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0 Introduction

Let X be a smooth projective variety defined over the field of complex numbers.
Throughout the present paper we will assume that X is of dimension 2r and
its first Chern class ¢, (X) (or, equivalently, anticanonical divisor — K ) is linearly
equivalent to rH where H is an ample divisor on X. If r is the largest integer
dividing ¢, (X) then such an X will be called a Fano manifold of index r. In
the present paper we prove the following (the notions of elementary contractions,
scrolls etc. will be recalled in the subsequent section).

Theorem I Let X be a Fano manifold of index r and dimension 2r. Assume
that r=3 and the second Betti number of X, b,(X), is at least 2. Then one of
the following holds:

(@) X has a projective bundle structure over a Fano manifold of dimensionr+1;
(b) X has a quadric bundle structure over a smooth variety Y;

(¢) X has two elementary contractions: one of them makes X a non-equidimensional
scroll, the other is birational and of divisorial type (see also Lemma 1.5 below
for a description of the divisorial contraction);

(d) X admits two elementary contractions and any of them gives a structure of
a nonequidimensional scroll on X.

Remark. If X is a Fano surface of index 1 (the case r=1 in the above theorem)
then it is called del Pezzo surface and is obtained by blowing-up b,(X)—1
points on P? (where 2<b,(X)<8). Also Fano 4-folds of index 2 are well under-
stood, see [Mu] and [W4]. For Fano manifolds of index larger than half of
their dimension we have the following

Theorem. [W2, W3] Let X be a Fano manifold of index r>dim X/2. Then
either b,(X)=1 or X has a projective bundle structure.

As the result of the Theorem I we obtain the following

Corollary. Let X be Fano manifold of index r and dimension 2r. If r=3 then
by(X) <2 unless X =P? x P2 x P2,
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Remark. For 6-folds this was proved by Kontani [Ko].

Fano manifolds of index r and dimension 2r which have projective bundle
structure were studied in [PSW] where a thorough classification of them was
obtained. It was proved that, except a few well understood examples which
occur for r=3, any of them is a projectivisation of a decomposable bundle
on a quadric Q"*' or on a projective space P**!, or it is just a product of
P"~! with a del Pezzo manifold, i.e. a Fano manifold of index r and dimension
r+1. This settles the description of the case (a) of the above theorem.

In the present paper we discuss also the case (b) of the theorem i.e. Fano
manifolds of dimension 2r and index r which are quadric bundles. A complete
description of these is obtained:

Theorem Il Let X and Y be as in the Theorem I, case (b). Then one of the
following holds:
(A) X~Q xQ’;
(B) Y~P" and either
(a) X is a divisor of bidegree (1, 2) in the product P" x P"*!, or
(b) X is a divisor of bidegree (1, 1) in the product P"x Q"*!, or
(¢) X is double covering of the product P" x P" branched along a divisor of
bidegree (2, 2), or
(d) X is a blow-up of a smooth quadric Q*" <P?"*! along its linear section
Q’_1=P'ﬂerCP2.’+l.

As for the cases (c) and (d) from the Theorem I, we have the following examples
which show that these cases can really occur

Example. Let X be a blow-up of a smooth quadric Q*"<P?"*! along a linear
subspace P'"'=Q?". Then X is the graph of a projection of Q2" from P" !
onto P**!. The manifold X is Fano manifold of index 2r and the two maps
— the projection onto P"*' and the blow-down morphism onto Q2" — are as
in the point (c) of the theorem.

Example. Let X be a smooth complete intersection of two divisors of bidegree
(1,1) on the product P"*!xP"*!, Then X has a structure described in the
case (d) of the theorem: any of the two projections of X onto P"'*! is a non-
equidimensional scroll.

The paper is divided into three sections: first we recall some pertinent results,
then in subsequent sections we prove Theorems I and II. The proof of Theorem I
involves studying deformations of rational curves on Fano manifolds and so-
called Mori’s breaking-up technique. A similar approach was used in [W2] and
[W3] to deal with Fano manifolds of larger index. The proof of Theorem II
depends on several structural results on elementary contractions which are
recalled in the subsequent section.

