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1 Introduction

In treating the regularity problem for solutions of nonlinear elliptic and parabol-
ic equations, we need to consider the corresponding linear equations with only
measurable coefficients. Holder estimates for bounded weak solutions of equa-
tions have been obtained in the papers [8-12]. It was shown by Moser that
a Harnack inequality holds for solutions of elliptic and parabolic equations
with bounded and measurable coefficients [10, 11].

In this paper we shall study difference-differential equations of elliptic-para-
bolic type with bounded and measurable coefficients. It is our aim to derive
a Harnack inequality for solutions of such equations uniformly with respect
to approximations. Previously, such problems had been studied by Kikuchi
[6], who treated Holder estimates for equations independently of approxima-
tions. Depending on the relation between the size of a local cube and a time-
discrete mesh, the equations show a “parabolic” or “elliptic” behavior, respec-
tively. We also think that the estimates in this paper will be fundamental and
useful for time-discrete approximations of evolution equations (see [7]) and
will play an essential role in constructing Morse flows for certain functionals
in the calculus of variations (refer to [1, 5]).

Let Q be a bounded open set in Euclidean space R™, m22, u be a function:
Q- R and Du=(D,u, D,u, ..., D,u), D, u—au/ax (1=a<m) be the gradient
of u. Let T be a positive number arbitrarily given and set Q=(0, T) x Q. We
use the usual Lebesgue space L,(f2), Sobolev spaces; W"(Q) WX(Q, R),

Wp0(Q)=W;(2, R), V2(Q)= L*(o, T); Q) 2(0, T); W} (@) and Vz 0(Q)
=1=(0, T); LZ(Q))ﬁLZ (0, T); W,0(Q)).

For a positive integer N, N 22 we put h=T/N and t,=nh(0=n=<N). Let
u, be a function belonging to W, (). We shall be concerned with a family
of linear elliptic partial differential equations:

ﬁ%i:D,(a:ﬂ(x) Dsu,) (1=n=N).

In the summation convention over repeated ones, the Greek indices run from
1 to m. The coefficients a??(+)(1<a, B<m, 1 <n< N) are measurable functions

(1.1)
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defined in Q satisfying the uniform ellipticity and boundedness condition with
positive constants A and u:

(12) AlEP=af(x)& &P =<pulé* for £=(&)eR™ 1<n<N and any xeQ.
Consider a family of weak solutions of (1.1) with initial data u,, that is, a

family {u,} (1<n=<N) of functions u,e W,' (Q) which satisfy

(13) g % @dx+ [ a? Dyu,D,pdx=0 forany ¢=(p))eW,,(Q).
Q
For such a family {u,}(1=n<N), define a function wu,(t,*): te[0, T]
= u,(t, *)e W, (Q) as follows:
(14) u(0,+)=uo("),
u(t,*)=u,(-) for t,_;<t=t, (1=n<N).
Also define
(L5) a*’(t,")=az?(), for t,_;<t<t, (1=n=<N).
We deduce from (1.3) and the definitions (1.4), (1.5) that u, satisfies the identity

16 | “"(t")_Z"(t_h") o(-)dx+ [ a®(t,") Dy up(t,) D, ¢(+) d x=0
Q 0

for any ¢ =(¢')e W, o(Q) and all te(0, T]. (1.4) understood, we use the notations
uy, and {u,} interchangeably.
Some standard notations: For a point zo=(t,, x,)€Q, we put

7 B,(xo)={xeR™: |x*—x§|<r(1Sa=m)},
C,.(zo)={teR:|t—to| <t} x B,(x,),
C/(zo)={teR: to—1<t<to} x B,(xo),
C,(zo)={teR:to<t<ty+1} X B,(x,).

These domains are referred to as cubes. For simplicity, we shall use abbrevia-
tions:

Cr20)=Crra(z0)  C(20)=C2(20),  C7 (20)=C; pa(20).

In the above notations, the centre x, and z, will be omitted when no confusion
may arise. For z;=(t;, x;) (i=1, 2), we introduce the parabolic metric

(18) 8(24, 22)=max{|t, — 5|2, |x{ — x3|(1 Sa < m)}.

For a measurable set 4 in R¥, we denote the k-dimensional measure of A by
| A| and for an integrable function f on 4, we put

1
f4=m£f(2)d2-
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For a positive number [ we denote by [I] the greatest non-negative integer
not greater than I. We also set

(1.9) fi,=the greatest non-negative integer less than [?/h.

The same letter y will be used to denote different constants depending on the
same parameters.
Now let N, be a positive integer satisfying

N, > log(1 +m/2)/log(1 +2/m)

and let h, be a sufficiently small positive number. From now on, we take N
in (1.1) sufficiently large satisfying

N =2max {N,, T/ho}.

We also define a cube ,, as follows:

By, ={x€Q; dist(x, Q) >]/(No + 1) ho}, 0, =((No+ 1) ho, T) x o

Now we shall describe our main results:

Theorem 1.1 (Weak Harnack inequality, parabolic regime) Let u, be a weak
solution of (1.1). If u, is nonnegative in a cube C, (t,,, Xo)<Q with r2>h, then,
for any 0<p<1+42/m, there exists a positive constant y depending only on 4,
u, m and p such that

(1.10) (——1— {f (u,,)"dxdt)”pgy inf  u,.

|Cymmal C/ri/2(ng - s ¥0) Cymya(tngr*o)

Theorem 1.2 (Weak Harnack inequality, elliptic regime) Let u, be a weak solution
of (1.1) satisfying

” (u)*dxdt<y,

Q

with a uniform constant y,. If u,20(No+1=n=<N) in B,,(xo)=,, with r*<h,
then, for any 0<p<m/(m—2), there exist positive constants y and o, 0<a <1,
depending only on A, p, m, y, and dist(x,, 0Q) such that, for the same n, Ny+1
<n<N as above, there holds

(L11) i (un)"dx)”pgy[ inf u,+7].

I Br/2 | Br/2(x0) Br(x0)

Theorem 1.3 (Local boundedness of solutions) Let u, be a weak solution of
(1.1) satisfying

[f ) dxdt<y,
Q
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with a uniform positive number y,. Then, for all (¢, X)e(,, with d=(1/4) min{|t
—No ho|'/?, dist(x, Q)} and any p>1, there exist positive constants y and a,
O0<a<1, depending only on 4, p, y,, p and d such that, setting u = max { +u,, 0},

1 1/p
(1.12) sup u,,i§y[(— 1) (u,,i)”dxdt) +r“]

+
C.(tngrX0) 1C C;* (tngsX0)

holds for any (t,,, xo)€ C4),(t, X) and all 0<r<d/2.

We emphasize that the above theorems hold uniformly with respect to h and
uh-

This paper is arranged as follows: In Sect. 2 we shall derive the so-called
Caccioppoli inequality for uf/?(p+ —1). Here we use a special cut-off function
with respect to time-variable ¢, which was introduced in the paper [6]. Section 3
is devoted to obtaining an estimate for supu,. It seems impossible to obtain
the boundedness of solutions of (1.1) only by Moser’s iteration. Instead we
exploit De Girgi’s iterative technique. In Sect. 4 we give a variation of John-
Nirenberg estimate for a time-step function and estimate log u,, the most impor-
tant and difficult step in our proof. In Sect. 5 we shall prove Theorem 1.1, 1.2
and 1.3 and also obtain Holder estimates for weak solutions of (1.1).

2 Estimates for u?

In this section we derive a Caccioppoli inequality analogous to Moser [11].

