthogonally in 3(s) and therefore ¢ ={3(s+n/2)}*. In
particular 3(s+m/2) L@ (t) and likewise © (t+m/2)L9(s). That is the great circle
®:={3(s), ©(1)}* is also perpendicular.

¢ and @ are orthogonal to the linear independent fields 4,_, and A4,. By
assumption on e,_,, e, they are necessarily integrals of 4,_; — this is the
main idea of the proof. Four great circle arcs, two of ¢ and two of @, join
the great circles 3 and @ in correct orientation +A,_,. For the respective
lengths [,_,, I,_,, I, the polygon closes. Possibly readjusting the lengths [, ...,
l,_ 5 again, this polygon is seen to be embedded. []

1.6 Adding handles

We can easily enlarge the spherical polygon to obtain H-surfaces with an addi-
tional handle.

Theorem 1.7 Let I' be a closed polygon consisting of n=3 geodesics y,, ..., Vn
with tangent Hopf vector fields Ay, ..., A,. Suppose the three edges v,, Y1, 72
are not contained in a torus (see 2.3), that is

(L11) il 3La,(—An £A45) or L(—A, A)F L(—A;, £ 4,)

Then there is an enlarged closed polygon I'* ={y§,y%,v%.73, o> Yu—1, 75} along
the Hopf fields Ay, Ay, ..., A,, where Ag=1{A,, A,}*, with the following proper-
ties:

(i) The vertex angles of the new edge are L (y},y¥)= L(y§,7)=90° the other
vertex angles remain the same.

(i) The rotation angle along the new edge y§ is the vertex angle of 7y,, 7::
Ly (—A,, A))= % L(}n,71)- The rotation angles of the two adjacent edges change
by 90°:

LA,.(—An—la Ao)= LA,.(_An—U Al)lgoo
and
Z—A,(—Ao, A2)= LAI(—A,,,AZ)190°.

All other rotation angles remain unchanged.

(iii) I'* can be chosen such that the new edge is arbitrarily short and the lengths
of the adjacent edges change by a small amount.

Proof. We choose a length I$<I,. Then the integral of A, passing through
72(I%) does not intersect the great circle which contains y, by assumption (1.11).
We take ¥ to be the common perpendicular of the great circles y¥ and 7v,.
Now we proceed as in the proof of Theorem 1.6. The other sign in (ii) relates
to the choice I >1,. [

Depending on the sign chosen in (ii) the associated H-surface has a handle
to the inside or outside which closes after 2m—1 reflections if /2, (4,,4,)
= t+n/m. Theorem 1.7 allows to construct polygons with many right angles
by the successive insertion of handles.
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1.7 Solution of Plateau’s problem in H-convex sets

We want to solve Plateau’s problem for the boundary polygon found in Sub-
sect. 1.5. By the results of [H2] the Plateau problem is solvable in C2-H-convex
Riemannian manifolds, that is in manifolds whose boundary N is of class
C? and has non-negative mean curvature with respect to the inner normal.
In order to control the boundary behaviour of the surface we need to enclose
the boundary polygon in the H-convex boundary and therefore we want to
allow for edges of N.

Let M be a compact minimal surface in R* with boundary I'. By the maxi-
mum principle a complete embedded minimal surface S, moved from oo towards
M, cannot touch the interior of M before S intersects the boundary I'. Tt is
therefore convenient to extend the notion of C2-H-convexity to the following:

Definition 1.8 A closed manifold N with boundary is H-convex, if there are
closed submanifolds N;,, 0<i<I, and embedded C?-surfaces S;=N,_, with
boundary satisfying:

(i) N,is C>-H-convex and N; =N.

(ii) N; is (the closure of) a connected component of N;_, —S,; for i>1.

(iii) 0S;=ON;_, and S; has non-negative mean curvature w.r.t. the inner normal
of N,.

(iv) For each §; there exists a continuous family (w.r.t. distance of surfaces)
of H-convex embedded C?-surfaces S7 < N;_, —int N;, with boundary dS?< N;_,,
such that S? =S, and either

(@) 0<o=1and S!<dN._,

(b) or (applicable to non-compact N;,_, only) 0<¢ < oo and dist(S?, ;)= o.

We call the sets S; barriers. Our definition of H-convexity is slightly tighter
than the usual one [MY]. However the solvability of Plateau’s problem in
N is immediate, since by the maximum principle the solution is contained in
each N, and therefore in N:

Theorem 1.9 Let N* be an H-convex manifold with boundary, and I' a Jordan
curve in N which bounds a topological disk of finite area. Then there exists
a map of the disk f:D— N, such that (i) in the interior of D, f is a smooth
minimal immersion, (ii) f (0D)=T is continuous and monotone, and (iii) f has mini-
mal area among all maps of the same topological type.

fis an immersion by the results of [O] and [G].

Theorem 1.10 (Boundary regularity [H1]) If f:D— N is a minimal surface of
class C°(D, N)n C?(D, N) which maps a boundary arc § = dD to an analytic Jordan
arcyc N, then f is analytic on D U .

Lemma 1.11 (Reflection principle [L, Proposition 3.1]) Let f be a spherical mini-
mal surface of class C*(D* UI, N3(c)), where D* ={(x,y)eD|y>0} and 1=
(—=1,1)x{0}<dD™*. If f(I) is either contained in a geodesic y, or perpendicular
to a totally geodesic plane o, then f can be extended to D by reflection to d
minimal surface f* of class C*(D, N).

This reflection is either 180°-rotation around y or plane reflection in o. For
H-surfaces a similar theorem holds [DHKW, 3.4 Theorem 2].



New surfaces of constant mean curvature 537

If f: D* - N is a minimum of area with geodesic boundary f(I) the extension
by reflection f* is free of branch points on I, i.e. of points with |V f*|=0; this
is a result of [GL]. If two adjacent geodesic arcs of the boundary curve make
an angle of e;=n/(m;+ 1), m;eIN, we can extend the surface to a complete neigh-
bourhood of the vertex by Lemma 1.11. This neighbourhood can be reparameter-
ized regularly according to Theorem 1.10, however (true) branch points may
occur.

If f: D — S? parameterizes a spherical minimal surface without branch points,
then the associated H-surface f: D —IR? is regular, since the second fundamental
tensor S is bounded. Higher regularity follows from the H-surface equation.

In the next theorem we embed the boundary curve of the H-surface into
the boundary of an H-convex set in order to exclude vertex branch points
and to prescribe the rotation angle ¢; as a real number instead of mod 2 7.

Theorem 1.12 Let I' be a closed polygon, embedded in an H-convex manifold
N3(1). Let the arcs be integrals of the Hopf fields A, ..., A,, and e,, t; be angles
such that (1.10) is satisfied. Suppose I' bounds a disk of finite area in N and
satisfies:

(i) Every vertex of the polygon is contained in two different H-convex barriers,
ie.in an edge of ON.

(i) There is a vector field v; along y; contained in the boundary tangent space
T, N—span{y;}, coinciding with —y,_,(l;—,) and 7;,+,(0) at the vertices, with
rotation angle r;(v;)=t;+1;.

Then there exists a fundamental H-surface patch M cR?® with the geometric
data e; and t;, whose reflection in IR? extends to a complete immersed H-surface.

Proof. We take the Plateau solution M given by Theorem 1.9. With the help
of the maximum principle we see from assumption (i) that the surface extended
by reflection is free of branch points. []

This theorem reduces the existence proof for H-surfaces to the construction
of suitable barriers for the associated boundary curve. By the positive curvature
of S3 this becomes more difficult the bigger the boundary polygon is.

2 Some surfaces in S3
2.1 Spherical helicoids and Delaunay surfaces

The helicoids are the associated surfaces of the Delaunay surfaces. We choose
a great circle (cosu, sinu, 0, 0) and an orthogonal great circle (0, O, cos au,
sin au) parameterized with speed aeR. Joining corresponding points with great
circles we obtain a ruled surface f*=f:R?—>S3cR*?,

COS v COS U
cosv sin u
(2.1) u,v)=
fu.) sin v cos au
sinvsin au
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f° parameterizes a great sphere, ! is a Clifford torus (see 2.3). The tangent
space is spanned by

—cosvsinu —sinv cos u
COSv Cos u —sinv sinu

f;l(uﬂ U)= . . ) f;,(u, U)=
—asinvsinau COS v CoS au
asinvcosau cosvsinau

S is an immersion called (spherical) helicoid provided a+0, with metric

(fj’,,zj; f};zf,,):(cos2 v +(;12 sin? v (1))

In the following we suppose a+0 and write y(v):=|f,|>0. The normal

—asinvsinu

1 asinv cosu
n(u,v)=—— .

y(v) cosvsinau

—Ccosvcosau

. 1 .\ .
orients G Jusfos 1, f€R* positively. The second fundamental tensor is
Sfo=—m==11s and Sfi=—n,=—sf.