1 Preliminaries

In this section we recall some definitions and results which will be used in
the sequel. Our terminology is compatible with the one used in minimal model
theory (cf. [KMM]) and adjunction theory (cf. [BSW]).
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1.0 The set-up. Let X be a projective manifold of dimension n and L an ample
line bundle on X. Assume that K is not nef (nef means numerically effective)
and that for some integer r the divisor Ky+rL is nef but not ample. Then,
according to Contraction Theorem (see [KMM]) a linear system |m(Ky+rL)|
is base-point-free for m>0 and thus it defines a projective map ¢: X - Y; we
assume that ¢ is onto a normal projective variety Y and has connected fibers.
The divisor Ky+rL is isomorphic to a pull-back, via ¢, of an ample divisor
from Y; we call Ky+rL a good supporting divisor of ¢. Such a ¢ is called
elementary contraction if all curves contracted by ¢ to points are numerically
proportional.

We say that (X, L, ¢) is a scroll (resp. a quadric fibration) ir r—1=dim X
—dim Y (resp. r=dim X —dim Y).

The exceptional locus of an elementary contraction ¢, that is the set on
which ¢ is not bijective (if dim Y<dim X then the set is equal to X), will be
denoted by E(¢). If E(¢)=X then ¢ is called fiber type, if E(¢) is of codimension
l in X then ¢ is called divisorial, otherwise it is called small.

The first result we need is about the dimension of E(¢).

Proposition 1.1 ([I, Theorem 0.4; W, Theorem 1.1] Assume that a map ¢ from
(1.0) is an elementary contraction. Then for any irreducible component F of any
non-trivial fiber of ¢ the following inequality holds

dim F+dim E(¢)=n+r—1.

Now we recall structural results about equidimensional maps, i.e. maps whose
fibers are of equal dimension.

Proposition 1.2 [F1, Lemma 2.12] If (X, L, ¢) is an equidimensional scroll (i.e.
all fibers of ¢ are of dimension r—1) and ¢ is an extremal ray contraction
then Y is smooth and ¢: X — Y is a projective bundle over Y, that is, there exists
a vector bundle & over Y such that X =P(&) (one may assume & ~ ¢, L).

Corollary 1.3 Let us assume that (X, L, ¢) is as in (1.0) and moreover assume
that ¢ is an elementary contraction. If all fibers of ¢ are of dimension <r—1
then X ~P(¢, (L))

Proposition 1.4 [ABW, Theorem C] If (X, L, ¢) is an equidimensional quadric
bundle (i.e. all fibers of ¢ are of dimension r) and ¢ is an extremal ray contraction
then Y is smooth and X embedds over Y into a projective bundle P(&) as a divisor
of the relative degree 2 (as above, one may take & ~¢, L; & is of rank r+2).

Remark. The original statement of the Theorem C in [ABW] is about the
smoothness of Y; the rest then follows easily because u is then flat and L has
a constant number of section on every fiber so that, by a theorem of Grauert,
¢, L is locally free; the embedding X =P(¢, L) is then given by the evaluation
¢*¢p, L>L.

~ We will also need the following easy fact on divisorial elementary contrac-
tions (for its proof see e.g. [PSW, Lemma 7.1]).

Lemma 1.5 Let (X, L, ¢) be as at the beginning of the section. Assume that
¢ is an elementary contraction such that E=E(®) is a divisor. Let Z=¢(E).
If dim Z =dim E —r then
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(a) Y is smooth at a general point of Z,
(b) a general fiber F of ¢ is isomorphic to P" and Op(E)~ Op.(—1),
(c) Ky is a Cartier divisor and K y=¢* Ky +rE.

Next we will also need a result on exceptional fibers of a contraction morphism.

Proposition 1.6 [YZ, F1, F2] Assume that X, L, r and ¢: X - Y are as at the
beginning of this section. Let F be an irreducible component of a fiber of ¢.