Lemma 2.1 Let u, be a weak solution of (1.1) and let us take C, o (tnys Xo),
C. (tnos X0)=Q arbitrarily. Then there exists a positive constant y depending only
on A, p and m such that, if u, is nonnegative in C, o(tny, Xo) and Ung—m—1=20
in B,(x,), then

2.1) sup | (up+e)P(t,)dx

thg—t(1 —02)St<tng Bo (1 - ay)(%0)

+ if |D(uy+ey2 |2 dxdt

Clt1-a1).5(1 - ag)(tngs X0)

<y((o1p) 2 +(0,7)7Y) ” (up+e)Pdxdt

CJ c(tngsx0)

holds for any p<0, all ¢,, 0,€(0,1) and any ¢>0. If u, is nonnegative in
C,.<(tnys x0) and u,, 20 in B,(x,),

2.2) sup [ (u+eP(t,)dx
l"°§l§1"0+t(l—62) Bp(l—al)(xo)
+ if |D(uy+e)P?|*dxdt

Co(1-ay)e(1-az)(tngsX0)

201972 +(0:07Y) [ (m+ePdxdt

Cﬁ.z(lno»xo)

holds for any 0<p<1, all 6, 5,€(0, 1) and any £¢>0.

Remark. For p=0, the above estimates are trivial.
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Proof. In the arguments we omit writing a center point of B,(x,) or vertex
of C; (tngs Xo)-

We demonstrate only the proof of (2.1). Let neC§ (B,) be a cut-off function
such that 0<n<1, n=1 on B, _,,, and |Dn|<2(0,p)" . Also we take some
appropriate cut-off function o (¢) defined on [t,,—1, t,,], the definition of which
is given later. We remark that, since u,(t,*) is nonnegative in C, o (uy(t,°)
+e)P "1 n%(+) o(t), p<0, >0, is admissible as a test function in the identity
(1.6) in C, .. Integrating the resulting inequality with respect to t in (t,,—7, tpols
we have

uh(ta .)_uh(t_h’ ')
g

7 (p(t, ") +e () o () d x di

+ [ a**(t,*) Dy up(t,*) Do [(un(t, ")+ n*(-)] o(t)dx dt=0.

Cre.
Put v(t, *)=u,(t, ") +¢, then the above becomes

ey ff MR o pm ) st dx e
Coe

+ [[ a**(t,*) Dy o(t, ") D, [(v(t, )’ ' n*(+)] o(t)dx dt=0.

Che
Now we separately estimate each term in (2.3). To do so, we need to distinguish

two cases.

Case 1 a,t>3h. Then we take o(t) as follows (see [6] or [7]):
o(t)=0, for t,_,<t=t, 1=n=N)

1 for no—[(1—0;)t/h1=n=n,,
n—nge+[t/h]—1
[c/h]—1—[(1—0;) t/h]
0 for n<ny—[t/h].

24) o,= for ng—[t/h]+1=n=<ny—[(1—o0,)t/h],

We first estimate the quotient term of (2.3). Using Young’s inequality and
noting that p<1 and p=0, we have

(U(t, ‘)—D(t—h, '))(U(t’ .))p— : é(vp(t’ ')—Up(t—h, '))/pa

so that
ff 2000 et ot dx
C+
= ” vp(t,.)—u;(t—h,-) n*(-)o(t)dxdt.
Ct. p
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By the definition of u and g, the latter equals to

no

Z I (WE—vi_)n*dx

1
p n=no—[(1—-02)t/h]+1 B,

2.5)

1 "=no~[(1 —a2)t/h]

+— > [ WF—vi_1)o.n*dx

P n=ne-twm+2 B,

1 1
== [ o, n*dx—— J Vho—11 —anem 1 d X
P s, Py,
1 n=no—[(1—a3)t/h]
+— Y | we—vE_)) o, n*dx.
p n=no—[t/h]+2 B,

Since 6,, -, +1 =0, we have,

1 n=no—[(1—0a2)t/h]

2
— > J Wi—vh_)o,n*dx
P w=no<m+2 B,

1 n=no—[(1—a2)t/h]
2
B z j(uzan_vﬁ—lan—l)n dx
P n=no-tym+2 B,

1 "=no~[(1 —02)t/h]

= Z (an—an—l) j U:’:—l ﬂzdx
p n=no—[t/h]+2 B,

1 5 n=ngo—[(1 —0a3)t/h]
2
== [ O f1-ayemn* dx—— > (0s—04-1) | vE_ n?dx.
Dy, n=no—[t/h]+2 B,

Noting that 6,—o0,_,; <3h/(c, 1) and p <0, the latter is

1 ) 5 3 - n=no—[(1—a3)t/h]—-1 b3
(2.6) =— j Vno—t1—anyym M- dX——(0,7) "' h Z j vpndx
Pg, p n=no—[t/l+1 B,

1 3 g Mo
== j Ugo—[u-oz)z/h)ﬂzdx__(02"7) : I f vwntdxdt.
p B, p thg—1t By

Substituting (2.6) into (2.5) gives that
@) j LR o et ) o dx
Cle

== | v,‘,’onzdx—%(azt)_lc_[_f vPntdxdt.

5
P,

Next we shall deal with the term including spatial derivatives.



Harnack inequality 399

Noting that p<1 and using Young’s inequality with e= —A(p—1)/u|p|>0,
we have

28) [f a(t,") Dyu(t,”) Do[(w(t, )~  m* ()] () dx dt
C;.t
4p—1)
= p2

[| a®®DgvP?> D,v"*n*cdxdt
Che

+i {f a**DyvP* v??nD,nodxdt

C+

__“(;’ D 5 |Dv”/2|21120dxdt+ jj a*? Dy vP2 g D, o dx dt
C+
4
(5 (ppz D) & I[P o it

lple ([ @"2?|Dn?*cdxdt
C+

s——zu,',’z_l) {J IDvPn*odxdt— {J |Dnl*odxdt.

2 2
c;. Ap=1) &7

Combining (2.8) with (2.7) gives that

1 [} vﬂorlzdx——z(azr)'l [ vwn*dxdt
P s, p Ch.

2A(p—
201
p

2
[f IDv??Pn*odxdt— 2t {f v*IDnl?odxdt=0.
C;.z A’(p_ 1) C;"

From this inequality, it follows that

v?|Dn?odxdt,

1 2 3 -1 &
(2.9) 53{ thon*dxz ) (0:7) 55 vn dxd“%(p e ”

(2.10) 3/1(1’_2—12 ﬂ |DvP?2n*odxdt

> (0'21.') L Prtdxdit—rit (2 ) [ vP|DnlPodxdt.
Ci. Ci.

Dividing the both sides of (2.9) and (2.10) by 1/p<0 and 2 A(p—1)/p* <0 respec-
tively, we obtain

2 -1 2 2u*p
@11) [ v n?dx<3(0,7)7 " [ PnPdxdi+ "
B, Ci

P 2
0 Cj‘;{v |Dylcdxdt,

(212) [f |IDv*PPn*cdxdt
Coe

STy I wrtaxai(p o) §f wibntedxds
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Noting that p—1<p<0, (2.11) and (2.12) become, respectively,

(2.13) j'v n dx<max( )((alp)“ +(0,7)7Y) ” vdxdt,

2
(214) | |Dv"/2|21120dxdt<max(23/1 41 )((a,p)‘2+(021)") [ v»dxadt.
€

Cte

Estimating similarly as in (2.13), for ny—[(1 —0,) 1/h] <n< ny we obtain
2 8 -2 -1
(2.15) [ vEyn*dx<max 3,7 (61p) 2 +(0,0)7 ") [f vPdxdt.
B, Cj.e

Thus we have

(2.16) sup [ v, ) n?(-)dx

thog—(1—03)tSt<ty, B,

<max( Sy )((alp) Z4(0,0)7Y jj‘ vdxdt.

Next we shall consider the Case 2 6,7 <3h. Then we put o(t) as =1 on [t,,

—1, t,,], so that we have (2. 3) with o= 1. Let’s remark that since u, is nonnegatlve
in C,, and u,_u-120 in B,, v=u,+¢ is also nonnegative in C,, and
Uno—[e/h1— 1 = Uno -y —1 €20 in B,. Thus

] Mfww(u-»r‘ n*(-)o()dxdt

— .”- Up(t,')"vp_llft,-)v(t h ) 2( )dth<— “‘ Up(t )'1 ( )dx,
Cc+

C+

so that, with e= —A(p—1)/u|p|(>0) and o, 1< 3 h, from (2.3), (2.8) we obtain
3 -
= ey () dxde+ 22T g0 p g gy,
0'27: + P C;’_‘ .

