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1 Introduction

1.1 Statement of the main result. Let K be a finite CW complex. By a thickening
or homotopy embedding of K in the sphere S/, we mean a compact codimension

zero submanifold N of S’ together with a homotopy equivalence h: K —— N.
An old result of Stallings ([St]; for a published proof see Wall [W, ]) asserts

Theorem 1.2 (Stallings’ embedding theorem) Suppose that K is homology k-
dimensional and r-connected, with r=1 and k<j—3. Then K thickens in S’ if

Jj=22k—r, and moreover, any two such thickenings are unique up to concordance
ifj22k—r+1.

The Stallings/Wall proof is inductive in the sense that the thickening of K
is constructed cell-by-cell, at each step appealing to a geometric result of Hud-
son [Hu], which allows one to embed disks inside the double-point range
(=the numerical range where a map in general position has no triple points).

In this paper, a new approach to the thickening problem is presented that
avoids the application of Hudson’s disk theorem. The idea stems from the obser-
vation that a thickening of K in S/ determines

(1) an exterior C, and
(2) a boundary dK for K as a Poincaré pair of dimension j.

Regarding (1), the connectivity assumptions of Stallings’ theorem imply that
C is determined by the “stable” exterior of K (the S-dual), obtained from embed-
ding K in a sphere of large dimension using general position and then deleting
a tubular neighborhood. As for (2), the uniqueness part of Stallings’ theorem
says that the boundary of a tubular neighborhood of the thickening is unique
up to diffeomorphism (in the given numerical range). It occurred to the author
that there should then be an explicit recipe for constructing this boundary as
a Poincaré complex in terms of K, C, and the Spanier-Whitehead duality between
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K and C.' Once this has been established, the data (1) and (2) amount to
having a Poincaré embedding of (K, 0K) in the sphere. One can then apply
the Browder-Casson-Sullivan-Wall theorem [W,, 12.1] to smoothen the Poin-
caré pair and ultimately obtain an actual thickening.

In this paper we shall furnish an elementary proof of the existence part
of Stallings’ result under the following extra hypotheses:

(1) r=22k—j+1 (connectivity > generic double-point dimension), and
(2) k=2r+1 (K generically a co-H space).

Our approach is part of a general method which is seen to have the following
features:

(1) It is homotopy theoretic in flavor. The only manifold theory we will make
use of are the results of simply connected surgery to smooth certain Poincaré
complex data. Our method presents the thickening question as a issue in homo-
topy theory, which we call the Poincaré thickening problem.

(2) It holds the promise of settling the thickening problem beyond the known
range. For example, in his thesis, Habegger [Ha] exhibited obstructions to thick-
ening (depending on the homotopy type of the space to be embedded) in one
dimension better than the double-point range. However, Habegger’s obstruction
is defined using a local formula obtained from the triangulation of a polyhedron
which is homotopy equivalent to the complex K. He then shows that the obstruc-
tion is independent of a choice the triangulation used. We shall show in a
future paper how to define the obstruction without recourse to either a triangula-
tion or a local formula.

(3) The constructions appearing in the paper yield direct applications outside
of the double-point range in special circumstances (See § 7).

1.3 Outline. The paper is organized as follows: In §2 we define the notion of
Poincaré thickening and construct top cell decompositions of closed 1-connected
Poincaré complexes. In § 3 we show how a diagram whose homotopy pushout
is a sphere functorially gives rise to a certain map; this map is an S-duality
map if and only if the diagram is a Poincaré thickening (3.3). In §4 we define
the notion of b-duality and show that to every P-duality one may construct
a Poincaré thickening (4.5). In § 5 we prove the weak Poincaré thickening theo-
rem. In §6 we apply the Browder-Casson-Sullivan-Wall theorem to show that
the Poincaré theory is equivalent to the smooth theory, provided that the ambi-
ent dimension is = 6. In § 7 we employ the techniques of § 1-6 to give applications
to thickenings of suspensions, embeddings of closed Poincaré complexes, and
self dual complexes.