If dim F =r>dim(general fiber of ¢) then the normalization of F is isomorphic
to P".

Remark. The result is proved in [YZ] (although it is not formulated there this
way) and is based on a vanishing whose idea is from [F1]; to get a reference:
use vanishing from Lemma 4 in [YZ] and apply Theorem 2.2 from [F2].

We will depend on the following result on maps of projective spaces and
quadrics

Proposition 1.7 [L, CS, PS] Assume that Y is a smooth variety of dimension
n.

(a) If there exists a dominant regular map y:P"— Y then Y is isomorphic to
P";

(b) If there exists a dominant regular map ¥: Q" — Y then Y =P" or Y =Q" and
in the latter case the map Y is biregular.

We will also use a result on extending sections of line bundles from a divisor
to the ambient space. The following result is a version of a theorem of Sommese:
its proof is the same as the proof of Proposition III from [S].

Proposition 1.8 (cf. [S, Proposition III]) Let X be an irreducible and smooth
divisor on a smooth projective variety V of dimension n. Assume that L is a
line bundle on V such that Ly:=L,y is spanned by global sections on X. Assume
also that

(i) the evaluation map X — P%mILx! is onto variety of dimension <n—3,

(i) the line bundle Ox(X) is ample, and

(iii) Oy(MX)RL ™' is ample on V for m> 0,

then every section of Ly extends to a section of L on V (in particular Bs|L|n X
= Z).

Finally, we will use a result about uniform vector bundles on P". A vector
bundles & of rank k on P’ is called uniform if its restriction to any line on
P is isomorphic to 0(a,)® ... ®0(a,) with fixed integers a,< ... Za,; the
sequence (a, ... a;) is called splitting type of &. It is well-known (see e.g. [OSS,
3.2.1]) that if & is uniform of splitting type (a, q, ..., a) then £ ~0(a)® ... O(a).
We also need the following

Proposition 1.9 ([E] and [OSS, 3.4]) If & is a uniform vector bundle on P" of
rank k with the splitting type (a, ..., a,a+1) (resp. (a—1, a ... a)) then & is either
decomposable into a sum of line bundles or (if k=r) isomorphic to TP®0(a
—1)®0(a)®* " (to QPR (a+ 1)DO(a)®*~", respectively), where TP (resp. QP)
denotes the tangent bundle (resp. the cotangent bundle) of P".

Proof. For k<r the result is known (see e.g. [OSS, 3.4]). For r=2 and arbitrary
k the result is due to Elencwajg [E]. The extension of these results to arbitrary
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r and k is proved by induction on k=3. We may assume that the bundle &
is of splitting type (0,0 ..., 0, 1) therefore the restriction of & to any hyperplane
H~P ™! either splits into a sum of line bundles (in this case & splits because
of 2.3.2 from [OSS]) or is isomorphic to TP '@0(—1)@O®*~"~1_Call this
restriction &. The bundle & is spanned and H(H, &;(—1))=0 for any i=0.

We claim that also H'(P",&(—1))=0 for any i=0. Indeed, take a linear
pencil of hyperplanes 4 and by I' denote the incidence variety of 4 (the blow
up of P at the base point locus of A) with projections p: I' —» P (the blow-down
map) and q: F —» A. Then Riq, (p*&)=0for i20, p,(p*&)=¢ and R'p, (p*&)=0
for i>0 and our claim follows by Leray spectral sequence.

Now using the cohomology of a sequence

0-8(—1)>E->84—-0

we find out that sections of &y extend to sections of & so that the latter bundle
is spanned by global sections. Being spanned it fits to a sequence

0-0%*¢ N8558 -0

where & is a uniform vector bundle of rank r and splitting type (0,0 ... 0, 1).
Thus &’ is as we desire, so is &.