1 .
f./y and f, are orthonormal and thus 2H=traceS=S;f,,- %fu+Sf,,-ﬁ,=0, ie.

the helicoids are minimal surfaces.

By Lemma 1.2 all v-lines are curvature lines on the associated H-surfaces.
Thus there is a continuous group of reflections and the H-surfaces are either
rotationally symmetric (if a —1 we have Sf,=(1+a/y?) f,#0) or translation
invariant and cylinders (Sf,=0 in case a= — 1). The Delaunay surfaces are char-
acterized as the only non-compact rotationally symmetric H-surfaces [D]. We
want to show that all Delaunay surfaces can be derived this way.

Suppose a> —1. The boundary of the helicoid f“:[0, n/(2+2a)] x [0, n/2]
—S8% +a>0, consists of integrals of the Hopf fields F A4, C, A, —B where
A, B, C are as in (1.9). Indeed we have ’

d n d d
—af= (—u,i), Cf =210 —v),  Af=—f(0)

and using cos n/(2+2a)=sinan/(2+2a)

22) —Bf=ad—vf(2—:E,v).

We label the arcs in this order by y,, 7,, 72, 73. We have four rectangular
vertex angles and four tilting angles —90°, 0°, —90°, 0° in case a>0 resp-
90°, —180°, —90°, —180° if —1<a<O0, e.g. the first tilting angle is Lz 4(B, )
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=TF90° since A, B, C is positively oriented. These are exactly the geometric
data of half a period of a 90° segment of the Delaunay surfaces; either the
embedded onduloid, or the immersed nodoid (for a>resp.<0):

‘717 0°

’70, -90°

‘?33 0°

The u-lines are circles in R? of the length 4y(v) n/(2+2a), which is extremal
for v=0 mod n, where y=1, and v=n/2 mod n, where y=|a|. Thus the ratio
of the radii is

r

min

" =la] for —1<axl

max

resp. 1/|a| otherwise. It therefore suffices to consider 0 <a =<1 for the onduloids
and —1<a<0 for the nodoids to obtain all Delaunay surfaces. Note a= +1
is associated to the cylinder of radius 1/2 and a=0 to S2.

Theorem 2.1 Each Delaunay surface is the associated H-surface of a helicoid
f*u,v) with —1<a=<1 and a+0 in S3. A segment of angle ¢ of the Delaunay
surface, containing k periods is associated to a piece of the helicoid with 0<u<
¢/(1+a) and 0<v<km.

2.2 Foliation of S* with helicoids

n 1
2 1+|a|’

Let a0 and set a:=

0 0 0 1
0 0 signa 0
0 —signa 0 O
—1 0 0 0

K:=

For a>0 the field K is the right rotating Hopf field B from (1.9) whereas K
is left rotating in case a <0.

Lemma 2.2 Kf(u, v)-n(u, v)>0 for |u|<a and =0 for u= +a.
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Proof.
sin v sin au —asinvsinu
Kf sign a sin v cos au 1 asinv cosu
‘n= : . o— .
—signacosvsinu] y() \ cosvsinau
—COS v Cos u —COos v cosau

1 . . . .
=W(a sin?v(—sin u sin au+sign a cos u cos au)
Y

+cos? v(—sign a sin u sin au+ cos u cos au))

1 - . .
=W(Ia| sin“v(—sin u sin|a|u+cos u cos au)

+cos?v(—sin u sin|a|u+ cos u cos au))
_ cos?v+|al sin?v

: cos(u+|alu)
|/ cos® v+a? sin® v

>0, if 1+]a)ul<n/2. O

Thus the flow of the helicoids f*((—a,«)x [0,27)), by the field K gives rise
to a foliation of S without the two great circles n% (t)==f"(+ o, t). Namely
Pi=¥:R>—S3 ¥(h,u,v):=cos ¢ f*(u, v)+sin ¢ Kf(u, v) satisfies:

Lemma 2.3 (i) Y(¢, 2o, 0)=P(0, +o, vFP)=n, (v F ¢)

(i) Y(p+m, u v)="Y(p,u,v+m)

(iii) ¥': D — 8 is injective on D:=[0, 1) x (—a, a) x [0, 27) and
(iv) the image of D is S*—n,=S83—(n, un_).

Proof. (i) For a>0 we have i, = F By, by (2.2) and the result follows. For
a<0 the calculation is similar.

(i) Use f(u, v+m)= —f(u, v).

(iii) (u, v)— ¥ (¢, u, v) with |u|<w« is a minimal surface with boundary #. for
each ¢. We set

$o:=Inf{dp>0|¥ (). U, V)=f(u,v) and (u, v)%(U, V);|ul, |U|<a;0<0, V<2n}

and claim ¢,=m.

Ho =7 by (ii). We show ¢¢>0. f:[—a,a] x [0,27) —»S? is injective. Namely
if f(u,v)=f(U, V) the quotient of the first two components is tan u=tan U and
since a<n/2 it follows u=U and v=V. Hence costf+sintn is injective for
0<t<e¢ and (u,v)e[ —a,a] x [0,27). Finally, by the preceding lemma ¥ is an
injective reparameterization of the above on [0, &(8)) x [ —a+ 4, a—o6] x[0,27)
for any 6> 0. Since f is locally minimizing &(J) is bounded away from 0. Either
¥(¢o, U, V) intersects f(u,v) in the interior (Ju|,|U|<a). Because the touching
is locally on one side the surfces coincide by the maximum principle. Or the
two surfaces are tangential in a point of the common boundary without interior
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intersection. By the boundary maximum principle they coincide. In order to
prove ¢o = it is therefore sufficient to conclude from

cos ¢ COS U COS U
0 cos v sinu
¥(¢,0,0)= = . =f(u,v
(¢,0,0) 0 sin v cos au S (w,0)
sin ¢ sin v sin au

with 0<¢p<m and —a<u<a, 0<v<2n that ¢, u, v are equal to 0. However,
all other cases lead to a contradiction:

s 3 . .
v#O,E,n,En => cos v, sin v$0 = sinu, cos au=0,

ve{g,—;—n}z ¢=mn/2 =sinau=1,
v=n=>u=0=cos¢p=—1.
(iv) The image of D under ¥ is open and closed in S*—75,. [

By the maximum principle a uniqueness theorem follows:

Theorem 2.4 Let M = S*—y, be a compact minimal surface with boundary satisfy-
ing IM<¥(0,.,.) and ¥(¢g,.,.)"M=g for a ¢o. Then M is contained in the
sheet ¥(0,.,.).

Corollary 2.5 The helicoids W= {f“(u,v)| —¢{<u=<¢ 0=<v<2mn} are stable for
&<

By Theorem 2.1 W, belongs to a 180° segment of the onduloid if a > 0.

2.3 Tori and Clifford tori

Let us define F:R® - S3 by

cosr cos(x+y)
cosr sin(x+y)
sin r cos(y — x)
sin r sin(y — x)

(23) F(r’x5y)=:

The image of 0<r<n/2, 0<x<2n, 0<y<n parameterizes the whole sphere
since

(2.4) F(r,x+2mn,y)=F(r,x,y) and F(r,x,y+n)=F(r,x+m,Y).
The set T,:={F(p, x, y)|0< p<r} is called a solid torus resp.
(2.5) Ti=Tys={xeS?|x2+x2<1/2}

the solid Clifford torus. These are tubular neighbourhoods of the soul, i.e. the
great circle F (0, x, 0)= F (0, 0, x). We call the boundary 0T, for 0 <r<90° a torus,
resp. 0 T =0T, the Clifford torus.
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x> F(r, x, y)and y— F (r, x, y) are great circles. They have a constant distance
r to the soul and are called r-Clifford parallels to the soul. Their tangent vectors
are

0—-1 0 0 0-10 O
0 1 0 0 O 0 1 00 O
xf=lo o o 1 JF @™ 5 F=ly o0 |F
0 0-1 0 0O 01 o
Thus
(2.6) iF(rxy)~iF(rxy)=cos2r—sin2r=0032r
ox " 777 gyt T

and two intersecting great circles on 07, make an angle of 2r. In particular
the Clifford torus has orthogonal asymptotic lines and therefore is a minimal
surface.

By Definition 1.4 9F /0y is a right rotating Hopf vector field, whereas 8 F /0x
is a left rotating Hopf field. Indeed using (1.9) we have 0 F /0y=A-F. Along
an A-line the field 0F/0x once left rotates w.r.t. parallel fields resp. twice left
rotates w.r.t. right rotating fields. We describe this left rotating field on the
Clifford torus with the right rotating fields from (1.9):

(2.7) % F(45° x, y)=(cos 2y B—sin 2y C) F(45°, x, y).

Drawing the Hopf fields into the domain we get (identification of the boundary
as indicated by the dots, see (2.4)).