24

'1(1 7 ; j’j vP|Dnl*dxdt=0.

That is, we have

24(1—
2.17) *(pz P)

[ IDvP22y*dxdt
Cre.

g— ﬂ vP(t, ) n?(-)dxdt+

pt

(2 o _U v?|Dy|*dxdt.
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Dividing the both side of (2.17) by 2 A(1 — p)/p?(>0), we have
(2.18)

2
J§ 1D dxdesman (7, ) (@7 4007 ([ 0(6)dxdt
Coe Coe

Moreover, trivially, for g, t<3h and ny—[(1 — ;) 1/h] n=<n,, there holds

(2.19) [ vBdxZ3(o,7)7" || vPdxdt.
cs.

Bo1-oy)
The proof of (2.2) is similar and can be omitted.

Lemma 2.2 Let u, be a weak solution of (1.1). If u,20 in C,, . (s> X0)<=Q

PosT0
and ty,,_(om-120 in B, (xo), then there exists a positive constant y depending

only on A, u and m such that

(2.20) (I—Cf— [ . xde dx)”p

Po,tol C;o.ro('"o'xﬂ)
<Y(2+pg 1) P B inf uy(t, x)

(tnx)scgo/z,to/z('novxo)

holds for any p<O. If u,20 in C,, . (ts, Xo)<=Q and u,, 20 in B, (x,), then,

for any 0<p<1+2/m, there exists a positive constant y depending only on A,
U, m and p such that

(2.21) (; i e x)dtdx)llp

I Cpo/2.ro/2| Cso/2.70/2(tngs X0)

<y ($ ff ub, x)dtdx)”q

le_o.tol C5o.70(tngsX0)

holds for any 0<q<p.

Proof. We proceed by iteration as in [9, pp. 105-110]. We here remark only
the following. Making a changing of variables:

(222) {x-—xo =Po)>

. t—ty,=p3s
and putting

i, (S, ) =uy(tso+ P§ S, X0+ Po V),

we find that, for any s, — 1< p3 s <0, and all ¢ =(¢")e W5 o(B,) i, satisfies

~ o) — 15 (¢ — 2,
223) | LACH) :;(52 hpo) 4y + { @*(s,") Dy y(5, ) Dy d y =O0.
By pO By



402 M. Misawa

Thus, noticing that i, _..s-, 20 in By, from (2.1) it follows that

(2.24) sup | (+ere-)dy
¥(1-02)St<0 B,1-0y
+ § ID@+epRPRdyds
C;(l—ql).P(]_uz)

=01 P) 2 +(02 D7) [f (@, +e)*dyds

+
Cp.t

holds for 0<p<1,0<T<f=pg ?1y, 0y, 6,€(0, 1), all p<0 and for any &> 0.

Lemma 2.3 Let u, be a weak solution of (1.1). Then there exists a positive constant
v depending only on A, p and m such that, setting uf =max { +u,, 0},

(2.25) Sup ] ()P (t,*)dx

thg—t(1 —02) St Sty By (1 - ay)(x0)

+ ]) IDui)y?*1*dxdt

Co1-0).e(1 - oy (fngsX0)

s1,05 (145 2) e+ I wrdsas

+,7)7"  [f |wlP(t—h,-)dxdt}

C;- € ("'0 »X0)

holds for all L<p=<m+2, any C; (t,,, Xo)=Q), and all a,, a,€(0, 1).

Proof. Let ne C§ (B,) satisfying n=1 on B, _,,, | D] <2/(¢71 p) and ¢ be some
function defined on [t,,—1, t,,], the definition of which is given later. At first,
we consider the case 1< p=<2. Then we remark that (uf(t,*)+¢€)P "' n%(*) o (t)
belongs to W, O(B ) for any ¢>0 and te[t, —1, t,,]. Testing the identity (1.6)
by the function (u,, &)+t n2 (1) a(t) and integrating the resulting equality
with respect to ¢ in (t,,—1, t,,], we have

tuylt, ) — Huy(t—h,*)

220 [f = A — (i (t,)+ef "' n*(*) o () d x dt
+ [f a*(t,*) Dp(Lup(t, *)) Do[(wif (1,°)+8) " n2(-)] o(t) dx dt=0.
Cle
Now we put
v=ug.

Noting that, in the set { +u,>0}

iuh(t7.)_(iuh(t_h"))gv(t7.)_v(t_h"),



Harnack inequality 403

we obtain from (2.26)

jj 2 reQEERITD o gt g2y o dxde
C+

" 4 4(p—1)/p? [[ @ Dy(w(t, ")+ D,(o(t, ")+ nP o dx dt
C+

+4/p | a** Dy(v(t,")+ef"*(v(t,")+e"*nD,nodxdt
ci.

+er7t ] an(-)a(t)dxdzgo.

C;’.tr\(:tuh§0} h
If 6,7>3h, then we are able to proceed as in the case p<0 in the proof of
Lemma 2.1. Taking o(t) as in (2.4) in the proof of Lemma 2.1, we conclude
that, for no—[(1 —0,)t/h]=<n=<n,
i Up (t’ .)

227 | (at+e)Pn*dx+er! {f h

B, C} . {Tuns0)

<max (3, 8—5) (G1p) 2 +(0,0)™ ") || (v+e)Pdxdt
Cle

n?()o(t)dxdt

and that

2.28) ([ IDw+e)**Pn*odxdt+er™! ]) i“”—("')nz(-)a(t)dxdt

ci. 3. (£un<0) h
<max( 8 )((o,p) 24(0,0)7Y) || w+ePdxdt.
C+

If 6,t<3h, we let =1 on [t,,—71,t,] and argue again as in the proof of
(2.1). Using Young’s inequality and notlng that h™*<3(0,7)" !, we have, for
the quotient term,

tuy(t, ) +e—(tu(t—h,*)+e)

U 3 200wt 1)+ () dxdt
>L jp eI+ —lut=h)rel by,
P . h
z- “zf)_ ﬂ lo(t—h,*)+&l” n*(-)dxdt.

Calculations similar to (2.28) give that

(2.29) ([ IDw+e)*)*n*dxdt
Coe
P2 =4 +uh(t ) 2
ST R =" p*()dxdt
21(”_1) c; n{jij.u;.SO) h
_Az(p 1)2 ﬁ (v+e)P|Dnl*dxdt
3P(C’zT)

2 _Ulv(t—h V4elPn?dxdt.
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Also we remark that the calculation yielding (2.19) is justified in this case since
v+e=uf+e=0.

Finally letting ¢ tend to O in (2.27), (2.28) and (2.29), by Fatou’s lemma,
we obtain (2.25) for 1 <p<2.

Next we deal with the case p>2. Remark that [(ui(t,*))™]?~! n2(-) o(t)
is admissible as a test function in the identity (1.1) for any te[t,,—1,t,] and
M >0, where v'™ is defined as

o_[M ozM,
N v<M,

and n() and ¢ are as above. Arguing as above, for 6,7>3h we obtain the
following estimate for t,,—(1 —0,) t<t<t,,

230) | u(t,) @™y () n*dx
Bp(x0)
4(p—1)
2
+2 ([ a*®(t,) Dgo(™)P~'nD,nodxdt

+
Cp.:

+ [[ a*® Dg(v™)P2 D, (VMY 2 dxdt
Chix

<3077 ff v(u‘“’)"‘lnzdxdt+—p;1— | ™P@E,-)n?dx

C;,: Bp(Io)

+3w—n
P

(@297 [ @™y, ) n(-)dxdt.
Cr.