1.4 Conventions. We work within the category of spaces which are the homotopy
type of a finite CW complex. Unless otherwise stated, all spaces are assumed
to be simply connected. We say that a space is homology k-dimensional if its
singular homology vanishes above dimension k. If X is a space then cone(X)=

! It seems that I am not first to have thought of this. Connolly and Williams [C-W] show
that the only invariants for thickenings of K in S’ are the exterior and the S-duality pairing
in the range dim(K)—conn(K)=<[j/2]. However, their methods are almost entirely geometric,
relying heavily on PL-handlebody theory. In a future paper, I will show how to deduce this
result from an extension of the methods appearing here. I would like to thank the referee
for calling to my attention the Connolly-Williams paper
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X xI/X x 1 denotes the unreduced cone on X and X X =cone(X) Uy x ocone(X)
denotes the unreduced suspension. For spaces X and Y with basepoints denoted
%, we let XvY=Xx*xuUx* x YcX x Y denote the wedge of X and Y, and the
quotient, X A Y=X x Y/X v Y the smash product of X and Y. If X is pointed,
then there are natural equivalences £ X ~ X A S'~X x I/~, where the last term
is the quotient space of X x I given by identifying (x, 0) to (y, 0) and (x, 1) to
(y, 1) for all x, ye X.

2 Poincaré thickenings

2.1 Poincaré boundaries. By a Poincaré boundary (of dimension j) for a space
K, we mean an oriented (j— 1)-dimensional Poincaré complex 4 and a map
ix: 4— K such that (M,_, 4) is a Poincaré pair, where M; =Ku; Ax1I is the
mapping cylinder of ix. To keep the notation simple, when iy is understood
we write (K, 4) for the triple (K, 4, ix), and abuse terminology by calling (K, 4)
a “Poincaré pair”.

By a Poincaré thickening of K in the sphere S/, we mean,

(1) a Poincaré boundary ix: 4 — K for K such that (K, 4) has dimension j;
(2) a cofibration ic: A<= C;

(3) a homotopy equivalence S’ —= Cu,K which we require to be degree one,
in the sense that the composite

§—= Cu,K ccone(K)u cone(C)~2 4

is degree one.
For convenience we refer to the data as a homotopy co-Cartesian diagram

@ I

K—— 8.

The definition is symmetric with respect to K and C:

Lemma 2.2 If 2 is a Poincaré thickening of K in S, then (C, 4) is a Poincaré
pair of dimension j also.

Proof. This follows from the five lemma by applying the cap product of funda-
mental classes to Mayer-Vietoris sequence of (K, C, 4). [

Two Poincaré thickenings 2, and 2, of K are said to be concordant if
there is a degree one homotopy equivalence mapping the diagram associated
with 2, to the diagram associated with 2,.

2.3 Top cell decompositions. Suppose 4 is a 1-connected, oriented Poincaré com-
plex of dimension n. By a top cell decomposition for A, we mean

(1) a CW complex A4 of dimension <n—2;
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(2) amapa: S" !> 4;

(3) a degree one homotopy equivalence h: 4 U, D" —— A. (Here D" is provided
with a fixed orientation.)

Two top cell decompositions (4, «, h) and (4’, «’, k') for 4 are said to be

concordant if there is a homotopy equivalence g: 4u,D"— A’U, D" such
that h’-g is homotopic to h.

Proposition 2.4 If A is a 1-connected oriented Poincaré duality space of dimension
n, then there exists a top cell decomposition for A. Moreover, any two top cell
decompositions for A are concordant.

Proof. The uniqueness part of the proposition follows directly from obstruction
theory, so it suffices to prove existence. This follows essentially from [W,, 2.9],
but since we are assuming that 4 is 1-connected, we provide a simpler proof.

