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Let G be a locally compact (Hausdorff) group and let M!(G) be the topological
semigroup of probability measures with convolution product and the weak to-
pology. A e M*(G) is said to be infinitely divisible if for each natural number
n, u has an n-th root in M'(G) and it is said to be embeddable if there exists
a continuous semigroup homomorphism ¢: R, - M'(G), from the semigroup
R, of nonegative real numbers, such that ¢(1)=p An embeddable measure
is evidently infinitely divisible but the converse is not true in general. Over
the last three decades various classes of groups have been identified for which
the converse is indeed true; in this case one says that the group has the embed-
ding property. We refer the reader to [H] for an account of results in this
regard until mid seventies and [DM 3, Sh] and other literature cited therein,
for more recent developments.

While a large class of connected Lie groups is now known to have the
embedding property, relatively little is known in this direction for discrete
groups. Finite groups and finitely generated nilpotent groups are known to
have the embedding property (cf. [H]). Also, McCrudden proved that any poly-
cyclic group has the embedding property (cf. [M2]). The property can also
be deduced for certain discrete subgroups of connected Lie groups from the
results on the ambient group. Nevertheless, by and large the problem is open
for discrete groups.

In this paper we prove the embedding property for any finitely generated
group which can be realised as a subgroup of GL(n, A), where A is the field
of algebraic numbers (see Main Theorem for a somewhat stronger assertion);
here the group need not be discrete as a subgroup of GL(n, C), but will be
considered equipped with the discrete topology. This implies in particular the
embedding property of the classes of discrete groups mentioned above (cf.
Remark 1).

By a result of Martin Lof an embeddable measure on a discrete group is
a Poisson measure; viz. it is of the form exp v, where v is a (signed) measure
of the form A— ||1|| wg for some bounded positive measure A commuting with
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wg, the latter being the normalised Haar measure of some finite subgroup K
such that A(K)=0 (cf. [H]). In view of this, we can formulate our result in
the following stronger form.

Main Theorem. Let I' be a finitely generated group equipped with the discrete
topology. Let A be the field of algebraic numbers and suppose that there exists
an (abstract) homomorphism ¢: I' - GL(n, A) such that ker ¢ is a finitely generat-
ed central subgroup of I'. Then every infinitely divisible measure on I is a Poisson
measure.

We view ¢(I') as above as a discrete subgroup of a product of matrix groups
over certain local fields and deduce the theorem using a sufficient condition
for ‘shift embeddability’ together with some results, from [DM1-DM 3] and
[Sh], about relative compactness of certain sets of roots, in the case of real
and p-adic groups respectively.

1 Preliminaries

Let G be a locally compact group and let ue M'(G). We denote by C(u) the
smallest closed subgroup of G containing supp y, the support of u. We denote
by N(u, G) and Z(u, G) the normaliser and centraliser respectively of C(u) in G.

For any closed subgroup H of a locally compact group we identify M!(H)
as a subsemigroup of M'(G) in the cannonical way, extending pe M'(H) to
G by setting u(G—H)=0. For pe M*(H) and a subset M of N let

R(M, p, H)={v*|ve M' (H),v"=p for some meM,m=k}.

In the case when M =N the above set, namely R(N, u, H), is called the ‘root
set’ of u on H; u is said to be root compact on H if the root set of u on
H is relatively compact.

For any pe M'(G), as above, any root of u is supported on N(u, G); in
fact if A is an n-th root then there exists a ge N(u, G) such that g"eC(u) and
supp A< gC(p) (cf. [M1, Lemma 1]). In particular any infinitely divisible measure
u on G is infinitely divisible on N (i, G). We next note the following observation,
which will be used in the sequel.

Lemma 1.1 Let G be any locally compact group and pe M'(G) be infinitely
divisible. Let H be a closed normal subgroup of N(u, G) containing C(u). Suppose
there exists a keN such that any element of N(u, G)/H which is of finite order
is of order at most k. Then p is infinitely divisible on H.

Proof. Let n: N(u, G)— N(u, G)/H be the natural projection. Let k be as in
the hypothesis and m=k!. Let neN be arbitrary. Since u is infinitely divisible
there exists a Ae M'(G) which is an (mn)-th root of u. Then A is supported
on a coset aC(u) where aeN(u, G) and a™eC(u). Since C(u)=H, n(a)™"=e,
the identity in N(u, G)/H. By hypothesis this implies that the order of 7(a)
is at most k and hence #(a)"=e. Therefore a™e H. This implies that A™, which
is an n-th root of u, is supported on H. Thus for all n there exists an n-th
root of y supported on H, which means that y is infinitely divisible on H.

Now let K be a locally compact field of characteristic 0. Then K is either
R or C or a finite extension of the field Q, of p-adic numbers, for some prime



Infinitely divisible measures 633

p (cf. [We, p. 11, Theorem 5]); we set ¢(K)=0 if K=R or C and ¢(K)=p if
K is a finite extension of Q,. We define a sequence {N;(K)} of subsets of N
(sets of natural numbers) by setting, for all i,

N(K)=N if ¢(K)=0 and
={meN|p'ym}, if c(K)=p.