180° T T } T "’BT ®C
A A A A A

t t f f——C-t oB

90° : -—B eoC

y -—C ®B

0° -T——z —B ®C
0° 90° 180° 270° 360°

The inner normal of the solid Clifford torus T,
0 "
(2.8) n(x, y)= S F(r,x,y) =(cos 2y C+sin 2y B) F(45°, x, y)
r=45°

is indicated on the right: Fields with ® point in the normal direction, those
with © in the opposite direction.
The following fact for tori was used in 1.5 and 1.6:

Lemma 2.6 Let y and 3 be two great circles to Hopf fields A and C. Let 6,
be the great circle along B(+ +A and + +C) with ©,(0)=y(s). Suppose that
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for s=0 we have Oy(l)=(0), that is the arc @, of length 0<l<2n ends in 9.
Then

(i) either O(l) is a point of 3 for all 0=<s<2m and 7y, O, 9 are contained in
the same torus 0T,. This case is equivalent to either

I=}/4(A, —C) and L (A,B)=L(B,C),
or
I=1/4(4,C) and L (A, B)=180°— L(B,C).

(i) Or $n O, for small s+0.

Proof. There is a torus 0T, which contains y and O, for all s. Namely we take
A to be one of the left rotating fields, B right rotating, and cos 2r=A4-B, see
(2.6). Now suppose for (i) that 3 is also contained in d7,. Since B# +C then
+ C belongs to the left rotating fields. Let us first assume that + C arises from
the right rotation of A along the arc ©®,. Because the rotation speed is 2 w.r.t.
right rotating fields we have 2/= /gz(4, —C) and L (A4, B)= L (B, C). Otherwise
the same equations hold with —C.

The intersection of 3 with 0T, is either transverse or tangent. In the latter
case and if (i) does not hold the intersection is in a non-asymptotic direction
of 0T,. So either a first or a second order comparison proves that 3 intersects
the torus (and therefore @) in a neighbourhood of @, in the points @, (/) and
Oy(I+m) only. [

2.4 Intersection of solid Clifford torus and great sphere

Lemma 2.7 Let T be a solid Clifford torus and c a geodesic with c(0)edT, whose
tangent vector ¢(0) is contained in the plane spanned by the inner normal n(c(0))
of the torus and one asymptotic direction of the torus in the point c(0). If ¢(0)-n>0
then c(t)e T for 0t <90°.

Proof. By a rotation of S*® we assume that p:=c(0)=F(45° 0,0) with normal
n(p)=n(0,0) as in (2.3) and (2.8) and we take the great circle c*(t)=F (45°,0,t) =
0T to be the asymptotic direction. The great circle which makes an angle
B(0< B < 180°) with the asymptotic direction is

c(t)=cos t p+sin t(cos fc*(90°) +sin fn(0, 0))

ﬂ/i sin 8
0 . cos
=cost +sint$]/2 :
ﬂ/i ZV —sin
0 cos f8

By (2.5) the claim follows from the inequality

2.9) 1> c2(t)+c2(t)=4(cos t —sin t sin B)> + % sin’t cos® §
=1—costsintsinf. O
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Corollary 2.8 Let G=S? be a great sphere containing an asymptotic line c*
of a Clifford torus OT. Then GNOT ={c*} U {c**}, where c**<0T is another
asymptotic line, which intersects c* in two antipodal points.

Proof. In (2.9) equality holds for f=0 and t=90°, that is the great circles ¢*(t)
and c**(B)=cos fc*(90°)+sin Bn(p) are contained in 4T. [J
3 Periodic H-surfaces

In this section we prove existence of various compact H-surface patches; by
reflection we obtain doubly and triply periodic surfaces.

3.1 The simplest doubly periodic surfaces

We consider an H-surface patch o, §,, 7,, 75 with vertex angles 90°, 0 < 8 <90°,

90°, 90° and tilting angles —90°, 0°, —90°, 90° — B. Note that with these tilting
angles we restrict attention to the onduloid case.

5’1, 0°

0, —90°

3, 90°—8

The surfaces extended by reflection are doubly periodic with triangular, quadra-
tic, or hexagonal lattice, if B=30° 45° or 60°. E.g. in the hexagonal case the
surface will look like:

We can choose the Hopf fields of yq, 7,, 75, y5 to be —A4, C, sin BA—cos pC,
— B (with A4, B, C orthogonal). It is easy either to check (1.10) or to determine
the fields from the degenerate situation |y,|=0, which is a spherical triangle,
using Theorem 1.7.
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Lemma 3.1 (i) Let 0</, t, r, s<90° denote the lengths of a quadrilateral along
the Hopf fields — A, C, sin fA—cos fC, — B and 0< <90°. Then

<L

(ii) There exists a continuous one-parameter family I;, 0 <t <90°, of quadrilaterals
with the Hopf fields considered. The family consists of small quadrilaterals whose
lengths 1, t, r, s increase monotonously from all lengths 0 to B/2, 45°, 45°, B/2
and continues with large quadrilaterals where | decreases monotonously to 0 again,
but t, r, s increase monotonously to t=90° r=90° s=pf. The two degenerate
cases are a point for Iy and a spherical triangle for I,.

Proof. (i) We need the cosine law of spherical geometry cos c=cos a cos b+
cos y sin a sin b, which holds in a triangle with an angle 0 <7< 180° enclosed
by the sides a and b.

At the ends on y, we extend the edges y, and y; to 90°. The resulting
endpoints can be joined by an A-perpendicular. We recognize the Hopf fields
and the lengths of the extended arcsy,, y,, y, from the onduloid case of the
spherical helicoids, ie. a>0 (see Subsect. 2.1) and therefore the length of the
perpendicular arc is 90°— 1. In stereographic projection:

90°—t t /

In the given quadrilateral we consider the diagonal passing through the angle
B. The cosine law yields for the two rectangular triangles

(3.1 cos s cosr=cos | cost.
Similarly in the other quadrilateral:

(3.2) sin s cos r=sin [ sin t.
Dividing (3.2) by (3.1) we get

(3.3) tans=tan/ tant.
For the other two diagonals we compute:

(3.9) cos s cos [=cosr cos t+cos f sinr sin t

(3.5) sin s sin /=cos r sin t —cos f§ sin r cos .
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Since cos I-(3.1)=cos r-(3.4) we can eliminate s
(3.6) cos? cos t =cos?r cos t+cos f sin r cos r sin t.
In the same way from sin I-(3.2)=cos r-(3.5),
(3.7 sin?! sin t=cos?r sin t —cos f§ sin r cos r cos t.
Adding sin t-(3.6)+cos t-(3.7) we get

}sin2t=sin 2¢ cos?’r—cos B sin r cos r cos 2t

or sin 2¢ cos 2r=cos f§ sin 2r cos 2t. So t =45° is equivalent to r=45° and other-
wise

(3.8) tan2t=cos ff tan 2r.

Subtracting sin t-(3.6) —cos t-(3.7) we obtain

. . . 1
cos 21 sint cos t=cos f sinr cos r = cos 2/ =cos ff sin 2r =57

and finally by (3.8)

o I s :
3.9 cole—cosﬂsm2rl/l+m—|/cos B sin?2r+cos?2r,

that is cos 21>cos B.

(i) We can reverse (i) instead of applying Theorem 1.6: For each 0<r<90°
we get a length 0<I< /2 by (3.9), 0<t<90° by (3.8) and 0<s<90° by (3.3),
and obtain a quadrilateral for which (3.1) (3.2) (3.4) (3.5) hold. Therefore it
has the desired Hopf fields. []

A geodesic quadrilateral whose edges are shorter than 180° is contained
in the boundary of an H-convex set: Any three vertices of I, are contained
in a great sphere and the fourth vertex is in one of the two hemi-S3. Thereby
we get four hemi-S* whose intersection is H-convex. From Theorem 1.12 we
conclude the existence of the periodic surfaces.

We can lengthen y, and y; by integer multiples of 90° to obtain long quadrilat-
erals with the same Hopf fields: We fix y, and let r*f={y, v%,7,,7%} be the
quadrilateral with edge lengths km/2<|y4|, |y%|<(k+1)n/2, keN,, and with
angle 0< £ (%, y,)=B<90°. Since short and long perpendiculars alternate, we
then have 0<|y5|< /2 for k/2eN,, and 90° — /2 <|y%| <90° for (k + 1)/2€N.
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However, only for k=1 the lengths do not exceed 180° and the same existence
proof works. We obtain surfaces with an additional bubble. M!**%" might look
like this:

3.2 H-convex sets for long helicoids

In the onduloid case, 90°-segments Wy, (see Theorem 2.4) can be embedded
in solid Clifford tori.

—

v/
2 1+|al’

(i) The helicoid W, ={ f*(u, v)|0=Su=<¢& 0<v<2mn} is contained in a solid Clifford
torus T;.

(i) There exists an H-convex set T with W, =T and Wy}, <dT.

Proof. (i) It suffices to take £ =a. We consider the helicoid f([0, «] x [0, 7/2])
with its boundary Hopf fields given in 2.1. Let p, and g, be two points on
the A-lines, being 45° away of the — B-line, towards y, resp. y,. The great
circle passing through p, and q, is again a C-line, since it belongs to the bound-

ary of a quadrilateral with [=45° (i.e. a= +1). Let T, be the Clifford torus
with this C-soul.