Without any loss in generality one may assume that 4 is a CW complex
of dimension n (see e.g. [W;]). Let 4”2 denote the i-skeleton of 4. Note that
by duality, H,_,(4)=H"(4)=0. Consider the homology long exact sequence
of the pair (4, 4"~ "). In the top dimensions it degenerates into a short exact
sequence,

0 H,(4)—> H,(4, 4"~ ) H,_ (4"~ V) - 0.

Furthermore, H,_ (4"~ V) is a free abelian group because it is the kernel of
the (n— 1)-st boundary operator in the cellular chain complex of 4”1, It follows
that every element of H,_,(4"~") lifts up to a representative (D" S""!)
—(4, 4"~ V) in H,(4, 4"~Y). Choosing a basis {[x,]} for H,_,(4"~ ), we in
this way obtain lifted representatives y,: (D", S~ ') — (4, A"~ V). Let X be the
space which is obtained from 4“~" by attaching n-cells along the maps ¥, |gn- 1
S""1 > A", Then A" V<X cd, H*(X)=H*(4) if *x<n—1, and H,(X)=0.
Let [4]e H,(4) be the orientation class. Then =, ([4]) is represented by a map
Xa: (D", 8"~ 1) > (4, A"~ Y). Let B: S"~ ! - X be the composite

g1 Xalsn-1 ALy

Then X uyD" is homotopy equivalent to 4. To finish the proof, notice that
X is 1-connected and H*(X)=0 for *>n—1, so we may replace X by a CW
complex 4 whose dimension is less than or equal to n—2 [W;]. [J

3 The S-duality construction

3.1 Suppose we are given a homotopy co-Cartesian diagram,

A—c ,C

- ]
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in which, by taking mapping cylinders if necessary, we shall always assume
that the maps ix and ic are cofibrations (we do not assume here that 9 is
a Poincaré thickening). We will define a map

d: SS>K=*C,

where K * C is the topological join of K and C.

First recall the definition of the join K % C. This is the space whose points
are of the form sk+(1—s)c where (k, c)eK x C and sel. We topologize this
as a quotient space of K x C x I. There are two other well-known models for
the join up to homotopy equivalence. The first is

hocolim (K «Z— K x C -2 C):=cone(K) x C Ug xc K x cone(C),

and the other is just X K A C (here we have chosen basepoints).

Lemma 3.2 There are natural homotopy equivalences

F: K *C—>hocolim(K « K x C - C),

and

G: KxC—XKAC.

Proof. The map F is defined by the formula

fka(l=2s)¢) se[0,1/2]
F(Sk+(1_s)c)_{(k,CA(ZS—I)) se[1/2, 1].

The map G is defined by the formula,
G(sk+(1—s)c)=kAacns.

Let X, (resp. X,,;) be the subspace of the join consisting of the points
sk+(1—s)c with 0=<s=1/2 (resp. 0=<s=<1/2). Then

X<120X5,,=KxCx1/2,
and
X§1/2UX;I/2=K*C.

Furthermore, the map F: K * C — cone(K) X C Ug x ¢ K x cone(C) when restricted
to X </, is a homeomorphism onto cone(K) x C and when restricted to X5,
is a homeomorphism onto K x cone(C). This shows that F is a homeomorphism.

To show that G: K*C— XK A C is a homotopy equivalence, note that G
is homotopic to the composition H o F where,

H: hocolim(K « K x C— C) > hocolim(* « KAC—o%)~XKAC

is the natural map induced by the quotient map K x C— K A C. Then H fits
into the cofibration sequence,

hocolim(K « K v C - C) - hocolim(K « K x C — C) - hocolim(* + K A C — *),
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in which the first term is obviously contractible, so H is a homotopy equivalence.
Consequently, G~ HoF is an equivalence. []

Now consider the map a: 4 —» K x C given by a(x)=(ix(x), ic(x)). This gives
a diagram:

K « KxC — C,

and hence a map of homotopy co-limits, d: $'~Ku,C—+K*C~XKAC.

Proposition 3.3 If the map d: ' — 2K A C is an S-duality, then (K, 4) is a Poin-
caré pair of dimension j— 1, and therefore the diagram

d==2
(@) ||
k——»Sj

is a Poincaré thickening in .

Proof. Let v: § - K/A be the degree one map defined by
§'~Ku,C—(Ku,C)/C=K/A.

If 6: K/4— K, A K/4 denotes the diagonal map (where K , is K with a disjoint

basepoint added), it will be sufficient to prove that §ov: S/ K, AK/4 is an

S-duality (this will establish Poincaré duality).