Similarily, if o, 7 <3 h, we deduce that, for t—t(l—0j)Stst, ,
(231) [ @™, )n?dx—3(c,1)"" [f @™)ypdxdt
B, C;'t
4(p—1)
p2
+2 [[ a®*®(t,) Dy o™~ nD,n(-) o(t)dxdt

+
Cp.v

+

a¥(t,) Dy D, (™) n*() o(t)d x dt
cr g

—%(am-‘ [ luplP(t—h, ) n*(-) dx dt <0,
C;.r

where note (2.19).

As a result we obtain that (2.30) and (2.31) are valid in a case of 6,7>3h
and o, t <3 h, respectively.

Now, since by Young’s inequality

(232) | [f a** Dyo(™)P~'yD,ndxdt|
C;"

< uff

< p [[ ID@MPER P dxdi+p [ @HOP Dy dxds
P, P oc,
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we are able to pass M to the limit in (2.30) and (2.31) if p=2. From it, we
obtain that, for any t, —(1—0,) 1<t =t,,

(2.33) L] [} vz(t,-)112dx+i [ IDv* n*(-)o(t)dxdt
2 BP 2 C:—t

<3, 0)7 ! ff 112112dxdt+%(02'r)_1 i lupl>@¢—h,-)n(-)dxdt

+ +
Cﬂ-t Cﬂ.t

2
42 ([ Dy dxdt.
4 a,

Then Sobolev’s type inequality (see [9, p. 76]) implies that veI{{ *?™. Noting
(2.32) again, we can pass to the limit in (2.30) and (2.31) for 2<p=2(1+2/m)
respectively. Repeating the above procedure inductively, we deduce that, for
any t, —(1—0,)1<t<t, and all2<p=m+2,

(2.34) % [ P, )n*dx—3(o,1)"" [ vPn*dxdt

B, Cre

4(};: 1) ” a“"(t,')DBv”/z Davp/Z nzodxdt
C*

+

+2 ([ a*#(t,*)Dgvv* 'nD,nodxdt

+
Cp.t

297" [ lwPa—h)n()dxdi0

Ci.
We conclude from (2.34) that

% | uv(t,-)nde+2—“”2;” [ 1DvP212 n?(-) o(t)dxdt
Coe

B,

3 if v’nzdxdt+—£— [ vP|Dn|*dxdt
g,7T c+ 'l(p_ 1) Che

Pt

=

§f lunlP(¢t—h,*)n(-)dxdt

g,7T
pPo, Cre.

for any C, . (t,,, Xo)= 0,, and all 2<p=<m+2, as claimed.

3 Bounds for weak solutions

Now we prove boundedness for weak solutions of (1.1). Recall the following
Caccioppoli inequality analogous to De Giorgie (see [9]).
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Lemma 3.1 Let u, be a weak solution of (1.1). Then, there exists a positive constant
y depending only on A, yu and m such that, setting v, = +u,,

3.1) sup f [(vy,—k)*1Pd x
tng =11 =02) StZtng B\ 7 (x0)
+ _U ID[(v,—k)* 17?12 dxdt

Cl1-op).e(1 - ag)(tng»X0)

=(01p) 40297 [ [wa—k)*TPdxdt

Co.e

+%(02T)_1( T 1ol*dx d0f8|CJ (ta,, Xo) N {0, >k} |* 74

Pt
C}t o(tng.X0)

holds for any k=0, a,, 6,€(0, 1), C;\ .(t,y, Xo) = Q, all p<q=<(m+2)(1+2/m) and
all1<p=2.

By Lemma 3.1 and an iterative procedure as in [9, p. 105] we obtain the boun-
dedness of weak solutions of (1.1).

Lemma 3.2 Let u, be a weak solution of (1.1). Then, for any 1<p<2, there
exists a positive constant y depending only on A, p, m and p such that, setting
vp=tu,,

1 1/p
(32) swp o<l @ dxdr) " (14552 p0)"
€ o/2.7g/2(tngsX0) |Cpo-to| C oz tngs Xo)
1 1/g
+(T _” (Uh)q dxd t) }
|Cpo'fo| C;o‘ro('"o‘x")

holds for any C,, . (t,., Xo)=Q,, and all p<q<(m+2)(1+2/m).

pPosT0

4 Estimates for log u,

Recall the John-Nirenberg estimate [4]:

Lemma 4.1 Let v be an integrable function in a cube B, and assume that there
is a positive constant k such that, for every parallel subcube B< B,, we have

1
S —_1 <
IBI;,HU vgldx<k.

Then there exist positive constants a and o depending only on m such that
4.1) |[{xeB,:|v—1Dp,|20}|<e**e **""|B,|

holds for every a>0.
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]ﬁ, s>0, ;
0, s<0. The following

lemma is a variation of the John-Nirenberg estimate for the step function in
a time variable.

In the following, let ¢ be the function defined by (p(s)={

Lemma 4.2 Let v=v, be a time-step function defined as in (1.4) and suppose
that v satisfies the following relations in a cube Cg (t, X)= Q with uniform positive
constants y and k:

l ’ 7 _ / ’
‘lﬁ‘c—:[(t,"cﬂl §§ o((t, x') v(t,x))dxdtdx' dt'<vy

)eCr (t,x)eCr
for all pairs C; and C; in Cg (t, X) with 3r*>h and
| {x€B,(x0): |0a(X) —(W.)p,(x0)| >0} | S € 7" " | B,|

for any r<|/h/3, all xo€Bg(X) and any [(t—R?»/h]<n<[t/h]+1. Then there
exists a positive constant ¢ independent of h and v such that

]

T =
|CR,R2/2| |CR.R2/2| (t',x)eChk gp2/,(1.%) (1, x)eCR g2/(f—2R%,X)

P, x)—v, x)dxdtdx' dt' <1,

1

4.2)

1 ,¢8s

where ¥ (s)=7" €.

Proof. We proceed similarly as in the proof of the main lemma in [11] and
use the notations in [11]. Now we show a variation of Lemma 4 in [11] for
a step-function in a time variable:

Take & <min {[(6—7)/8]" *™?/2, (1—8)/5}.

Suppose that there exist constants s(¢)>0 and ¢, for each C,=Co, of which
the height is greater than h, or which is included in a time-interval, such that

|{(t’ X)EC‘T: U(t’ x)_(pv>s}| |{(t, X)ECV_: (pv_v(t’ x)>S}|
IC7 ] * IC; ] <*

holds for any s=s, and all C,=C, as above. Then there exists a positive absolute
constant b such that

[{(t, x)eD) :v(t, x)— @, >s}|  1{(t, X)€Dy 2 @y —v(t; )>S}| _ -y,
D] D ¢

holds for any s=s,.

We need to change the way of division and selection of the region as follows:
We continue the division and the selection of D) in the same way as in [11]
until the height of C, corresponding to D, becomes equal to or smaller than
h. After it, we produce C, by dividing a preceding region. Here, if C, intersects
a lattice of a time-interval, divide the C, into two parts, one of which is above
the lattice and another is below, and take each part as a new C,. Proceed
with the selection of C, as in the proof of Lemma 4.1 (see [4]). Now we prove
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(6.10)46.12) in [11] for the above division. Put C,=C,, of which the height
is equal to or smaller than h. The union of the selected rectangles will be denoted
by D=UD; u(UC,). For the proof of (6.10), the left inequality follows from
the way of selection. Now note the following holds: If D}, for which the height
of the corresponding C, becomes greater than h, has a predecessor D;_,, or
C, has a predecessor C,_,, then

(Pv_q’v—léz-

The right one in (6.10) follows from the above and the fact that D} and C,
have predecessors D;_; and, D;_, or C,_,, which were not selected so that
@y-1=3,, respectively. The proof of (6.11) is the same as in [11]. For the proof
of (6.12), we add the following argument to the considerations for (6.12) in
[11]: Select, out of the C; and C,, a maximal set of nonoverlapping rectangles
C*~ and C* so that every C; or C, overlaps with some C¥~ (with 1<v).
Here note that C, are disjoint. Fixing C*~, we find from a similar geometrical
consideration as in [11] that the C,, which overlap with C*~, lie in a rectangle
with the same upper or lower base as C¥ ~ and of the height is less than 3/(1 —7)
times that of Cf~, so that the measure of (UC,) is at most 6/(1 —7y) times that
of the union of the nonoverlappings C¥~. As a result we have (6.12) in [11]
with
c=9/(1—¢)(1-9).