Lemma 3.2 Let a+0and E<a=

P2 g
Al

P1¢

Being a 45°-Clifford parallel the — B-line is contained in 8 T;. The three other
boundary curves of the quadrilateral are also contained in T,: the C-line is
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|l —45°|-Clifford-parallel to the soul; the two A-lines are perpendicular to the
soul and do not contain points in a distance greater than 45° since (<a<m/2,
In fact T, encloses the complete half period of the helicoids: every great circle
arcvi—f(u,v) is at most in a distance of the soul given by the length of the
longer common perpendicular. The perpendiculars are the A-lines and their
length is at most 45°.

(i) We define a second torus T, w.r.t. two points p, and g, on the A-lines
in 45°-distance of the C-line. Its soul is a — B-line and the C-line is contained
in 0T,. T=T,nT, is H-convex: The solid Clifford torus T, is C*-H-convex
and the family of surfaces needed for property (iv. a) of Definition 1.8 consists
of Clifford tori 0T,, whose soul interpolates between the one of T, and the
oneof T,. [

Topologically T is again a solid torus. Let T¢ be the universal covering
of this torus. Topologically T¢ is a solid cylinder and again H-convex. We
shall use T¢ to embed the long quadrilaterals. Let us describe the remaining
barriers in the easiest case of I'*°°, which leads to an existence proof for long
90° segments of the onduloids (a>0) with the help of Theorem 1.12.

To embed 9% and y, in an H-convex boundary we use great spheres. We
call a rectangular geodesic 2-gon bounded by two 180° arcs a quarter great
sphere. By Corollary 2.8 two asymptotic lines of a Clifford torus bound a quarter
great sphere.

Let G, be a quarter great sphere with boundary in Tf defined as follows.
Let one boundary curve be a 180°-arc of the — B-line and let the A-line Y2
be contained in the interior of G,. The boundary curve I'*° is seen to be
completely contained in one of the two components of T¢— G, by the following
argument: Each Clifford parallel to the soul only intersects a quarter sphere
once, since in general a great circle only intersects a great sphere in two antipodal
points. However int G, does not contain any of its antipodal points. The great
circle y; bounding the quarter sphere and the Clifford parallel to the soul y,
have the same sense of rotation and therefore the long edges of the quadrilateral
lie on the same side of the quarter great sphere. Condition (iv. b) of Definition
1.8 can be satisfied by moving G, from oo to its position.

In the same way we obtain a quarter sphere G4 <= Tt at the other end of
the quadrilateral. Then the compact connected component N of T<— G,—-G:
is an H-convex set, satisfying the requirements of Theorem 1.12.

3.3 Doubly periodic surfaces with many bubbles on the edges

We modify the H-convex set N*°° presented in the last section for the boundary
curve ', By Lemma 2.7 the (sin 84 —cos BC)-line is contained in T;. Indeed
it lies in the plane of the torus normal —A and the asymptotic line C (since
T, has a C-soul, C is asymptotic direction on the whole of 0T,); finally its
length is r<90°. Similarly this line is contained in T: 2, Where A is normal and
C asymptotic line.

We can take over G% from 3.2. We intersect T¢ on the side of y, with a
quarter great sphere G4, bounded by a 180° arc of the — B asymptotic line
and with the (sin B4 —cos fC)-line in its interior. Again we can move G4 from
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oo to satisfy Definition 1.8(iv.b). The argument given in 3.2 implies that the
boundary curve is completely contained in a connected component N*# of T¢
—G%—GY. Theorem 1.12 provides a solution M*# of Plateau’s problem for
the long quadrilaterals. The solution M*# has k bubbles on an edge, that is
the curvature lines along the edges have length in between kzn and (k+ 1)

Theorem 3.3 Given an angle Be{n/3, n/4, n/6} there is a family M*? of H-
surfaces, with any number of bubbles for the edges ke IN. The family is continuous
with respect to the parameter 0<t<m/2. The surfaces are contained in a slab

of R® and their fundamental domain is contained in a triangle with angles p,
90°, 90° — B times the ray [0, o0).

Proof. It remains to prove continuity of the family. From Lemma 3.1 we know
that t —» I; is continuous. Suppose the spherical Plateau solutions M, do not
converge to M, for s—t w.r.t. distance of surfaces. By the technique of Theo-
rem 4.4 we get another minimal surface M bounded by the same curve I' = I'%#
as M,. Therefore continuity for M is reduced to uniqueness. But a continuous
convergence is also in C? (or C®) in the interior and hence the associated surfaces
M, converge w.r.t. distance (or in C*®) in the interior; applying this argument
to the surfaces extended by reflection yields the convergence in the desired
sense up to the boundary.

To prove uniqueness we specify a family of isometries ¥, of S with ¥,=id
and —o,<0<0,,and find an H-convex set N oI such that for every 0 <|a| <a,
there are neighbourhoods of I' and ¥ (I') disjoint to ¥,(N)nN. Then the two
Plateau solutions M and ¥,(M) do not intersect each other in a neighbourhood
of their boundaries. We claim they cannot intersect in the interior. Both surfaces
are minimizing, and a replacement of any piece of one surface cut out by a
piece of the other surface does not reduce area. But the intersection is transveral
at all but finitely many points in the intersection set, so that smoothing out
the edge made by a piece of one and a piece of the other surface does reduce
area. Thus M is enclosed in between ¥, (M) and ¥_ (M) for any o +0.

For ¥ we take the flow to the Killing field B—C. The Clifford torus 0Ty
contains the arcy;, being a — B integral and it contains C-lines as asymptotic
lines, because the T;-soul is a C-line. Thus the field B—C is tangent along
73. No other bundary arc is contained in dT{ and hence sufficiently small rota-
tions of Ty with axis y; also contain the quadrilateral I. We take N, to be
the intersection of two such tori rotated in a different sense. Then N, does
not contain (a neighbourhood of) the +(B— C)-direction along the arcy;. In
the same way we define N, for the arcy, along which the direction B—C is
again tangent to T;.

We now describe two pairs of great spheres for the remaining arcs. This
is more technical because we have to convert Hopf fields into parallel fields.
We give the barriers for k=0 so that we can use hemi-S*; for the general
case they have to be replaced by the appropriate component in the covering
Space. We start with the arcy,. The great sphere G, from 3.2 has a normal
V(70(0))= — B. On a 90° arc y along A the field B rotates to C (see Definition 1.3).
That is a parallel translation of —B from y(0) to 7(90°) yields C. Viewing the
—A-line 7, in decreasing parameterization we conclude that the normal of G,
along y, is v(yo(s))= —cossB+sinsC. But y, is shorter than 90° and so
V(yo(lo))- 7, is positive for the C-line y,. 7, and y, are no longer than 90° and
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hence contained in the hemi-S*={x€S®|x-v>0}. Thus I is contained in that
hemi-S3.

We consider a great sphere G containing y, and y1.- We claim that I
is contained in the hemi-S* defined by v(7o(lo)=B. Indeed, v(y,(s)=
—sin(lo—s) C+cos(l,—s) B has positive scalar product with B in 0. Again
v(70(0))-(—73(l3))>0 as the latter direction is B and lo<90°.

Now we have to show that the intersection N, of the two hemispheres does
not contain the vector +(B— C) along the arc y,,. That is the product of +(B—C)
with v has to be negative for at least one normal for each sign of B—C. For
the normal of G, we compute V(y0(s)(B—C)= —coss—sins and v(y,(s)
“(B—C)=cos(ly—s)+sin(l,—s) for the normal of G,. Clearly the first product
is negative and the second product is positive for 0=<s<1,<90°, so the second
one is negative taken with —(B— C).

We need similar calculations along y,. A normal of G4 at y,(1,) is v(y,(1,)
= —cos fA—sin BC. As Linpa-cospc(— B, —cos fA—sin BC)= +90° the paral-
lel translation of v to the point y,(I,—90°) is + B. Now v(y,(s))=sin(l,—s) B+
cos(l; —s)(—cos fA—sin BC) and the product with —C is positive so that I’
lies in the hemi-S* defined by v.

For a great sphere G% defined by the normal —B in the point y,(0) the
normal is v(y,(s))= —cos sB+sin s(cos fA +sin BC). Again v(y,(1,))-(—B)>0
and I' is on the side of v. Finally we compute the products +(B—C)-v along
y2. For the normal of G# we have (B—C)-v(y,(s))=sin(l, —s)+cos(l, —s) sin
and (B—C)-v(y,(s))= —cos s—sin s sin § for G%. The second product is negative
for the given sign of (B—C) as the first one is for the other sign. Hence the
intersection of these two hemi-S*, N,, with N;, N,, and N; is an H-convex
set with the property claimed.