Let p: K/4 — 2 C be the composite
K/4=(Ku,C)/C=(Ku,C/C)ucone(Ku,C)~XZC,

and let g: K — K, be the inclusion. Then the following diagram is commutative:

s % ,K.,AK/A

KAZC W-) K + A 2C.
Hence, applying the slant pairing and cohomology, we get a commutative dia-
gram
H*(K,) 2=, L(K/4)

.,{ l

H*(K) A_,zo.

(= Aidgc)ed
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By hypothesis, the map d: S’ - Z K A C is an S-duality; implying that the bottom
arrow of this diagram is an isomorphism in all dimensions. Since q: K-> K,
induces an isomorphism on cohomology in positive dimensions, and since p
induces an isomorphism on homology below dimension j, it follows that the
top arrow of the diagram is an isomorphism for *>0. But when *=0, the
top arrow is an isomorphism because v: S’ — K/4 is degree one. Consequently,

H*(K ) - —2ma f, L (K/4)

is an isomorphism in every dimension. Hence, dov: §' - K, A K/4 is a duality
map and we infer that (K, 4) is a Poincaré pair of dimension j. [

4 >_duality

4.1 The P-product. Suppose that K and C are pointed spaces. We first recall
the computation of the homotopy fibre of the inclusion K v Cc K x C. In the
literature the fibre is denoted as KPC and is called the P-product of K and
C (cf. [G,, Hi]). KPC is naturally equivalent to the space QK = QC (the symbol
Q2 means the space of pointed loops), and we shall equate the two spaces whenev-
er necessary. The inclusion of the fibre i: KPC— K v C can be described as
follows: Let PK, PC be the based path spaces of K, C respectively, and let
K', C! be the corresponding spaces of unbased paths. There is then a natural
commutative diagram of inclusions

PKxQC+——QKxQC——— QKxPC

L

K!'xPC —=— PKxPC —— PKxC".

The pushout of the top line of the diagram is naturally equivalent to QK » QC
by 3.2, the pushout of the bottom line is naturally homotopy equivalent to
K v C, and the map i: QK +*QC — K v C is defined to be the induced map of
pushouts.

There is also a natural map F: QK * QC — Q(K A C) defined by

L (BQRsHAY), te[0, 1/2]
F(se_'_(l_s)y)_t'—){()(t)/\l,h(2(1—s)t), te[1/2,1].

We will make use of the following:

Lemma 4.2 Suppose that K is r-connected and C is s-connected. Then the connecti-
vity of the map F: K®C — Q(K A C) is given by

conn(F)=min(r, s)+r+s+1.
Proof. The cofibration
KvC->KxC—->KAC
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is also a fibration in the range <conn(K v C)+conn(K A C)=min(r, s)+r+s+1
by the Blakers-Massey excision theorem. Furthermore, F: K°C - Q(KACQC)is
the homotopy transgression of this cofibration, so the lemma follows. [J

Suppose we are given a CW complex 4 of the form Au,D'~! where 4
is a 1-connected CW complex of dimension <n—2. Suppose further that we
are given a homotopy co-Cartesian diagram

A—E¢C
'

K——§
where K and C have homology dimension <j—2, and where ix and i; are
cofibrations. Let a: 4 » K x C be the map (ig, ic). Let F be the homotopy fibre

of the restriction of a to 4. As a| ca: "2 K x C has a preferred null homo-
topy, it follows that there is a canonically defined map

D: 572, F
such that the composite

$i2_2,Fc4
is homotopic to a.

Let us apply the construction in the special case A=KvC, A=
(Kv C)u,D'1, and where it is assumed that the composite

§i72_2,KvCcKxC

is null homotopic. In this case, a choice of null homotopy determines maps

ixg: 4-K and i.: 4-C
extending the projections KvC—-K and KvC—C. Clearly, the homotopy
pushout of ix with ic is homotopy equivalent to the sphere S-. Applying the
above construction, we obtain a map

D: S 25 KbC.

Proposition 4.3 Suppose 9 is a Poincaré thickening in S’, with A=(K v C) U, D'~
as above. Then the composite

§i-2 2, KbC—2, QK AC)

is adjoint to an S-duality. In fact, adj(®@-D): £S"2 - K AC is a desuspension
of the duality map d: S'— XK A C of §3.
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Proof. We first construct a desuspension of d. We have a commutative diagram

KvC

KvC

|

A =ik g

where the vertical arrows are the natural inclusions. Taking vertical cofibres,
we obtain a map

SIT'=A/(KvC)»KxC/KvC=KAC,

which desuspends d.