2 Proof of Theorem I

Throughout the present section we assume that X is a Fano manifold of dimen-
sion n=2r=6 and index r=n/2; let H be an ample divisor on X such that
—Ky=rH. We will also assume that Picard number of X, p(X), is at least
two. We will examine elementary contractions of X : each elementary contraction
¢ of X fits to the description from (1.0) (for a suitable choice of L), so that
its fibers should be rather large (of dimension =r—1). On the other hand, we
will frequently use the fact that no two fibers of two different elementary contrac-
tions can intersect along a curve, so that their fibers — if they meet — should
not be too large. This is an easy observation:

Lemma 2.0 Assume that F, and F, are fibers of two different elementary contrac-
tions of X. If F, nF,+& then dim F, +dim F, <n and therefore, in view of (1.1),
r—1<dim E<r+1, fori=1,2.

First we have to show that at least one of the elementary contractions is of
fiber type — so that its fibers meet fibers of other contractions.

Lemma 2.1 There exists a rational curve Cy, Co- H=1 whose deformations sweep
out the manifold X.

Proof is very similar to this of Lemma 1 from [W3], we only sketch it here.
We are to show that through every point of X there passes a curve whose
Intersection - with H is equal to 1. Assume the contrary. Then there exists
a point xe X such that every rational curve pasing through this point has inter-
section at least 2 with H. From Mori theory, [M, Theorem 6], we know that
there exists a rational curve C, passing through x such that C,-H=2. From
deformation theory, [ibid, Sect. 1], (and our assumption that C, has minimal
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intersection with H among curves passing through x) we know that deformation
of C, containing x sweep out a subvariety of X of codimension at most 1.
If the variety coincides with X then we conclude as the proof of Lemma 1
in [W3] or (3) in [W2]. Otherwise we note that the effective divisor swept
out by deforming C, must have positive intersection with some extremal rational
curve on X (it is clear that the curve is not a multiplicity of C,: a divisor
contracted by an elementary contraction has non-positive intersection with
curves contracted by the contraction) and we conclude similarly.

2.2 Now as in [W2], or [W3] we construct a complete variety T parametrising
deformations of C, and incidence variety V with proper maps p: V— X and
q:V—T, p onto X, fibers of g being rational curves. From deformation theory
it follows that dim T=n+r—3=3(r—1) so that fibers of p are of dimension
>r—2.

For a closed subvariety Y < X we will denote T, =q(p~ '(Y)), Xy=p(q~ ' (Ty)).
The variety Xy is closed in X.

For a closed subvariety F=X by NE(F)c NE(X) we will denote a cone
spanned by numerical classes of curves contained in F. Similarly as Lemma
(1.4.5) in [BSW] one proves the following

Lemma 2.3 If Fc X is a fiber of a projective map of X then

NE(X;)=NE(F)+R*[C,].

Lemma 24 If Fc X is a fiber of a projective map which does not contract
C, then

dim X ;= dim F +(r—1).

Proof. Fibers of p are od dimension >r—2, thus we will be done if we prove
that the induced map

Pig-1rey: 4 (Tp) = Xp

is finite-to-one outside p~!(F). This, however, follows from Mori’s breaking-up
technique, cf. [M, proof of Theorem 4]. Namely, otherwise we can find in T
a curve parametrizing curves passing through a point outside F, then via normal-
isation we can produce a ruled surface having two non-intersecting multisections
contracted by different morphisms: see e.g. (3) in [W2] for details.

Lemma 2.5 Let ¢, be an elementary contraction of X which does not contract
Co. If ¢y has a fiber of dimension 2r+1 then p(X)=2 and X has a P"~ '-bundle
structure over a smooth Fano variety. Therefore, in view of (1.1), X admits no
small contraction unless it has a projective bundle structure.

Proof. Let F be a fiber in question, dim F >r+ 1. According to the above lemma
X=X so that NE(X)=NE(F)+R™* [C,]. Thus p(X)=2 and C, is an extremal
rational curve. The contraction of the ray spanned on the class of C, has all
fibers of dimension <r—1,(2.0), so it gives a projective bundle structure to
X by (1.2).