When we compare the surface M with itself moved along the flow ¥, (M)
this proof recovers M as a graph w.r.t. the B— C direction. []

Remark. The H-surfaces have a different asymptotic behaviour for large and
small quadrilaterals.

(i) The large quadrilaterals belong to H-surfaces with spherical centres. In fact,
taking the limit ¢ — 90° the large quadrilaterals I'**# converge to a triangle con-
tained in a great sphere S* =S and the associated H-surfaces converge to punc-
tured spheres which touch each other with the given symmetry. The same applies
to the centre spheres of the surfaces M*”. For a small neck perimeter 4|y,
the existence of the surfaces with a spherical centre was proved by Kapouleas
[Kpl].
However, for the small quadrilaterals the cases-k =0 and keN are different.

(i) Computing the lengths of the small quadrilaterals I'®* in terms of ¢, we
see from (3.8) and (3.9) that r and [ shrink of order O(t), whereas s shrinks
of order O(t?) by (3.3). Asymptotically the patches are therefore triangles. Hence
when we blow up the associated surfaces in a way that ¢t and the lattice is
of constant size (H —0), the patches tend to flat triangles and the complete

1 - =~ . :
H-surfaces 00 M?* tend to punctured double planes. That is M2-# itself lies

in a slab of height O(t?*) and converges the more to a plane of multiplicity
2, but the singular points become dense.

(iii) The associated H-surfaces M** for k>0 have k additional bubbles on the
edges of the lattice. The blow up of the surfaces belonging to small quadrilaterals
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can be shown to converge to the Jorge-Meeks n-noids. Indeed, a blow up by
1/0(t) in the space S},o(, has two lines y, and y; of unbounded length 1/0(t)
and one line y, of bounded length O(1). The limit boundary contour coincides
with the associated boundary contour of the Euclidean n-noids. By an appro-
priate maximum principle at infinity (for minimal surfaces with boundary going
to infinity) it can be proved that minimal surfaces spanned by the limit contour
are unique. A proof will appear elsewhere. We say these surfaces have n-noidal
centres.

The hexajonal surface M35 and the quadratic surface M$y”* with maximal
neck size in their family were found by Lawson [L, Theorem 9]. They join
the surfaces to large and small quadrilaterals in the family.

Centre-spheres and centre n-noids within the same surface. A rotation by 180°
with axis 7% of the quadrilaterals I'*# is contained in the same topological
torus T° from 3.2 which contains I'*# itself. The Plateau solutions are associated
to doubled fundamental H-patches and yield the same surfaces M** as before.
By Lemma 3.1 the quadrilaterals I'*# and I'¢f_, have the same length |y,|.
We can glue them together along y, and obtain H-surfaces each k-bubble edge
of which joins a spherical with an n-noidal centre in case f=45° and f=60°.
Of course the same barriers work. This yields another one parameter family,
being continuous w.r.t. to t with the same proof as in Theorem 3.3. One of
the symmetries of M** is removed and the family under consideration coincides
with the former family in the surface with the parameter t =45°.

3.4 Triply periodic surfaces

(a) Cubic lattice. The simplest triply periodic surface has the symmetry of a
cubical lattice and is the H-surface analogue of the Schwarz P-surface. Again
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there may be k bubbles on the edges. The boundary curve Yo» Y1> Y25 V3 has

Hopf fields — 4, $]/2(C+B), $|/2(4—C), —B. By the Handle-Theorem 1.7
the boundary curve closes for small |y,|. We are in the case of E=a/2 of Lem-
ma 3.2 and the respective tori as well as great spheres similar to those defined
in the last section serve as barriers.

(b) Layers of doubly periodic surfaces joined by handles. We replace the vertex
at the angle f in the quadrilateral from 3.3, 0<f<90°, by a fifth edge along
the field B to obtain an additional outward handle of the H-surface patch
(Lg(—C, sin BA—cos fC)= — p):

V4
The Handle Theorem 1.7 ensures existence of the boundary curve with a small
handle length |y,| for any length of y, less than f/2; only in case | = f3/2 assump-
tion (1.11) is not satisfied since y,, y;, 7, are then contained in a Clifford torus.
In fact the handle length can be any value in (0, f/2—1].

We can use the barriers from 3.2 and 3.3 to embed the boundary curve
in an H-convex boundary. For |y,| small the pentagon is certainly contained
in T7. The Clifford torus 075 contains y, and thus the pentagon is contained
in T;. To embed y; we choose a great sphere containing this curve and the
handle y,. Since the latter is an asymptotic line for T5 this great sphere cuts
out a quarter sphere of T; and y, and y, are on the same side of this great
sphere by the argument given in 3.2. For y, we use the quarter great sphere
G% defined in 3.2. Every vertex of the polygon is contained in two of these
four barriers.

The complete H-surface consists of layers of doubly periodic surfaces, similar
to those described before, whose vertices are vertically joined by handles. In
case f=45° the Schwarz P-surface is generalized in a less symmetric fashion
than in (a). For f=30° and f=60° we obtain an H-surface analogue to A.
Schoen’s H'-T-surface. For f=90° we get a merely doubly periodic H-surface:
The lattice consists of rectangles the long edge’ of which takes k additional
bubbles. E.g. for k=1 the fundamental domain and a portion of surface can
be sketched as follows:

3 Yo
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(c) Every second vertex joined by a handle. In the same way as in 3.3 we can
consider boundary curves of double length. A handle on one side only yields
a surface every second vertex of which is joined to the next layer. This makes
sense for f=45° and f=60°.

4 Convergence of ends

In Subsect. 3.3 we found Plateau solutions M*# to quadrilaterals I'* of length
approximately k7. For instance in case = 60° these are associated to H-surfaces
with a triangular lattice and have k bubbles on the edges of the lattice (see
second figure in Subsect. 3.1). To obtain a “Delaunay-surface with 3 ends” we
let k tend to oo. Convergence is proved for the spherical patches. In general
these are not graphs and we use a local description. Interior convergence of
the sequence is implied by curvature estimates and locally uniform area bounds.
No regularity problems arise at the piecewise geodesic boundary. However to
know the limiting position of the normal at the boundary of the end we have
to prove uniqueness of the end in Subsect. 4.4.

4.1 Curvature estimate and graph lemma

A minimal surface is stable, if the second variation of the area is non-negative.
R. Schoen proved that stable surfaces, in particular solutions to Plateau’s prob-
lem, have uniformly bounded curvature outside a neighbourhood of the bound-
ary curve:

Theorem 4.1 [S, Theorem 3] Let M be a stable minimal surface immersed in
a 3-manifold N and xe M be a point, such that the geodesic ball B?(x) is contained
in M (0<r<1). Then the norm of the second fundamental form is bounded,

4.1) |A(x)|2==<Se1,e,>2+2<Se1,e2>2+<Se2,e2>2§C(N, r),

where C depends on bounds for the sectional curvature of N and its derivative.

Locally hypersurfaces can be described as graphs. In manifolds we can take
normal coordinates in a geodesic ball B} (p)n M over the tangent plane T,M.
The radius >0 is uniform in p, if the curvature of the hypersurface is bounded:

Lemma 4.2 [Wh, Lemma 1; KKS; S] Suppose N3 is a manifold with injectivity
radius bounded away from 0, whose metric has bounded C*-norm in normal coordi-
nates. Let M be a minimal surface in N whose second fundamental form is bounded
on a domain Q< M,

|[A(x)| <A, forall xeQ.
Then there exists a radius p(Ay, N) such that for a point p with B> »(P)=Q (i) the
Connected component of M n B, (p) which contains p is a disk and (ii) is graph

W.r.t. the tangent plane T, M. (iii) Furthermore choosing p(A,, N, «) the coordinates
U of the graph have bounded Holder norm on BZ(0)=T,M:

” u”CZ-ﬂé C(AO’ N, a)'
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Note this lemma also allows to describe a surface as graph over slightly tilted
planes close to the tangent plane.

4.2 Convergence of compact minimal surfaces

Definition 4.3 A sequence M, of C'-surfaces satisfies uniform local area bounds
if there is a radius r such that for each ball with B3(x)ndM,=& and all p<r
holds <

[MnB,(x)|<C.

In Subsect. 4.3 we give uniform local area bounds for helicoid ends. Assuming
area bounds we solve improper Plateau problems, that is problems with non-
closed boundary curve, using an exhaustion:

Theorem 4.4 Let N> be a non-compact closed manifold with boundary (whose
curvature tensor is C'-bounded) and I’ a connected non-closed curve in N, being
piecewise C'. Assume there exist compact sets N, with N,_, =N, and U N,=N,
neN
and closed Jordan curves I, N, with [; nN,=I' "N, for all k>n. Finally let
the Plateau problems for I, be solvable with a sequence of minimal disks M,< N,
satisfying uniform local area bounds. Then there exists a minimal surface M c N
of the type of the disk which is regular in the interior and whose boundary is
r.