On the other hand, it is not difficult to see that the above map by definition
is the same as the adjoint to ®oD. []

Now let K and C be arbitrary spaces.

Definition 4.4 Any map D: $/~? - KPC satisfying the conclusion of 4.3 (i.e.,
adj(®- D) is an S-duality) will be called a P-duality map.
The utility of this definition is illustrated by the following.

Theorem 4.5 If D: §~% - K" C is a P-duality map, then there exists a Poincaré
thickening of K in the sphere S’ with complement C and boundary A=
(KvC)u,Dim1,

Proof. The Poincaré thickening is constructed as follows. Let 4=(K v C)u, D™},
where

a: §ST2sKvC
is the composite

si-2_2,K*C—sKvC.
The maps ix: 4 - K and ic: 4 — C will be defined so as to extend the projections
of Kv C to K and C. The extension is given by the canonical null homotopy
of the composite,
K*C—>KvCcKxC.
The homotopy pushout of i with i; is clearly homotopy equivalent to the

sphere S/, and the fact that (K, 4) satisfies Poincaré duality results from 3.3
and 43. [J

5 The weak thickening theorem

5.1 Suppose K is a homology k-dimensional space which is r-connected. We
may assume that K is a CW complex of dimension <k.
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By transversality, we embed K in S™ for m large, (n>2k+ 1). This defines
a stable exterior W=S"\n(K), where n(K) is a regular neighborhood of K.
By Alexander duality, W is homology (m—r—2)-dimensional and (m—k—2)-
connected. We need a lemma which shows that W desuspends.

Lemma 5.2 (Desuspension lemma) Suppose Y is an s-connected space (s=1) of
homology dimension t. Then
Y>~2'X  if us2s—t+2,

and moreover, X is unique up to equivalence if u<2s—t+1.

Proof. We can assume that Y is a t-dimensional CW complex [W;]. By iteration,
it is sufficient to prove this when u=1, since each desuspension reduces the
connectivity and dimension by one. But when u=1, the lemma follows by desus-
pending the attaching maps for the cells of Y using the Freudenthal suspension
theorem [S, p. 461]. [

We are now in a position to prove the weak Poincaré thickening theorem.

Theorem 5.3 (Weak Poincaré thickening) Let K be r-connected and homology
k-dimensional. Then K Poincaré thickens in the sphere S’ provided that

k£2r+1,
2k—r+15j.

Moreover, any two Poincaré thickenings are concordant when strict inequality
is satisfied.

Proof (Existence ). Applying the desuspension lemma (5.2) to the stable comple-
ment W, we see that

W~zC, if ug2(m—k—2)—(m—r—2)+2,
=m—2k+r.

Set j=m—u. Then the inequality becomes
2k—r é] s

and this is guaranteed by the hypotheses.
Next, let

&: S KAW=KAZ"IC

be the canonical Spanier-Whitehead duality map (as constructed e.g. in the
proof of 4.3). Since K is r-connected and C is (j—k—2)-connected, it follows
that KA C is (j—k+r—1)-connected, and so by the Freudenthal suspension
theorem, there is a map

d: SS"'S5KAC

which is a desuspension of d* provided that j—1<2(j—k+r—1)+1, or equiva-
lently,
2k—2rZ=j.
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Furthermore, if strict inequality holds then the desuspension is unique up to
homotopy. Since we are assuming already that 2k —r+ 1<), we see that d exists
and is unique up to homotopy.

By 4.5, it will be sufficient to construct a P-duality map D: /-2 - KPC.
As K is r-connected and C is (j— k— 2)-connected, it follows by 4.2 that

®: KPC—Q(K AC)
is min(r, j—k—2)+r+(j—k—2)+ 1-connected. Consequently, if
- J—2=min(r,j—k—-2)+r+(G—k—2)+1,
then the adjoint of the S-duality, adj(d): S'~2 - Q(K A C), factors up to homo-
topy through a P-duality map D: S'~2 - K" C.

Now, the last inequality is satisfied in particular when

k<2r+1, and
2k—r+1=j.