Lemma 2.6 X has at least one extremal ray contraction of fibre type.
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Proof. Assume the contrary. Take an extremal ray contraction with exceptional
locus being a divisor, say E,. Being effective E; has positive intersection with
some other extremal ray and thus it must meet its locus, say E,. Thus we
can find two fibers F; and F, of two extremal ray contractions which meet,
dim F; =dim F, =r because of (1.1) and (2.0). As above, we find out that X
is a divisor meeting F, so that we have a curve from F, whose numerical class
isin NE(Xp,)=NE(F;)+R"* [C,], a contradiction.

From now on we may assume that C, is an extremal rational curve. Let
¢, denote the contraction of the ray spanned by C,.

Lemma 2.7 If p(X)=3 then n=6 and all extremal ray contractions of X have
all fibers of dimension <2, so that X has a projective bundle structure.

Proof. Assume p(X)=3. We will be done if we prove that no contraction of
X is of divisorial type. Indeed, in such a case we take a contraction of a 2-
dimensional face of NE(X). The contraction is onto a variety of dimension
>r—1 (because no fiber of a contraction of the remaining extremal ray is con-
tracted) and has a general fiber of dimension >2r—2 (because Picard number
of a general fiber is =2 and we can apply the main result of [W2]) thus n=6
and any fiber of a contraction of a remaining extremal ray is of dimension 2.

Now we can apply an argument from the previous lemma. Assume that
we have two rays not spanned by C, with loci E; and E,, where E, is a
divisor. Since E, is effective, it has positive intersection with some extremal
curve; thus we can assume that either E,-C,>0 or, perhaps changing E,,
E,-C,>0, where the exeptional locus of the contraction of an extremal ray
spanned on C, is E,. If E, meets E, then arguing as in the previous lemma
we arrive to the contradiction. Therefore we may assume that both E, and
E, are divisors and E; has positive intersection with C,, But then either E,
contains a fiber of the contraction of C, or has a positive-dimensional intersec-
tion with a general fiber of ¢, so E, and E, have to meet anyway.

Now we can improve Lemma 2.5 to get

Lemma 2.8 If an extremal ray contraction of X has a fiber of dimension =r+1
then X has a projective bundle structure.

Proof. In view of (2.5)-(2.7) we can assume p(X)=2 and the contraction ¢,
of C, has a fiber of dimension >r+1 while another contraction ¢; of X is
of divisorial type. But then the exceptional divisor of ¢, has positive intersection
with C, so that any two fibers of ¢, and ¢, meet, which yields contradiction
because of (2.0) and (1.1).

Now we arrive to the conclusion of this section:

Proof of Theorem I. Let us assume that X does not have a projective bundle
structure. Then, according to (2.7), p(X)=2 and X has two elementary contrac-
tions ¢, and ¢,. According to Lemma 2.6 we may assume that ¢, is of fiber
type. Then, in view of (2.8), ¢, has all fibers of dimension =r, so either it
is an equidimensional quadric bundle or non-equidimensional scroll. The same
argument applies to ¢, if it is of fiber type. If not, then, according to (1.1),
it is divisorial and has all fibers of dimension r.

3 Proof of Theorem II

In this section we assume that X is a Fano manifold of index r and dimension
2r,and has a quadric bundle structure, that is, there exists an elementary contrac-
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tion ¢: X — Y which is a quadric bundle. The manifold X has two elementary
contractions so let { denote “the other” contraction of X. From the classification
of such Fano manifolds which have projective bundle structure (Main Theorem
and Proposition 7.4 in [PSW]) it follows that we may assume that y is not
a projective bundle so that it has fibers of dimension r. We will prove the follow-
ing refined version of the Theorem II:

Theorem 3.0 Let X, Y, ¢ and Y be as above. Then one of the following holds:

(a) X~Q"x Q" and both ¢ and  are projections onto factors;

(B) Y ~P" and either
(@) X is a divisor of bidegree (1,2) in the product P"xP"*' ¢ and y are
projections onto P" and P"*1, respectively, or
(b) X is a divisor of bidegree (1,1) in the product P*x Q™ *', ¢ and  are
projections onto P" and Q"*!, respectively, or
(c) X is double covering of the product P"x P" branched along a divisor of
bidegree (2,2), ¢ and  are projections onto each of P"’s (equivalently: X
is an intersection of a cone over a Segre imbedding P"x PPN +D-1
with a smooth quadric in PUt D) o
(d) X is a blow-up of a smooth quadric Q*"<=P?'*! along its linear section
Q  '=P nQ*<P¥*!, the map ¢ is the projection from P cP?*"*1 and
Y is the blow-down morphism.