Lastly, for the deduction of the hypothesis of the above lemma from the hypothe-

sis of the Lemma 4.2, we note only that v, is a step function in each time-interval.

The remainder is completely similar to the proof of the main lemma in [11].
Now we are ready to state the fundamental estimate for —log u, (1<n<N).

Lemma 4.3 Let u, be a weak solution of (1.1) and us take B,,(x,)<=Q arbitrarily.
Then there exists a positive constant y independent of h and u, such that, if
Uy, U, — (2= n = N) is nonnegative in B,,(x,) and v,= —logu,(1<n<N),

i

(4.3) IB,]

| 1oa—(a)s, 0| dxSy(16 u2/A+2 p2/A h)'/?

By (y)
holds for any p<r/2 and yeB,(x,).

Proof. We take p<r/2, ye B,(x,) arbitrarily and fix them. Now, testing the iden-
tity (1.3) with (u,)~ ' n* for neC§ (B,,), n=1 on B, and |D7|>*<4p~2, we have

1 u _l(x)) 2
44 — 1--= dx— | a**Dglogu,D,logu,n*dx
44) hnzj,,( e )" B;[, s log g Uyt
+2 | ai¥Dglogu,nD,ndx=0.

Bz,

Noting the nonnegativity of (1/h) [ {u,-,(x)/u,(x)} n* d x, we have

B3,
@.5) 4 | |Dlogu,|*n*dx< | a%Dslogu,D,logu,n*dx

Bz, B,

Sep | |Dlogu,,|2r,2dx+§ [} |Dr1|2dx+% | n*dx.

B, B2, B2,
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From |Dn|<2p~! and taking e= /2 u in (4.5), it follows that
1

2 (82 1
N - 2,2 <~ | 4=
Iszl,,sz |Dlogu,|*n dx=/1(,1p2+;,)~

The Holder and Poincaré inequalities give that

1

J loa=Gos, 4255 | Iv,.—(v_,,)Bplzdx)llz
BP

1B, 5,

_ 2 (82 I\\12 (2 (8u% pP\\12
a2 ) G )

Therefore we have shown Lemma 4.3.

ol

Remark. Strictly speaking, u, * is not admissible as a test function in the identity
(1.3). However, testing (1.3) with (u,+¢)™ ' 5?, calculating as above, and letting
¢ tend to 0 in the resulting inequality, we obtain (4.3).

Lemma 4.4 Let u, be a weak solution of (1.1) and us take B,,(xo) = Q arbitrarily.
Then there exist positive constants a and o depending only on m such that, if
U,, U, 1 (2<n< N) is nonnegative in B,,(x,) and v,= —logu, (1=n=N),

(4.6) |{x€B,(x0): |04(X) —Wn)g, xy| > 0} | S %™ ** " | B, |.

hold, where k =k (r)=y(16 u?/A*+2r*/A h)'/2.

Proof. Immediate from Lemma 4.3 and 4.1.

The following will be shown later.

Lemma 4.5 Let u, be a weak solution of (1.1). Then there exists a positive constant
7 independent of h and u, such that, if w, is nonnegative in C 2, x)=Q and
Ui— raym = 0 in Br(X) then, setting v= —log uy,

1
———————— / r o ’ /<
[CFIC] U,‘xﬁ i o, x)—v(t, x)dtdx dt' dx'<y

VeC/H (t,x)eCy

4.7)

holds for all pairs C;% and C; in C§ (t, X) with 3r*>h.
Once we have Lemma 4.4 and 4.5, we conclude from adopting Lemma 4.2 for
v= —logu, in Cg (t, X) the following:

Lemma 4.6 Suppose that the same assumption as Lemma 4.5 is satisfied. Then
there exist positive constants & and y independent of h and u,, such that

(4.8) 1 if u"‘dtdx——l——— {f utdt dx' <.

T =
| CR.R2/2| Ci r2/2(B%) | CR.R2/2| Cr.r2/2(t—2R2,%)

To prove Lemma 4.5, we need some preliminaries. We assume that 4,20 in
some cube Cj (f, X)cQ (fixed in the sequel) and that i g2,20 in Bg(X).
Define

v,=—logu,, ov(t,*)=v,(*) (n—1)h<t=<nh (1=n=N) on Bg(x).
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Take no, [(t—R*/h]+1=n,<[t/h], arbitrarily and for any o0=0, any
B,,(xo) = Bg(X) and any [(t—R*)/h] <n<[t/h]+1, let

(49) ﬁn =U,— ! vno '72 dy/ ,‘- ',’2 dy on BZr(xo)a
B2, (x0) B2r(x0)
W, =0, —72(n—no) h/r?, 72=4u*|B;|/A|B,| on B,,(xo),
vt )=0,, w(t,)=w,(*), (mn—1)h<t=Znh,
Vo= | vun*dy/ | n*dy, W,=V,—y,(n—no) hjr?,
B2,(x0) B2 r(x0)
wi)=Ww,, (n—1)h<t=Znh,

By ={x€eB,(x,): w,(x)>0]}.
Then we have

Lemma 4.7 There exists a positive constant y, depending only on m, A such that

(4.10) h % |Bj|<y.r*|B, o "

n=ng+1

holds for all ny+1=<n, <[t/h]+1, and any ¢>0.

Proof of Lemma 4.7. We remark that, since u,20 in C3 (7, X) and uz_ g2y 20
in Bg(X),

u, 20 in Bg(X) for all [(t—R*)/h]<n<[t/h]+1.

Testing the identity (1.3) by ¢ =u, ' #%, where ne Cg(B,,), | D n| <2/r (see remark
after Lemma 4.3), we have (4.4) with p=r. Now we make an estimate of each
term of (4.4).

For the quotient term of (4.4), remark that

1_un—l un_l é —IOg(un—lu; 1)=10g un_log Up—1,
whence

@) | Ea—u_urynrdx
Ba, h .
oz e —loust — [ van?dx+ [ v,_yn*dx

§ j g Un ; gUn—1 Y]de= By, thr

Bz,
Combining (4.11) with (4.4), we obtain

J van?dx— [ v,_yn*dx
BZr Blr

h
+ _[ azBDﬂvnDavnnzdx_z .[ a:ﬂDﬂv”r,D“r’dxéo'

Bz, Bz,
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The ellipticity condition (1.2) and Young's inequality gives that for [(f—R?)/h]
+1=n=[t/h]+1,

[ vam*dx— | v,_ n*dx B 52
4.12) B Bar *5 | IDvnlznzdxé% § IDn|*dx.

h Bar Bz,

Recall the following inequality of Poincaré type. (For the proof, we refer to
Moser’s paper [11].)

Lemma 4.8 There exists a positive constant y such that
(4.13) [ = [ vn*dy/ | n*dy)n*dx
By, B3, B2,

=min | (v—k?n*dx<y@m)*r* | |Do>n*dx

k B, Bar
for ve W} (B,,).
Adopting (4.13) for (4.12), for [(t—R?)/h]+1=<n=[t/h]+1, we have

[ vam?dx— [ v,_yn*dx

4.14 Bar Bar
(4.14) p
+~—/1 r2 j(u—fvnzdy/jnzdy)znzdx
2'}’(4"!)2 Bz, " Bz, " By,
2 2
<2 § ipnpaxs* 2B,
A By, A

Dividing both sides of (4.14) by r~2 [ n*dy, taking n as n=1 in B,(x,) and
B>,
noting that | #*>dx=<3™|B,,|, we have, for [(t—R*»/h]+1=<n<[t/h]+1,

Bar

[} vun?dx/ [ n?dx— § v, n*dx/ [ n*dx

4. Bar Bz, Bar Bar
19) h/r?
i1 24 |By,|
e v,— | v,n*d 2dy)>?ntdxs =2,
sy FB; ) O Ll [ v xS T

Now we notice that, from the definition V,in (4.9)

(4.16) 7, =0.