Consequently, K Poincaré thickens in S/ when the above inequalities hold.

(Uniqueness ). Suppose that

A—c ,c
(2) : i"l 1 ‘
K—— 8§

is a Poincaré thickening in the sphere S’, and that K is r-connected and homology
k-dimensional, and

k<2r+1,
2k—j+1<r.
By 2.4, we may assume that 4 =AU, D'~ " where 4 is a CW complex of dimension
<j—3, and iy and i are the restrictions of iy and i; to A. It follows that
the homotopy colimit

hocolim(K «%— 4 <, ()
is contractible. By the Blakers-Massey excision theorem, the map
AL, g x

factors uniquely up to homotopy through K v C, provided that dim(A4)<
conn(K)+ conn(C), or equivalently, if

max(k, j—r—2)<r+(—k—2)+1.
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The last inequality, in turn, is implied by the pair inequalities

2k—r+1<j, and
k<2r+1.

Hence, if these conditions are satisfied, there is a unique homotopy class of
map A — K A C for which the composition with the inclusion KvC—» K xC
gives (ig, ic) up to homotopy. It then follows by an easy homology argument
that the map A —» K v C is a homotopy equivalence. Consequently, 4 has a
decomposition of the form (Kv C)u,D’~!, in such a way that with respect
to this identification, ix: 4 - K and ic: 4 — C extend the projections of Kv C
onto each factor.

The attaching map a: §~2 —» K v C for the top cell of A4 then clearly factors
up to homotopy as ‘

§i-2_ 2, KbC—5KVC,

for some b-duality map D (4.3). Since

&: KPC>Q(KACQ)
is min(r,j—k—2)+r+(j—k—2)+1 connected, it again follows immediately
from the connectivity assumptions that D is unique up to homotopy. Conse-

quently, the Poincaré thickening above is unique up to concordance. This com-
pletes the proof of 5.3. [

6 The weak thickening theorem in the smooth category

This spaces in this section are not a priori assumed to be 1-connected. Let

A—c ,c

1]

K——§

be a Poincaré thickening in the j-sphere. By a smoothing & the 2, we mean
a codimension zero compact submanifold (¥, dV) of S’ together with orientation

preserving homotopy equivalences e, : (V,0V)— (K, A)and e, :(Cy, dV)—(C, 4),

with Cy=cl(S/\ V), such that e, coincides with e, on V. This amounts to a
having a degree one homotopy equivalence of triads

e: (V,Cy, 3V)—> (K, C, 4).

In particular, a smoothing determines a thickening of the complex K in the
usual sense. Two smoothings % =(V,e) and & =(W, ') of K in § are said
to be concordant if there exists an h-cobordism Z = §/ x I with Z,=Vand Z, =W,
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together with a map of triads e: (Z, C,, dZ) — (K, C, 4) which is a homotopy

between e and e'. The next result is a restatement of the Browder-Casson-Sulli-
van-Wall theorem [W,, 12.1].

Theorem 6.1 If & is a Poincaré thickening of K in S, j=6, with A and K
L-connected, and if the homology dimension of K is <j—3, then there exists
a smoothing & of 9. Furthermore, & is unique up to concordance.

For a complex K of homology dimension k <j—3, let h Emb(K, §’) denote the
set of (smooth) concordance classes thickenings of K in §’. Similarly, let
p Emb(K, $%) denote the set of concordance classes of Poincaré thickenings of
K in §'. Let p Emb, (K, $)=p Emb(K, §’) be the subset consisting of Poincaré
thickenings 2 =(K, C, 4) such that 4 is 1-connected.

Corollary 6.2 If j=6 then the forgetful map
hEmb(K, §) - p Emb(K, §’)
is one-to-one with image p Emb, (K, ).

Proof. Let (V, 0V)< S’ be a thickening of K in S’. Since K is 1-connected and
dim(K) <j— 3, there exists a handlebody decomposition

H#=0VU(Uh,)

of V'rel 3V whose handles h, satisfy 2 <index(h,)<j—3. Let & denote the spine
of # Then dim.¥ <j—3, and so by general position, any map y: (D2, S')
—(V, dV) can be deformed rel S so as not to intersect %, Hence, the perturbed
image of y will lie in a collar of 9V, so y|s:: S' — dV is null homotopic. Conse-
quently, dV is 1-connected since V is 1-connected. This shows that the image
of the forgetful map h Emb(K, $’) - p Emb(K, §) is contained in p Emb, (K, §’).