The proof of the above theorem will occupy the rest of this section. First we
will show that Y is either P” of Q" with the latter possibility only if X ~Q" x Q".

Lemma 3.1 If X is as above then Y is isomomorphic to either Q" (if { is a
quadric bundle) or to P'.

Proof. First note that we may assume y has a fiber of dimension r and thus
¢ is equidimensional, but then by a result of [ABW] Y is smooth. If ¥ is
equidimensional, then it is a quadric bundle and its general quadric is isomorphic
to Q". But then Q" is mapped onto smooth Y and thus, by (1.7), Y is either
P" or Q". The latter case is possible only if the map from the fiber onto Y
is biregular.

If Y is not equidimensional then by (1.6) an exceptional fiber of y has a
component whose normalisation is P". Then, again, we have P" mapped onto
smooth Y so by (1.7) Y=P".

Lemma 3.2 In the above situation, if Y =Q" then X =Q" x Q".

Proof. By the symmetry, we have a finite map ¢ x : X - Q" x Q". But, by (1.7),
fibers of one of the maps (¢ or ) are mapped biholomorphically onto “the
other” Q’, so that the product map is actually biholomorphic.

In the remaining part of this section we deal with the case Y =P’; so that
¢: X > P Let £:=¢, Ox(H). The sheaf & is then locally free of rank r+2 and
X embedds into P(&) as a divisor of relative degree 2 so that Op 4 (1),x ~ O (H).
Let n denote the pullback to P(&) of a hyperplane section of P" and let ¢
the divisor class of Op 4 (1). From the adjunction formula for X =P (&) we find
out that Xe|2¢+(r+1—c) 5|, where ¢, (&)=c,(0(c)). The proof of the part (B)
of the theorem is now divided into some lemmata.

Lemma 3.3 In the above situation ¢ <r+ 3.
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Proof. This follows from smoothness of X. Namely, X is defined by a section
of $%(&) whose determinant vanishes along the divisor of singular fibers (singular
quadrics) of ¢ and is of degree 2¢+(r+2)(r+1—c).

Lemma 34 If ¢ is ample then X is described in either (a), or (b), or (d) of
the part (B) of (3.0).

Proof. Since & is ample of rank r+2 and ¢, (&) <r+ 3 it follows that & is uniform
of splitting type either (1,...1) or (2,1,...1). In the former case & is trivial
twisted by (1) and consequently X is as in the case (a) of the theorem. In
the latter case from (1.9) it follows that & is either O2)@O(1)® ... DO(1) or
TP'®O(1)®O(1) and thus X is, respectively, as in the case (d) or (b) of the
theorem.

Lemma 3.5 If “the other” contraction Y is of divisorial type then X is as in
the case (d) of (3.0).

Proof. A general description of the contraction morphism y in this case is
provided in Lemma 1.5. Moreover, let us note that a good supporting divisor
D of y is a multiple of either £+# or 2&+#. The proof of this is similar to
an argument from [PSW]. Namely, let E be the exceptional divisor of y, then
E has intersection —1 with an extremal rational curve contracted by ¥ and
thus ¢+ E is a good supporting divisor of ¥/, and y* Ky =r(¢ + E). Then, using
deformation argument as in the proof of Lemma 7.2 from [PSW] we note that
Ky has intersection <2r+1 with the image of a line contained in the fiber
of ¢. Therefore E=¢—an and D=2¢—an, and consequently a=1 or 2 depend-
ing on the intersection of # with the extremal rational curve contracted by

.