0
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Taking y,=2y3™(4m)?/A, y,=4p*|B,|/A|B,| and noting that (4.15) remains
unchanged if v, is replaced by v,+const., (4.15) are rewritten as follows (Recall
the definition (4.9) of ¥, and W,):

(4.17) Vo Va-s

T T

| @—V)yn?dx<y,

B2 r(x0)

|B,|

(n; [E— R}/ + 1<n<[Th] +1),
7,,=0.

In terms of W,, (4.17) becomes

”n lln—l -1 1 21422
h/r2 Y1 IB I (“n ll) '1 =

¥ I B2r(x0)

(4.18)

(n; [(E—R*)/M]+1=n<[t/h] +1),
W, =O0.

From (4.18), that for n,<n<[t/h]+ 1, we obtain

(4.19) WoSW,_ ... < W,y =0.

Hence, for 6>0 and n=n,, ..., [t/h]+]1,
w,—W,26—W,>0 in B".

Thus, again by (4.18) we have, for any ¢ >0 and all n, <n<[t/h]+1,

Wo=Wa-r | Byl 2 VV"_VV"‘_I -1 2 p2
+ G_VVn =< e Wn—I/V,, dX§0,
h/r2 lyl |B,-I ( ) h/rZ yl IB,-I Bzr{xo)( ) '7
2 0=V (@— W), |B]
(=W T Y

Noting that, for a, b =0,
—(@a'=b"H2za"*(a-b),
we have, for no<n<[t/h]+1,

—(—W)" ' —(e—W,-)"

(4.20) W
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Multiplying (4.20) by h/r? and summing the resulting inequality from ny+ 1

to no+1=n, <[t/h]+1, we obtain

hoo . 3
D) ?flllgallé— L {e-W)"—lo-W-)"]

r n=no+1 n=np+1

=—(=W,) '+(0—W,) 'Se7!

where we used (4.19) in the last inequality.
We just now are in a position to prove Lemma 4.5.

Proof of Lemma 4.5. Note that

(4.21) WIIC:IC,(“ i et x)—o(t,x)dxdtdx dt

to,x0) Cr (to,Xo)

1
§|C+| ” o (v(t, x)— I Utto/h) + 1 n?/ j n?)dxdt
r 1 Cr (to,xo) Bar B2,
1 ’ r ! !
+W ” o(—v(t, X+ | vyom+11?/ f ndx'dt.
r 1 Ct(to,xo0) Bz, Bz,

We estimate each term of (4.21). Put

1,= .” o(v(t, x)— _\. U[to/h]+lr’2/5 n*)dxdt,

Cr (to,x0) Bar Bz,

L= ([ e(—v,x)+ [ vpgm+1n*dy/ | n*dy)dxdt.

C} (t0.%0) B2r(x0) B2r(%o)
Let’s set ny=[to/h] + 1 and define a time-step function g as follows:
g(t,*)=y,(n—no)h/r* for te((n—1)h,nh]
(n=ng, ..., [(to+7r*)/k]+1) in B,.
By (4.9), we have

Li= [ oe@®¢x)dxdt= [[ oW x)+g(t x)dxdt

Cr (to,x0) Cr (to,Xo0)

< (I ewt x)dxdt+ ([ (gt x)dxdt

Cr (to,x0) Cy (to,x0)

< I e, x)dxdt+|Co 1/ y2(1+h/r?)

Cr (to,x0)
where we have used that
g(t,")<y,(L+h/rY)  for te[[to/h]h, ([(to+r?)/h]+1)h].

Moreover, since by assumption h<3r?, I, is estimated from above by

(4.22) [ @it x)dtdx+2]/y,1C7 .

Cr (to,x0)
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Thus we need to estimate ([ @(w(t, x))d x dt. Split

Cr (to,xo0)
to+r2
(4.23) [ owtx)dxdt= [ [ ow(x)dxdt
Cy (to,x0) teg/m1+1 Br(xo)
Heg/h) + 1
+ [ oWt x)dxdt
to B, (x0)
=I1+12.
First we estimate I]. We have
to+r2
4.24) Ii= | [} ow(t, x)dxdt
teg/mi+1 Br(xo)n{w>1}
to+r2
+ ) ow(t,x)dxdt
teg/ml+ 1 Br(x0)n{0<w=1}
to+r2
< j' j. o(w(t,x))dxdt+|C;|.

tieg/m1+1 Br(xo)n{w> 1}

Note the inclusion: (tyom+ 1, to+2) S (Epom+ 15 Lo +r2ym +1)- Setting  m(o)
={(t, X)E(tgomy+ 1, to +1*) X B,(xo); w(t, x)> o} | for ¢ > 0, we obtain from Lemma 4.7,

[(to +r2)/h] + 1
m()sh Y |BjI<y,r*|B,lo”!

n=[to/h]+2

so that, for the first term of the right hand in (4.24), we have

(4.25) 7 [ oW x)dxdt

fegmi+1 Brlxo)n{w>1)
= [ Vo(—dm(o)= [ m(o)d}/o= | y,07 1B, 1d}/o
1 1 1
=y, 7*|B,|.
Substituting (4.25) into (4.24), we have
(4.26) 1<y, P |B,|+|CT |2+ DC .
Next we shall deal with I2. Note that

teg/n)+ 1

427) L= j‘ j ow(t, x))dxdt=|ty m+1—tol I O Wi +1) 4 x.

to B,(xo) By (x0)
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Recalling the definition of w,:

_= _ 2 2
Wito/h1+ 1 = Vtorm) +1 = Vpro/m)+1 — j Utto/n1+1 1 dx/ j n*dx
B2 r(x0) B2, (x0)

<| Utto/n1 + 1 (x)— (v[to/h] + 1)Bz,|

+ (Vo + 1)Ba, — _‘ U[zo/h1+1’72d}’/ j n*dy|

B2, (x0) B3y (x0)
we have
(4.28) j O Wyom+1) d x
By (xo0)
< j l/| Ulto/n1+ 1 (x)— (U[to/h]+ x)nz,l dx
B2 ,(x0)
+|B,|'/? l/ ,f [Vgeormy+ 1 (X) — Oposmy+ 185, 1 d X
B2,
=2 |BZr|1/2( 5 |v[to/h]+ 1 (x)_(v[to/h]+ 1)3,,| dx)”z-
B2 r(x0)

Applying Lemma 4.3 to (4.28) gives that
(4.29) [ @Wygm+1) dx S27"72 (16 4%/22 +27%/A)!1* | By, |.
B,

Substituting (4.29) into (4.27), noting that 3r*2>h and that |ty m+;—tol<h,
we have

(4.30) I 29" h| By, |(r*/h)'/* (48 p?/2% +2/2)"1*
<292 | By, | K4 1248 232 + 2/ )14
<229M2m(24 p2 /A2 + 1))V |C .
Combining the estimates (4.26) and (4.30) for I} and I with (4.22) gives that

@31) L= [[ e@dtdx<@,+DIC+71C 1+2)/7.1C7 1,

Cy (to,x0)

where y=2m*2 91224 u2/2% + 1/A)"4.
Now we estimate the term

I,= ” o(—v(t, x)+ j U[:o/h]+1’72dY/ j‘ n*dy)dx'dt.