The proof that the forgetful map h Emb(K, $/)—» p Emb, (K, §) is bijective
now follows immediately from 6.1. [

7 Applications

7.1 Thickenings of suspensions. Let X and Y be spaces. We define a map

p: ZXAY->(ZX)PZY)=Z(QRZX)A(QZY)
by the formula
PXAYA)=(s>XAS)A(sSPYAS) AL

Remark. Let i: (XX) ®(ZY)— ZX v 2'Y be the map given by the homotopy fibre
of the inclusion XX vXY<cX X x Y. Then

iop: ZXAY-S2XVZY

is the generalized Whitehead Product map [G,, §5].
Let #: (ZX)b(ZY)> Q(Z X AZY) be the map defined in 4.1. Then by direct
calculation,

Pop: ZXAY-QEZXAZY),
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is given by the rule

QutAx)A(yAat), if uel0, 1/2]
(xAyAt)HuH{(t/\x)/\(y/\2(1—u)t), if ue[1/2, 1].

Consequently, the adjoint adj(®-p): Z2X A Y > 22X A Y is given by formula

. _fxAyAQRutnt), if uel0, 1/2]
(@AY AL = Ay At a2 —w)t),  if uel1/2, 1.

On the two suspension coordinates, this map is induced by the self-map
of the unit square I? which converts a horizontal cross section into a diagonal
cross section:
2ut,t if 1/2
&, = ut, 1), if uel0, 1/2]

t,2(1—w)t), if uell/2,1].

As this map rel 0I% has degree one, it follows that
Lemma 7.2 adj(@op): 22X A Y— 22X A Y is homotopic to the identity.
We are now in a position to state a result concerning thickenings of suspensions.

Theorem 7.3 Let K~X X and C~ZXY be spaces with suspension structures, and
suppose that there exists a Spanier-Whitehead duality map,

d: 7253 'KAC~ZXAY.

Then there exists a Poincaré thickening 9 of K in the sphere S’ whose exterior
is homotopy equivalent to C, and moreover, with respect to this equivalence the
S-duality map of 2 is homotopic to d.

Remark. Note that no connectivity restrictions appear in 7.3.

Proof of 7.3 Let p be as in 7.1. Then the map pod: $72 - K> C is a P-duality
map by 7.2. Applying 4.5 yields the desired Poincaré thickening. [

We will derive two corollaries of 7.3. The first is a weakening of the classifica-
tion theorem of [C-W] in the case of complexes which desuspend.

For a space K and a positive integer j, consider the set of pairs (C, d) such
that C is a space and d: S’ > XK A C is a Spanier-Whitehead duality. Define
an equivalence relation on this set as follows: (Cy, dg)~(C,, d,) if there is a
homotopy equivalence h: Co — C, such that Z(idg A h)ody~d,. Let SW;(K) den-
ote the resulting set of equivalence classes, and let SW7(K)<=SW;(K) be the
equivalence classes of pairs (C, d) such that C desuspends.

The S-duality construction (§ 3) defines a natural map

6,: p Emb(K, ) » SW;(K).

We then have the following.
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Corollary 7.4 (compare [C-W]) Suppose K~ZXX for some space X. Let k be
the homology dimension of K and r the connectivity of K. Then SW}(K) is con-
tained in the image of 0; provided that

k—r<(j—1)/2.

Proof. Let d: S - XK A C be an element of § Wf(K). Then C~2XY for some
space Y, and we may rewrite d as a map §/ - Z(XX)A(ZY). By S-duality, the
target of d is r+(j—k—2)+1 connected, so by the Freudenthal theorem and
the numerical hypothesis, there is a two-fold desuspension 27 2d: §"2 5> XX A Y.
Applying 7.3 then completes the proof. []

We now show how 7.3 can be used to eliminate the extra connectivity hypoth-
esis on K in the weak Poincaré thickening theorem (5.3) under the assumption
that K has a suspension structure.