Proof. Let N;:=N,—U,(| ) I}) where U, denotes an open r-neighbourhood of

k>n
a set. Because I is piecewise C' we have | ) NJ=N,—TI and N/ is non-empty
r>0
for small r. The Plateau solutions M, accumulate in int N/, for sufficiently small
r; indeed, if there were accumulation points in 0N, only (for all but finitely
many n), the maximum principle would yield a minimal surface in N bounded
by I' and the proof finished. Thus we find a point peint N/, such that a subse-
quence of k— M, converges in distance to p. Taking a further subsequence
we assume the normals to converge as well.

For each xe N> n M, k> n, we have dist(x, 9M,)=2r, and thus Theorem 4.1
provides a curvature bound on NJ, |4(x)|*<C(N,r) for all xe N’ nM,. By the
graph Lemma 4.2 we find a radius p(<r/2 wlog.), such that M, n B3 ,(p) is graph
over the tangent plane T, M, provided pe M, N?". Therefore a connected com-
ponent of a subsequence of M, converges in C*%(B,(p)) as graph w.r.t. the
limit tangent plane T, N.

We cover N2 with balls B3(y)<= Ny, i=1, ..., I. For an i, we have proved
convergence of a connected component of M, in B,(y;)<= B, ,(p). Since a subsec-
quence converges in the whole ball B, ,(p) there is a point geB, ,(p)— B, (),
of convergence. Let g be in B,(y;,), i; +i,. By another application of the graph
lemma we obtain convergence of a connected component of a further subse-
quence in B,,(g) and thus in B,(y;). We continue to consider further balls
B, (y;) such that either i;#1,, ..., i,_, or for i;=i;(I> j) another connected compo-
nent of the surface is considered. By the uniform area bound the procedure
ends after finitely many steps. Therefore we obtain C?**-convergence of a subse-
quence of M, again denoted by M{"” to a surface M™, such that M "N/ =2.
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Now we consider a sequence NI with r, \ 0. With finitely many balls of
smaller radius p,/2 <r,, given by curvature estimate and graph lemma, we extend
the covering of N;=7' to N;». From the sequence M{" ! we choose a subsequence
M;” converging on N;~. The diagonal sequence M® converges on each compact
set KcN—I'= () N~ to M= JM® in C*>* Since M has no boundary points

neN n
in the interior of N and each subsequence accumulates in I we have M =T..

Since the convergence is uniform in distance on each compact set we can
compare M with a sufficiently close minimizing surface M,. Hence M is a stable
minimal surface and each curve in M is contractible. For connected I' there
is only one connected component M. []

If I' consists of geodesic arcs making an angle of n/(m+ 1), meN, then M is
smooth at the boundary (see Subsect. 1.7). If N is H-convex and all vertices
are contained in two barriers as in Theorem 1.12 M is free of boundary branch
points.

4.3 Uniform local area bounds for finite helicoid ends

First we describe coordinates on the covering of a solid Clifford torus induced
by the foliation of Subsect. 2.2.

Let a helicoid W7 =f*([—¢, ], [0, 27)) for £ <a and —1<a=l, a=0, be
given together with its induced foliation ¥:IR x (—a, o) x R —» S3. We consider
closed sets N =S satisfying three properties: (i) N contains the helicoids We,
and {4 (v):==f“(&, v) is contained in AN. (i) The class of the curves {4+ is the
only non-trivial homotopy class in N and (iii) N contains no curve linked with
N+ =f(+a,.). Let X denote the connected component of ¥ ! (N —#,) containing
(0,0,0). Because of (iii) and Lemma 2.3(ii) if (¢, u,v)eX then (p+m,u v)¢X,
so that X (—mx, m) x [—¢&, ¢] x R. By (ii) and Lemma 2.3(iii), (iv) the parameteri-
zation ¥ lifts to a bijection ¥*: X — N°—»%. By (i) X contains the set 0 x
[—¢, &1 xIR. We omit the suberscript ¢ for N and 7.

Let NY:={¥(¢,u,v)eN —n.|x=<v<y} be the portion of N between x and
V> Dy={¥(¢,u,x)eN} be the lateral boundary of N and Dy:=D,uD,. We
prove that k-times the area of the helicoid we:=|f([—¢&, &1 x [0, n))| is a lower
bound for the area of any piece of length 27k of the surfaces M =M, defined
in Sect. 3:

Lemma 4.5 Let M < N* be an immersed C -surface with finite helicoid end,
Le.

(i) OM =% U DE* with { , as above.

(ii) Every closed curve in M is contractible in M U DE¥.

(i) The two connected components of (IN?—D%)—(*, are contained in different
components N, and N_ of N— M.

Then we have the following area bound, where c:=2|DE|:
4.2) IM| 2 kwi—c.
Proof. We find an embedded comparison surface of the type of the disk which

has the boundary of the helicoid. Let My,:=M ndN, . Rounding off corners
and edges of M, yields an embedded surface M  with |[M,|<|M,|. We discard
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for all connected components of M, except for the one containing {%.. M, n D,
is a disjoint union of closed Jordan curves as well as another curve with end
points (% (0), being homotopic to a boundary curve of a helicoid yo =Dy WY.
The area of this homotopy is at most |D,|. The closed curves in M; n D, bound
disjoint disks with total area less than |D,|. Proceeding at the other end D,,
in the same way, we obtain an embedded surface of the type of the disk by
(i) and with boundary of the helicoids. From Corollary 2.5, applied to k periods
of the helicoid, we infer (4.2). [

Lemma 4.6 Let M, be a sequence of minima of area fulfilling the hypothesis
of Lemma 4.5. Then M, satisfies uniform local area bounds.

Proof (idea of E. Kuwert). I, bounds a surface of area kw¢+c,, where c, is
the area of a disk spanned by the difference of the curve I; to the helicoid
boundary. This together with (4.2), applied to outer portions of M,, yields an
estimate for the area of a middle part |M, n N*!*™| where |+ m+n=k:

| M, NE ™ = | M A NESE 9] — | M NG| — | M N )|
S(l+m4+n)witc, —Ilwi+c—nwitc
=mwi+c,+2c. [J

4.4 Uniqueness of ends and convergence of boundary normals

We call a non-compact minimal surface M contained in a half cylinder Nn
{v=0} a helicoid end if M is a Jordan curve consisting of two geodesic rays
(% (s), seRg , joined by a compact curve {,. Here again (% (s) denotes a covering
of f?(+¢,s) with nonzero —1<a=<1 and £ <a. We can pull back the end in
its H-convex barriers to obtain a limit surface which is periodic. By Corollary
2.4 the limiting helicoid type is uniquely determined by (¢ . We say an end
satisfies uniform local area bounds if this holds for the pull back sequence
M, :=E_, M, where the pull back Z: N — N is defined by Z_,(p)=¥(¥°) '(p)
—(0, 0, k).

Theorem 4.7 Let M be a minimizing (w.r.t. compactly supported variations) heli-
coid end, satisfying uniform local area bounds and contained in an H-convex set
N. Then M, converges in distance to a helicoid W° uniquely determined by (5 .

Proof. Similarly to Theorem 4.4 we get convergence of a subsequence of M,
to a minimal surface M, using area and curvature bounds. The convergence
is in C** in the interior.

Let us first note that we can assume the coordinates ¥° to be defined in
a neighbourhood of any point peint M. Otherwise p is contained in the bound-
ary N and by the maximum principle either int Mycint N or M, coincides
with a subset of d N bounded by (¢ , which must be W* by minimality of M.

Suppose for a moment in addition to our assumptions that

4.3) E, M isabarrier for M,

then £_, M and Z_,_, M intersect in the boundary rays {°, only. Thus M,
converges monotonely to M, and therefore the whole sequence converges and
M, is invariant under covering transformations, EM,=1lim £_, M =M, that
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is M, projects to S*. From Theorem 2.4 we obtain the uniqueness [TM,= W¢.
(4.3) holds for all surfaces with cylinder ends we describe.
In general consider

lim sup{@|¥(g, u, v)eM A Ng}=p.

Since ¥°(0, +¢&,v)el <dM and ¥° is bounded by = we have 0<u<n. Suppose
1>0. Then there is a sequence of points p,:=¥*(¢y, uy, v,)e M = NS with ¢, — p.
Replacing M, :=M n B} (p,) by {¥(¢ — &, u, v)| P*(¢, u, v)e M, }, where &, N 0, if
necessary, we assume ¢, <pu for all ¥(¢,u,v)e M,. But for any subsequence
M, such that (uy, v, mod 27) converges to (ug, vo), IIM, is a minimal surface
which converges in a uniform neighbourhood of ¥ (u, uq, vy) to a M, by curva-
ture estimate and graph lemma. In particular by the maximality of u the normals
converge. Since M, lies locally on one side of the minimal surface ¥ (u,u,v)
and touches in the interior point ¥(y, uq, vy) the surfaces locally agree by the
maximum principle. Hence any subsequence M, converges to ¥(u, uy, o) in
a uniform neighbourhood (depending on the distance to the boundary). Repeat-
ing these arguments for any accumulation point ¥ (u, u,v) we infer that =, M
- ¥¢(u, u, v). By the boundary values we obtain p=0. Applying the same argu-
ments to klim inf{...} proves the result. []

Now we have proved that the spherical ends converge in distance a helicoid.
Next we show C'-convergence at the boundary: when moving towards infinity
the normals at the boundary converge to those of the helicoids.