C (to,x0) B2 r(x0) B2, (x0)

Putting, for [(to—r?)/h]+1<n<n,,

0, (x)=—0v,(x)+ [ von*dy/ [ n*dy on B,,(xo),

B2 r(x0) B2 r(x0)
Wn(xo)=5n(x)—'}’z("o—") h/rz on B2r(x0)a
Vo= | tun*dy/ | n*dy, W,=V,—y:(no—n)h/r?,
B2r(xo0) B2 ,(x0)

Bi={xeB,,(x,): w,>0},
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similarily to Lemma 4.7, we have
(4.32) h X |B3|<y,7r*|B,|a"".

n=[(to—r2)/h]+ 1

Exploiting (4.32) with no=[to/h]+ 1 similarily to (4.25), we obtain
(4.33) L=y ICF1+)/37:1C/ .
Substituting (4.31) and (4.33) into (4.21) gives that

. 1) I o0t x)—v(,x)dtdxdt dx’

=
IC' l lC’ l C} (to,x0) Cr (to,xo0)

1 1
b=l
R

<2y,+y+67,,

which concludes the proof of Lemma 4.5.

5 Proof of theorems

In this section we present the proof of our theorems. Recall the definition (1.9)
of ,.

Proof of Theorem 1.1. Since u,, is nonnegative in C,’ (t,,, Xo), we find that

w20 in Cplag(tnys Xo)
and that
Uno—na1-120 10 Byz(xo).

Thus we can apply Lemma 4.6 to u,, in C/55(t,,, Xo), SO that,

1/¢
(5.1) (‘—C‘,—_—l— “ (u,,)‘5 dxd t)
I m’""'nl Cfflr_h,ﬁ,h/z("'o-ﬂr”‘l’)
1 -1/
<1 (1 o tdxa)
| Cl/ﬁ?ﬁ,hrhﬂ | Cmim 2 tnos %0)

where 7, ¢ are positive constants determined in Lemma 4.6. We can also adopt
(2.21) with p= —¢& in Lemma 2.2 for uj, in C}/5,5,4/2 (tnys Xo) to obtain that

(5.2) ( :

_—
ICVﬂ.n,hIZI C+ (tng»X0)
VA, h.fi,h/2' "0 X0

-1/
]) (u,,)"fdxdt) <y inf u,.

+
Cyfirya (tngy %0)
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Similarly, exploiting (2.22) in Lemma 2.2 for u, in Cy 55, .42 (tno—n,» Xo) and not-
ing Holder inequality, we find

(5.3) (; I (wyrdxd t)”p

ICI;H/ZI C.- X0)

Vaph/2(tag -,

1 1/¢
<y (——C_ {f () dxd t)
| Vm,h,h/Zl C-
V

_n,hmrh/z("‘o - n,»X0)

for 0<p<1+2/m. Combining (5.2) and (5.3) with (5.1), we obtain the assertion
(1.10) of Theorem 1.1.

Theorem 1.1 implies a Holder estimate for a weak solution u,, of (1.1), which
has been derived in [6], but our proof is entirely different from that in [6].
Also recall the definition (1.8) of 4.

Lemma 5.1 Let u, be a weak solution of (1.1) and (t, X) be taken arbitrarily
in Qho with
d=21min(|t— N, ho|''?, dist(x, 09Q)).

Assume that  [{ |u,|*dtdx<y, with a uniform constant y,. Then there exist
Ci (%)

positive constants y and o<1, depending only on A, u, m, d, and y,, such that

(54) luh(tn" xl)—uh(tm X)l §y(6((tm X), (tn’s xl)))a

hOIdS fOT any (tn" x,)’ (tm X)EC; (t—’ 2) With 6((tn’a x’), (tm x))gl/};

Proof. Notice that by Lemma 3.2 a weak solution u, is uniformly bounded

in C; (t, x). Take (t,, x'), (t,, X)eCJ (¢, X) satisfying o((t,., ), (t,, X)) 2]/ h, arbi-
trarily. Introduce

(5.6) M= sup u,, m= inf u,,

Cj (tn,x) Ct (tn,x)

fi;=the greatest number satisfying n<d?/h.

Since M —u,, u,—m are weak solutions of (1.1) and nonnegative in Cy (t,, X),
we can apply Theorem 1.1 for M —u,, u,—m in C; (t,, x) to obtain

1

(5.7) Pormm if (M—u)dxdt<y inf (M—uy),
| Vm/zl Ciﬁf-/z(t"'ﬁd’x) Cﬁm/z(tmx)

(5.8) —C—_l— {f (uy—m)dxdt<y inf (u,—m).
| Vﬂﬁ/Zl Cl_n?/z("“ FigeX) Cﬁmlz(tmx)

Adding (5.7) and (5.8), and replacing max(y, 1) by y, we have

(5.9) osc  u,<(1—y71) osc u,.
C;ﬁ—dh/z(tmx) Cj (tn,x)
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By iteration we have, for any positive integer v,
(5.10) 04, 0w, _,
where
0=1—y7', o, =o0scy,
ci
and

v 1/2
dy=d, dv=(d2/2“—26k/2""‘”), S=di_ —fg_ h (k=1,2,...,v).
k=1

If
max {|t,—t,|'/?, |x—x'|}+ﬂ<d/2,

then there exists a positive integer v such that
/2 <max {|t,—t, |'2, |x—x'|} +|/h<d/2".
Now, adopting (5.10) successively gives that
(G11)  uy(x0)— ()| S04, <O q,
20w =(1/2) w,
(2/d) max {| ty— b, |2, | x— X' [} +(2/d) )/ h* o,
SQ6((tws X, (tny X))/d+2)/B/dY w4,

where o= —log6/log2. Since max{lt,,—t,,,|”2,|x—x’|}g[/ﬁ, it follows from
(5.11) that

(5.12) |t (x) =t (X)| = (4/d)" 6" (15 X, (L X)) 4.
If

IIA 1

IIA

max {|t,—t, "% |x—x'|} +]/ﬁgd/2,
we obtain, from the boundedness of u, in C; (t, X)
(5.13) [t (x) — 14y (x') | S2U
S2U(/d)(max{|t,— by |2, | x— x|} + /B
=2U(4/d)* 6°((tn> X (tns X))

Proof of Theorem 1.2. Fix B,,=B,,(x,)=@, with r><h. Suppose that u,(N,
+1=n<N) is nonnegative in B,,. Scaling x =x,+ry and letting

5:”(}’)=aﬁﬂ(xo+r)’)a ﬁn()’)=“n(xo+",\’), ﬂn—l(y)=un—l(x0+ry) on B19

from (1.3) we obtain

saf v i, — i, i
(514) | &’ Dsi,D,pdy+ | Wimdy=0 for any @ =(¢")e W, o(B).
By By
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Applying Harnack’s theorem for elliptic equations (see [3, Theorem 8.18, p. 194])
to i, in By, it follows from (5.14) that, for any 1<p<m/(m—2), and g>m,
there exists a positive constant y depending only on m, g, p, A and u such
that

515) 1 j(")Pd 1/p< fi j‘ 0d 1/q
: — | (#, Sy<mfu,+ ’
( (|Bl|,,, ) s (an ear) '}
where

_an—an—l

5= h/r?

Now, applying Lemma 5.1 to u, in Cj(T,x,) with d=(1/4)min{|T
— Ny ho|'2, dist(x,, 9€2)}, we have that

(5.16) lg|Syh>~1r?

with positive constants y, o<1, independent of h, v,, which were determined
in Lemma 5.1. Thus, since r? < h implies

2-1,.2 i
22 <t =77,

from (5.15) and (5.16) we obtain the assertion in Theorem 1.2.