Now we claim that the case D=2¢—# can not occur. For this purpose
let us consider the restriction of & to a line /cP" and then by X, denote ¢~ !(I).
On P(&) we have the following intersection formulas: #?-P(&)=0,
n-&*1.P(&)=1 and &*2.P(6)=c,(&). Thus we can compute the intersection
E-D"inside X,:

E-D"-X,=(&—n)-Q¢—n)- Q2+ (r+1—0)n)-P(&)=2"(c—1).

But this intersection is equal to 0 as the image of E under the contraction
Y is of dimension r— 1. Therefore ¢=1 in this case. To complete this case note
that &, has a quotient bundle &, of rank r + 1 such that ¢, (&) <0. The intersection
E-D"~'.X.P(&) should be then non-negative (as P(&;) = P(&)). But computing
it as above we get

E-D'1-X-P(E)=(E—n)-Q&—ny - QE+(+1—0)n)-P(&)
=271 26, (&) - 1)<0,

a contradiction.

To complete the proof of the lemma we deal with the case when E=¢—2¢
and D=¢—n. Then we compute as above that c=r+3. Consequently
Xel2E-2p|= |2D| and thus ¢ is ample on P(&) because of the following lemma
and consequently we are done because of (3.3).

Lemma 3.6 If 0yx(X) is not ample then & is ample on P(&). Also, if c>r+1
then & is ample on P(&).
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Proof. The cone of effective 1-cycles on P(&) has two edges. Since Oy (X) is
not ample X must contain curves generating the edge not contracted by P (&)
—P". Since &y is ample it follows that ¢ has positive intersection with this
edge and consequently is ample. The second part of the lemma one gets similarly.

Lemma 3.7 Assume that X cP(&) is a quadric bundle such that its “other contrac-
tion”  is of fibre type and & is not ample. Then X is as in the case (c) of
the Theorem (3.0).

Proof. In view of (3.6) c=<r+1 and therefore X —2&=(r+1—c)# is nef on P(&).
Let Ly be a pull-back — via y — of a very ample line bundle on the target
of Y. Since p(P(£))=p(X) we may assume that the line bundle L, extends
to a line bundle L on P(&). Since ¢ is ample on X, X=2¢ on P(£) and X
is effective, X is also nef on P(&). Therefore, by a similar argument as in the
above lemma, it follows that for m> 0 the line bundle Op(mX)®L™ ' is ample
on P(&). Moreover, (3.6) yields that (x(X) is ample on X. Thus we are in
the situation of Sommese’s theorem (1.8) and consequently every section of
Ly extends to P(&) and base locus of L does not meet X.
Let [ P" be a line. We have the following decomposition of & on [

E=00)dé&

where v is the smallest number in the splitting type of & on . Let CocP(8)
be a line such that &-C,=v, then the bundle L is base-point-free on P(&)) outside
C, (because the base-point-set of L on P(&,) does not meet X and thus is
of dimension 1 at most). Therefore &, is ample so that ¢, (§;)=c—v=r+1. From
(3.6) it follows that v<0. But then C, is in the base locus of L. Thus X does
not meet the curve C, and thus X -Cy=0. On the other hand we find out
that

0=X-Cy=2¢-Co+(r+1—c)n-Co=2v+r+1—c=v

and therefore v=0 and c=r+ 1. Consequently, the splitting type of & on (every
line) 1is (0, 1, ..., 1). Now we use (1.9) to complete the proof. Namely, we verify
easily that only & ~0@0O(1)®"*! satisfies our assumptions in this case, so that
we are in the case (c) of (3.0) (B).

Conclusion. Note that lemmata 3.4, 3.5 and 3.7 yield the part (B) of Theorem 3.0.
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Note added in proof.

A classification of Fano manifolds of index r, dimension 2r and b, =2 has been completed
recently by the author of the present paper and Edoardo Ballico. The result is as follows:
such manifolds have either projective or quadric bundle structure (and therefore are know
- see [PSW] and Theorem II of the present paper, respectively), or they are isomorphic to
one of the two types of varieties discussed in the examples following the Theorem II.
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