Corollary 7.5 If K~XX is r-connected and has homology dimension k, then K
Poincaré thickens in S’ provided that

2k—r+1<;j.

Proof. Applying 5.2 we see that the stable complement W<S™ desuspends u-
times, where u=m—2k+r. Set j=m—u+ 1. Let C be the (u— 1)-st desuspension
of W. Then C desuspends once more, C ~X'Y. Moreover, the Freudenthal suspen-
sion theorem implies that Spanier-Whitehead duality map

d: ST S KAWxKAZU ICxIX AZYY
desuspends u times to amap d: S'72 > X' K A C~X X A Y. One may then apply
7.3 to obtain the thickening of K. []

7.6 Closed Poincaré complexes. Suppose X is an r-connected, closed Poincaré
duality space of dimension n. Recall the definition of a Poincaré embedding
of X in S/ (cf. [W,, §11]). This amounts to the existence of a homotopy co-
Cartesian diagram

such that i is a cofibration and p: E — X is equivalent over X to an oriented
spherical fibration with fibre /=", or equivalently, if M, is the mapping cylin-
der of p, then (M, E) is a j-dimensional Poincaré pair (cf. [B]).

Theorem 7.7 X Poincaré embeds in S’ under the assumptions
n<3r+2,
2n—-3r—1%5j,
n+r+3=<).
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Proof. By 2.4, we may suppose that X =K u;D", where K i a CW complex
of dimension <n—2, and B: "~ ! > K is the attaching map for the top cell
of X. By duality, K has homology dimension <n—r—1 because X is r-con-
nected. Let us apply the weak thickening theorem (5.3) to thicken K in S/~
Under the connectivity assumptions of 5.3, K will thicken in §/~1 if

n—r—1Z2r+1, and

2n—r—1)—r=<j—1.

As these inequalities are implied by the assumptions, a Poincaré thickening
of K exists. Consequently, there is a co-Cartesian diagram

A—c ,cC

N

K— 5!

where (K, 4) is a Poincaré pair. By the third assumption in the statement of
7.7, we have

G-D-(n—r-1)=j—n-rz3,

and so we may apply the smoothing theorem (6.1) and henceforth assume that
(K, 4) is a smooth codimension zero submanifold of '~ 1
Thinking of $/~! as the boundary of D/, we may define a map

k: KugD"—»Dic§/,
which extends the inclusion of K by the cone construction:
k(r-x):=r-B(x), where xeS'~!, rel.

Let N be a closed regular neighborhood of K in D’ such that dN is transverse
to k(D"). Then

P:=NuUk(D"

is a subpolyhedron of S/ which is homotopy equivalent to X. Let n(P) be a
regular neighborhood of P and let C denote its complement. Then X ~n(P),
and

on(P)—— C
n(P) —— S
is the desired Poincaré embedding of X in §/. []

Corollary 7.8 If X is an r-connected Poincaré duality space of dimension n<
3r+2, then X Poincaré embeds in S**"*3.

Proof. Set j=n+r+3. Then j satisfies the criteria of 7.7, so X Poincaré embeds
inS. O '
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7.9 Self-dual complexes. A space K is said to be self n-dual if there exists an
S-duality
S"" s K AK.

(The symbol ~» denotes an arrow in the stable category.)

Examples 7.10 (1) The sphere S* is self (2k+ 1)-dual since it is homologically
equivalent to its own exterior in S2*¥*1.

(2) Let V"*'<=8"*2 be a Seifert surface for a knot S"=S"*2. Then V is self
(n+2)-dual. This is an elementary exercise in the Mayer-Vietoris sequence.

Theorem 7.11 (Self-dual embedding theorem) Let K be an r-connected space
which is self n-dual, n=>6. Then K thickens in S" provided

n<3r+3.

Proof. The assumption that K is self n-dual and r-connected implies by S-duality
that K is homology (n—r —2)-dimensional.

By the weak thickening theorem (5.3) and the smoothing theorem (6.1),
K will thicken smoothly in S” provided that

n—r—2)<2r+1,
2m—r—2)—r+1<n.
But the above inequalities reduce to the condition that n<3r+3. []
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