Since we know convergence in distance, we can use a local barrier argument.
Take a point p=f*“(u, v)edW* in the boundary of a helicoid. Extend the helicoid
to a full neighbourhood W of p and let D:=B] n W¢ be a minimal disk. Now
we rotate D first around the normal n(p) by an angle +1. Since the principal
curvatures of the helicoid do not vanish the rotated disks do not intersect the
boundary of the helicoid dW* except for the point p itself (for small  and
¢). The tangent planes in p agree. Thus a further rotation of the disks around
the boundary circle d W* by the angle i yields two disks D that do not intersect
the helicoid, provided the rotations have the right sense.

Let M, be a sequence of minimal surfaces converging in distance to the
helicoid and with boundary of the helicoid. If M, is close enough to the helicoid
in a neighbourhood of a point p then M, is on one side of D,;‘. By the maximum
principle the tangent halfplane at T, M, is contained in the wedge between
the tangent halfplanes of D, and D, . As y tends to 0, T, M, converges to
the tangent plane of D =W* in p. A similar construction works for points
with vanishing principal curvatures. Slightly generalizing we get

Lemma 4.8 Let M, be a sequence of minimal surfaces with the same C*-boundary
portion I' which converges in distance to a minimal surface M of class C? including
I'. Then at each interior point of I' the normals of the surfaces M, converge
to the normal of M.

Thus we can read off the geometric data from the ends of the minimizing helicoid
defined by ( in case ¢ <a.
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5 H-surfaces with cylinder ends and their periodic cousins
5.1 Surfaces of Pinkall and Sterling

The following surfaces are parameterized by a torus and described in [PS]
where an explicit representation by solutions of the sinh-Gordon-equation is
given. See also [We].

Simply periodic. The simply periodic cousins of these surfaces have immersed
ends not converging to Delaunay surfaces. Take a solid Clifford torus T with
Hopf fields as in Subsect. 2.3. Let I''< T for k>0, 0<I<180° be a curve
in 0T, being the image of the following curve in parameter space (in the sketch
we take k=90°):

180° fessrresrrr . —~B- ®C
A A A
et .
135° > —C }{ OB
TN T t t
l 70 73 .'...'. ‘_B @C

y sin20 B —cos2l C "--_"72‘ A-—C | ®B

0° ‘.L' z T T “t—-—B ®C
0° 90° 180° 270° 360°

I'*!is embedded in the Clifford cylinder T° and has geometric data:

76! l=1, L 4(cos2] C—sin 2l B, C)= —2I,

It =k, Lc(—A, A)=180°,

[Y5'l=n—1I,  L,(—C,sin2] B—cos2l C)=21—360°,
Y5 l=n+k, Lsin21 B—cos21 c(— A, A)= —180°.

The given rotational Hopf angles are measured inside T in the sense of Theorem
1.12(ii). Namely along 7y, the inner normal of the torus is — B by (2.8). Therefore
—A rotates through —B to 4. Now /L (—A, —B)= L(—B, A)=90° and we
get t; =90°+90°=180° as claimed. Similarly we get ¢, and ;.

We have to verify that I'*! bounds a disk in T°. We show that I'*' is
contractible. I'*! is homotopic to the dotted curve y+x=270°. The image of
the map [0,45°] - T, p+s F(p, x, x — ) is the dotted curve for p=45° and shrinks
to a point for p=0. This curve is also contractible in the covering cylinder
Te,

We need barriers in addition to 0 T°. We define two great spheres: Extending
Yo to 180° yields a new endpoint of y, on y5. The arcy%(f), k<t<k+n, closes
Yo to a 2-gon. This 2-gon is contractible and thus defines a quarter spherc
Q,. In the same way the extended arcy, and an arc of Y3 bounds a quarter
sphere Q,. Then I'*! is contained in the compact component of N*:=T<—0,
—Q, and all vertices of I'*! are contained in two different barriers.

By Theorem 1.12 we get existence of an H-surface patch with 4 edges and
tilting angles —21, 180°, 2/—360°, — 180°. The surfaces have different symmetry
properties for [ less or greater than 90°. The case [=90° is exceptional: The
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boundary curve I'*°° spans helicoids of negative a, whose associated surfaces
are 180°-segments of the nodoids (see 2.1). Indeed, 90° arcs through y,(f) in

t t
. P .
direction o cos Tokin o A +sin T+ kjn

in T by Lemma 2.7.

We claim that for /490° the curves 7%' and 7%' are contained in different
planes. Let M*! be the Plateau solution of I'*!. Any translation of M*! in
x-direction is a barrier for M*! itself. The translation leaves the Hopf directions
of y; and y; invariant and thus the rotational Hopf angle is monotone along
71 and y;. It follows that §; and 75 are convex planar curves. On the other
hand the nodoid W=M"*?° with the same edge y%°° is a barrier for M*..
But for the nodoid 7§°° and 7% °° are contained in the same plane. Thus the
claim follows form the Comparison Lemma 5.1.

Reflection at the symmetry planes yields a simply periodic immersed H-
surface M*!. If 21-m=n the surface closes through 2m — 1 reflections. The funda-
mental H-patch looks as follows:

B give the ruling which is contained

32,21 — 360°

31, 180° N

’70, _21

¥a, —180°

The simply periodic H-surface M*' is a cylinder with lobes of m spheres attached
in a constant distance. k>0 is a parameter of this distance. If more generally
2l-m/p=m (m, peN without common divisor), the cylindrical tubes are covered
p-times and lobes of m-u spheres are attached. For 90°<[<180° the roles of
7o and y, swap and we obtain the same surfaces as for 90° — 1.

With ends. By Lemma 4.6 the sequence M*! of minimal surfaces satisfies uniform
area bounds and thus we obtain from Theorem 4.4 a minimal surface M®"'c T,
bounded by the two rays y', 5! and by the arcy}. According to Subsect. 4.3
the solid Clifford torus T is foliated by Clifford tori, such that #, are the great
circles F(45°, x, 135°—1/2445°). In case [+ 90° we can apply Theorem 4.7 (note
(43) holds) and obtain that the end is asymptotically the strip  §'
={F(45° x, y)|135°—I<y< 135°} =0T. For 0<1<90° the arcy, is contained in
this strip and the geometric data of the surface with end M*®' are those of
the approximating surfaces M*! by Lemma 4.8. Thus we obtain an H-surface
M=! with two cylinder ends in case 2/-m=m. To this cylinder a lobe of m
Spheres is attached in the middle. As in the periodic case the cylinder ends
are covered p-times, if 21- m/u=n. For 90°</<180° the attached spheres on
M*! disappear to infinity as k —oco and M*! is the ordinary cylinder.
The surface M**#* is pictured in the paper of Pinkall and Sterling [PS].
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5.2 Comparison of planar curves

Lemma 5.1 Let y, I': [0, [] - IR? be curves with y(0)=I'(0)=0. Suppose for
i(s)= <cos t(s ) and F(s)= (cos T(s))

sin £(s) sin T'(s)
and se(0, 1) holds

(5.1 t0)=TO0)=0=t(s)<T(s)=180°=¢t(l)=T()).
Then at the end points the first components of the curves satisfy

L)<y, (.
Proof.

1 1 1 ]
L()= [ Ii(s)ds=[cos Tis)ds< | cost(s)ds= [ §,(s)ds=7,(). [
0 0 0 0

Let y=T" be a geodesic arc in S* bounding two minimal surfaces M,, M,
which have the same tangent planes in y(0) and y(I) but do not intersect in
the interior. By the boundary maximum principle the rotation angles r and
R of M, and M, along y satisfy r(s)<R(s) for 0<s<I and we get by (1.6)
t(s)< T(s). The other inequalities in (5.1) certainly hold for convex curves. We
conclude that if the end points of § have the same height then the end points
of I’ don’t.

5.3 Doubly periodic pile of cylinders

In the next two sections we construct H-surfaces with umbillic points, which
are parameterized by surfaces of higher genus. Take two Clifford tori 4T, and
0T,, such that 0T, is the 90°-rotation of T, about the great circle x =0°, 180°.