Proof of Theorem 1.3 Fix a cube C; (f, X)= Q with d=(1/4) min{|t— Ny ho|'’?,
dist(x, 0Q)}. We use the notation: u=u,, v=u;". Now we shall improve a Cac-
cioppoli type inequality Lemma 2.3. Firstly we consider the case 1<p<2. If
0,71>3h, we have (2.27) and (2.28). If 6, t <3 h, we remark that, adopting Holder
estimate (Lemma 5.1) for u, in CJ (t, X) yields the following calculations: For
all Cf (tyy, Xo)=Cy (t, X) and for any >0

+u(t,")+e—(Fu(t—h,*)+¢)
h

Gan ff ((t,)+eP 1 n?()dxdt
Coe

2 —yh?3(0, 07" [f lo(t, ) +elP " n?(r)dxdt

+
Cp.r

2 —(0,7) 7" [f lo(t,)+elPdyds—27y-(o,7) "  h*2|Cp ],

where y=7y(d) is determined in Lemma 5.1. In the last inequality we used Young’s
inequality. Thus, calculating similarly as in (2.29), we have, for all
C;t(tnoa xO)C C; (t’ 2),

(5.18) [f IDw+eP?*n*odxdt
C;.: pZ 1 5j ,
+—c P a*? Dy(v(t,*))nD,ndxdt
A(P—l) C}.n{tus0) p

1 p? (
—12( 1)2
2°-13
Ap—1)

(6,7) ' +(0,p)7?) ﬂ (v+eyPdxdt

———L a9t}
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We also remark that (2.19) holds for v+&e=uif +&>0 in this case. Therefore
we have, for all C, .(t,,, Xo)=C; (, X) and any 1 <p<2,

(5.19) sup | (+ePt,-)dx+ {f ID(v+e)P?|*dxdt

-_ - <t<
tng=t(1=02)StStng B\, | o NN

2
p -1
+—— P a**Dyv(t,")nD,ndxdt
Alp—1) c;',ngugoy dlaill

2p—
%{«am)-u(azr)") [J 0+oydxde+27(o,7)" 72| Cy ).
C+

p.T

=y

Since each term of the right hand of (5.19) is finite for 1<p<2, we are able
to pass ¢ to 0 in (5.19), so that

(5.20) sup [ vtydx+ [ |Dv?Pdxdt

tng =1 —02)St<tng Bp(1-oy) Clti-apcti-ag)
2p—1) . _ =
§yp((p_p—1)2{((cr1 p) 240,07 [f vPdxdi+27(c, 1) P2 |C) ).
cr.

Next we consider the case p>2. If 6,7>3h, then we have (2.30). If 6,7<3h,
using Holder estimate (Lemma 5.1) and calculating similarly as in (5.17) yields
that, for any C, .(t,,, xo) = C; (t, X)

i iu(t,')—hiu(t—h’°) @MP= (1, ) n2(-)d x dt

+
Cﬂ-'{

2 —(027)7" [[ WM)P(t, ) dyds—27y-(6,7) " WP2|Cl.

C;vf
By calculating similarly as in (2.31), we have, for all C; (t,,, xo)= C; (¢, X) and
for any te[t, —1(1—0,), t,,]

(521) 0= [ v™(t,")*dx—4(o,7) " [[ (™) n? dx dt—2%y-(6,7)" ' h**2|C/} |
B ch.

P

+ 202D (1 b, Dy D, 0P 12 o0 dx
C‘;'t

+2 [ a®®(t,*) Dgv(™)P~ 1y D, n(*) a(t)d xdt.
Che

Noting the boundedness of v in C; (¢, X) from Lemma 3.2, we can pass M to
the limit in (5.21) for p>2 to obtain, for all C;,= C; (t, X) and any te[t,,—1, t,,]

(522) 0= [ v(t,")-n*dx—4(c,7)" " || vntdxdt—27y-(o,7)" hP¥2|C/ |

B, Cr .

4(pp: 1) ” a*b(t, .)Dpupll D, vP? n*(-)o(t)dx dt
cr.

+2 [[ a**(t,)DgvvP ' nD,n(*) o(t)dx dt.

+
Cp.r

“+
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By Young’s inequality, we have (5.20) for all C,; .= C; (t, %) and for any p>2.
As a result we have obtained (5.20) for all Cf, = C/ (t, X) and for any p> 1.

From now on by Moser’s iterative procedure we shall consider the bounded-
ness of a weak solution u, of (1.1). Now we fix (t,,, Xo)€Cqy(t, X) and po, o,
0< po, To<d/2. We proceed our inductive calculation similarly as in the proof
of Lemma 2.2. Noting a scaling transform (2.22), we obtain, from (5.20), that,
putting 8(s, y) =0(t,, + 3 S, X0+ Po )

(523)  sup [ @t )dy+ ff |D#22dyds
02t2t(1-9a2) Bo(1-ay)(0) c;“_dl)vru_az)(o)
2p—1
< ﬂ(‘l—)_’fl—)){((alﬁ)-%(azf)—') ([ @22 dyds+2 k(0,7 |Chal)
Cj (0

for 0<p<1, 0<f<O=pgy2to, 64, 0,€(0,1) and any p>1, where y depends
only on 4, u, m and d.
Let’s take sequences p,, p, and 7, as follows: For v=0, 1, ...,

py=p(1+2/m)’,  p,=1/2+(1/2*" and 1,=0(1/2+(1/2)""").

Noting that
pv __P

p.—1 p—1

and exploiting Sobolev’s type inequality (see [9, p. 76]) and (5.23) successively,
we have that

(5.24) if (GP+/2)20+2m) gy g s

+
Covitoven

P\ 2(1+2/m) R2(1 +2/m) 3(v+3) —1Av+2
<[
s(GZg) 22 am s 197 200

PvsTy

. ” (ﬁpv/2)2dyds+9—l2v+2hap\,/2|C+ ‘

+2v+4 ‘” (ﬁpV/z)zdde}l+2/m

Cct

Pyv:Ty

§ﬁ2(1+2/m)(max(y’ 1))1+2/m 22(v+4)(1+2/m){[1+0—1] H‘ (5pv/2)z dyds
C+

Py Ty

+07 2 ([ ldyds+ ff @) dydsytim
+ Cc+

Pyity Pv: Ty

é ﬂZ(l +2/m)(max(.y, 1))1 +2/m 22(v+4)(1 +2/m)(1 4= 0- l)l +2/m

( _” ((517\,/2)2 + hapv/Z) dy ds)l +2/m

Cc*

Py:Ty
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Since h <1, we obtain from (5.24) that, for any v=0, 1, ...,

(5.25) I @ *2m w2y dyds

Cc+

Pv+1:Tv+1

éﬁz(l +2/""(max(y, 1))1 +2/m 22(v+4)(1 +2/m)(1 +0— 1)1 +2/m

([ @+h?)dyds)tt2m,

c*

Pv+1°Tv+1

Dividing the both side of (5.25) by pT.,1,.,, and taking the power of order
1/p,+ in the resulting inequality, we have, for any v=0, 1, ...,

sy I @ +hP2)dyds)tieee
;v+l"v*l

§[ﬂ2 {max(,y’ 1)} 28]p"(1 +2/m)“‘4p“V(1 +2/m)“’(1 +9)p‘ 1(1+2/m)-v

.(02/m)p"(1+2/m)“’“ Pv_mTv_l “’ (ﬁpv_'_hpa/z)dyds)l/pv.
C+

Pyrty

By iterating the above inequality infinitely with starting from v=0 we have

(526)  sup v=<[B*{max(y, 1)} 28]p" "1 +m2 4p7"

1/2.6/2

<Y j(142/m) (14 ) m2) gr(pom gL I @+h*2)dyds)'».
Jj=0 Cgo-fo

Now we are in a position to show (1.12). Let’s classify our proof into two
cases.

Case 1 r*>h. Then, by taking p2=1,=r? and using r>>h in (5.26), we have
(1.12).

Case 2 r> <h. We deduce from applying Harnack theorem on elliptic equations
(see [3, Theorem 8.17, p. 194]) for i, in B, that, for any p>1 and g>m, there
exists a positive constant y depending only on m, g, p, A and u such that,
setting

v,=max{+i, 0} (n=1,2,...,N),

. 1 1/p 1 qll‘l
(521 s {(img )+l 1 #) )

holds for 1 <n< N, where

Thus, noting (5.16) and that r? <h, (1.12) is obtained.
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