180° T T —-B+ ®C ——C+ OB
P | S B a A - C 74-B 8 A oc
Y2 f A ¥3 C. ® Y4y 1 73, @ > :I'SA 1
90° 1< s, C -—B oC v, B -—C ®B
B 95! C Vs
v -—CI ®B \l,/ —B F ®C
0o tez— : —~—B+ ®C - posssseronpns Cof: OB
0° 90° 180°  270°  360° 180°  270°  360°
Clifford torus T3 Clifford torus T3

The curve I'*! has the geometric data (k>0,0<[<45°),

IYi'l=k, Lg(—C, A)=-90°, |y&'|=], L_p(—=C, —A4)=-90°,
[Y5'|=45°,  L4(—=B,C)=—90° |y%'|=45°, L_,(B,C)=—90°
|y§’ll=k’ LC(_As _B)=90°’ |?’é”| =l7 LC(A7 B)=90°'

r*!is contained in the solid torus T,. Indeed y5 is a 45°—1[ Clifford parallel

to the A-soul of T}, and y, as well as y, are no longer than 90°. In the covering
torus Ty the curve I'*! is contractible.
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Let T; be a solid Clifford torus with soul y5. y, and y4 are contained in
dT;, and y, and y, are in Tj since they are orthogonal to the soul and of
length less than 45°. y5 is orthogonal to y4 and contained in Ty by Lemma 2.7.
In the same way the torus T, with soul y, contains I". Let N be the H-convex
component of Tf N Ty n Tf which contains I'*!.

By Theorem 1.12 we obtain an H-surface-patch with one interior handle
j6 of width [ and one exterior handle of width 7,, looking as follows (5 contains
an umbilic point):

1, —90°

By reflection we get a doubly periodic surface M*! with cylindrical tubes of
length approximately k. By Theorem 4.4 we obtain the limiting surface for k — co.
This surface is doubly periodic and has cylinder ends according to Theorem 4.7
(note that (4.3) holds).

Dividing the complete surface by all translations yields a surface of genus 2.
If we choose |y,| and |ys| to be 30° we get a doubly periodic surface, each
cylinder of which is joined with handles to six nearby cylinders (genus 3).

5.4 Cylinder ends in a halfspace
Let the curve I'*, k>0, with the data

lY¥|=k+45°, Ly(—C, A)=—90",

|ys|=45°, L4(—B,C)=—90°,

v51=k, Lc(—4, —B)=90°

ly4|=45°, L_p(—C,C)=—180° (over —A),
Y51 =45°, Lc(B, B)=0°

be given on a Clifford torus T as follows:

180° ; —~B-— ®C
k A
prmm—————
> —B — -
N P c ®,_’.).’j1, Ct OB
o 75, C —B | oC
90 B 'Yl 075a
I —C | ®B
0o tez— —~B~+ ®C

1 T
0° 90° 180° 270° 360°
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The arcs y, and ys have length 45° and meet each other exactly in a point
of the soul of T. A disk G of radius 45° of a great sphere containing these
curves (and orthogonal to the soul) furnishes a barrier. Using the cylinder bar-
riers from the last section we obtain an H-convex set N¥, being the component
of T°NnTs; nT;—G containing I', and the requirements of Theorem 1.12 are
satisfied. The generating patch of the H-surface M* looks like:

N |

N TN qu,—180°
LGN
%

— |

The end points of §, must sit in different planes. The periodic H-surface M*
is contained in a slab between two parallel planes. The surface M obtained
by Theorem 4.4 as the limiting surface has cylinder ends in a halfspace by
Theorem 4.7.

5.5 Non-existence results

Instead of listing more difficult examples we give non-existence proofs in certain
symmetric classes. Suppose we had a cylinder as in 5.3 but with two handles
only. A fundamental patch (a 90°-segment of one cylinder end) would be associat-
ed to a surface in S* with an approximating boundary curve I'=y,, ..., y5 along,
say, the Hopf fields B, 4, C, —A+C. ys is the handle and |y,|=45° is the
curve approaching the cylinder end. Hence y,, y,, 73, 74 are contained in a
cylinder T and ys is orthogonal. In conclusion the length of y5 must be a
multiple of 90° in order to close the boundary curve. A shorter handle is not
possible. (However with the lengths k, I, k+90°, [+ 90°, 90° the boundary curve
closes such that for [=45° we have js= +C.)

In the same way a cylinder as in 5.3 with two handles to the outside does
not exist. Indeed we had to find lengths in 5.3 such that y, is tangent to —C:
as above we require |y,|=45° in order to obtain.a 90°-segment of the cylinder
end. But for 0 <[y,/, |y¢| <90° the end point of y,(l,) is contained in T, (indepen-
dently of the lengths of y, and 7y;) whereas y4(0) is in S3—T,. The A-great
circles are either contained in T, or in S®— T, (see Subsect. 2.3) and therefore
74(l4) and y4(0) can not be joined by an A-line y5.

6 H-surfaces with Delaunay-ends

In this section we describe H-surfaces with general ends of onduloid type
(0<a<1). The existence of these surfaces follows immediately from the existence
of the periodic surfaces given in Sect. 3 by the limit methods of Sect. 4.
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6.1 n-ends-surface

In Subsect. 3.3 we described barriers for doubly periodic surfaces with k bubbles
on the edges. Using Lemma 4.6 and the H-convex sets from Subsect. 3.3 we
see Theorem 4.4 applies and hence the surfaces M*#, bounded by I'*"?, converge
to a surface M? as k—oo. By Theorem 4.7 the ends converge to a helicoid
f* defined by y, and 7. Since y§ is in the helicoid f for all ke N the geometric
data of the end coincide with those of the finite quadrilaterals, see Lemma 4.8.
Thus the H-surfaces have n=3 ends in a plane making the same angle with
each other, provided f=mn/n. The centres are spherical or n-noidal, depending
on whether we start with a small or large quadrilateral. From Lemma 3.1 and
Theorem 3.3 we conclude uniqueness and existence:

Theorem 6.1 (i) Every n-ends-surface which lies between two parallel planes of
R3, has maximal symmetry, and whose ends converge to an embedded Delaunay
surface has a quotient of radii with

1
<
(6.1) 0<a=n_1,

if the boundary arc of finite length in the fundamental domain is no longer than
90°.

(i) There is a continuous one-parameter family of surfaces MT", 0 <t <90°, with
the properties mentioned above. In the family exactly the two different surfaces
M7 and ME3_, for 0 <t <45° have asymptotically the same Delaunay ends. Each
value of a in (6.1) is taken twice except for the maximal value 1/(n—1) which
is only taken by MZZ.

Remark. The surface M =/ for 0 <t <45° has an n-noidal centre, in the terminolo-
gy of the Remark in Subsect. 3.3. The k-th bubble is closer to the centre when
compared with the surface with spherical centre MZ_,, because ¢ is the length
of the curvature line. Certainly these surfaces have the asymptotic behaviour
for t - 0° and 90° claimed in Remark (i) and (iii) of Subsect. 3.3. It eases the
imagination of the family to consider the two degenerate situations of t—0
and t — 90°, when the ends tend to a chain of spheres.

Take a ray of spheres and mark the end point on the axis. To glue the rays
with the n marked points onto a centre sphere S? in a regular fashion yields
the limit for t —90°. To glue these points onto the origin of R® gives the limit
t—0; in this case the n spheres closest to the origin intersect each other, so
that by continuity the surfaces M™" cannot be embedded for small r.

Proof. (i) We consider the spherical fundamental path M cS?® associated to
a 90°-segment of an end. This is bounded by two great circle rays y, and 7y,
and a great circle arcy,. By the symmetry of the surface we can take y,, y,,
73 to be integrals of the Hopf fields C, sin f4—cos fC, — B as in Subsect. 3.1.
By the assumption on the length |y,| we are in the situation of Lemma 3.1
and the perpendiculars y, and 7; have length 0<I<f/2. Thus the quotient

of radii is . {
l » B/2

0<90°—1=90°-,3/2= 180°/f—1 n—1"

for p=n/n.
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(ii) We get continuity with the double-barrier technique from the proof of Theo-
rem 3.3. However, in this non-compact case we need a maximum principle at
infinity to rule out a non-compact intersection of a minimal surface M with
¥,(M). But this is given through Theorem 4.7: Both surfaces converge to the
same helicoid, so there is no intersection of M with ¥,(M) in a neighbourhood
of infinity. [J

6.2 Ends having the symmetry of the regular polyhedra

In 3.4(a) we found a surface patch with cubical symmetry. This can be generalized
to the symmetry of any regular polyhedron. Since the segment needed is always
less than 90° (in fact 36°, 45°, or 60°), it is easy to find the barriers.

6.3 n-ends-surfaces joined with handles

Taking the limit k —co of the triply periodic surface from Subsect. 3.4(b) we
get a simply periodic surface with ends: It consists of (vertical) translations
of n-ends-surfaces (n > 3), where two adjacent translates are joined by a handle.

6.4 A fence of Delaunay surfaces joined by handles

Taking the doubly periodic surface of Subsect. 3.4(b) with f=90° the limit yields
Delaunay surfaces, one of each bubbles is joined with a handle to the next
surface. This can be considered the surface for n=2 of the preceeding section.
By the remark at the end of 3.4(b) each a-parameter for the end occurs except
for a=1, the cylinder end. We can similarly construct doubly periodic surfaces
with Delaunay ends.
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