Let G be an algebraic group defined over K and let G, be the group of all
K-rational points of G, equipped with the locally compact topology as a matrix
group over K.

The following result is essentially known.

Theorem 1.2 Let the notation be as above. Let ue M'(Gg) be such that Z(u, Gy)
is the center of Gg. Then R(N;, u, Gg) is relatively compact for all i.

Proof. For K=R or C under the above hypothesis u is in fact root compact.
This is implied by Theorem 1.1 of [DM 2] together with Proposition 4.4 of
[DM1] provided Gy is connected; in general Gg has only finitely many con-
nected components (cf. [BT, Corollaire 14.5]) and the proof still goes through.
In the desired general from the result has been noted, together with a somewhat
simpler proof, in [DM 3].

If K is nonarchimedean, then G is a p-adic algebraic group; where p=c(K),
and in this case the theorem is only a slight variation of Proposition 3 of [Sh];
the proof is the same beyond the first sentence there.

2 The embedding property

Let I be a finitely generated discrete group and let ¢: I' - GL(n, A) be any
(abstract) homomorphism, where neN and A is the field of algebraic numbers.
Then ¢(I') is finitely generated and hence there exists a number field (that is,
a finite extension of Q) F such that ¢(I') is contained in GL(n, F). Let &/
be the set of absolute values on F and for any ve.</ let F, be the corresponding
completion of F. We shall consider F, and GL (s, F,), for any neN, to be equipped
with the locally compact topology given by the absolute value v. Also for any
ve let j,: GL(n, F)> GL(n, F,) be the cannonical inclusion homomorphism.
Since I' is finitely generated it follows that j,(¢(I")), the closure of j,(¢(I") in
GL(n, F,), is compact for all but finitely many v; if {y,, ..., y,} is a set of genera-
tors of ¢(I') then for all but finitely many ve.o/ all the entries of j, (), ..., Jo(Ps)
as well as those of j,(y,)™',...,j,(7) ! are of absolute value at most 1 (cf.
[We, p. 72, Proposition 2]) and for any v for which this holds j,(¢(I')) is con-
tained in a compact subgroup.

Let S be the finite set consisting of all v such that j,(¢(I')) is noncompact.
Let

G=[] GL(n, F)

vesS

equipped with the product topology. For each veS let n,: G- GL(n, F,) be
the projection homomorphism onto GL(n, F)). Let j: GL(n, F) > G be the can-
nonical homomorphism such that =,(j(x))=j,(x) for all xeGL(n, F) and veS
and let ¥: I' > G be the homomorphism defined by y/(y)=j(¢(y)) for all yer.
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We recall that GL(n, F) is a discrete subgroup of the idele group of M (n, F),
the latter being the algebra of nxn matrices over F (see pp. 71-72 of [We]
for reference). Since j,(¢(I')) is compact for all v¢S, this implies that (I') is
a discrete subgroup of G.

Now let ue M!(I') be any infinitely divisible measure. Let I'* (u) be the Zariski
closure of ¢(C(u)) in GL(n). Since ¢p(I")c GL(n, F), I'*(u) is defined over F
(cf. [B, Proposition 1.37]). Let I*(u) be the group of F-rational points of I'*(u)
and let 4 be the subgroup of G defined by

A=jIFE) Y ().
Our first step in proving the theorem is the following:
Proposition 2.1 u is infinitely divisible on y =" (4).

Proof. Let N(u) and N*(u) be the normalisers of ¢(C(u)) and I (u) in GL(n, F).
Since I'*(u) is the smallest algebraic subgroup of GL(n) containing ¢(C(w)),
it follows that N(u)c= N*(un). Also clearly ¢(N(u, I'))= N (1). We next note that
N*(u)/I¥(u) can be realised as a subgroup of an algebraic group defined over
F (cf. [B, Theorem 6.8]) and hence as a subgroup of GL(m, F) for some meN.
This implies in particular that there is a bound on the orders of finite subgroups
of N*(u)/Ii*(n) (cf. [Se, p. LG 4.35, Theorem 1]). Since ¢(N(u, I'))=N(u)c
N*(u), we get further that the orders of finite subgroups of
N(u, I/~ (I¥(u) " N(u, T') are bounded. Therefore Lemma 1.1 implies that
u is infinitely divisible on ¢ ~! (I;* (1)), which clearly is the same as y ~ ' (4).

We realise each F,, veS, as a subfield of C via some embeddings, that will
be considered fixed, and correspondingly view GL(n, F,) as subgroups of
GL(n, C).

Now for each veS let I*(u) denote the group of F,-rational points of I'*(u)
and let

G* ()= L* (W) <G.

vesS

Clearly, j(I3*(w)) is a (not necessarily discrete) subgroup of G*(u). In particular
G*(u) contains 4, which is a discrete subgroup containing C(y(u)). Since, by
Proposition 2.1, p is infinitely divisible on s~ (4) it follows that () is infinitely
divisible on 4 and hence on G*(p).

Now for each veS let {N;(F,)} be the sequence of subsets of N as in §1,
associated to the locally compact field F,. For each ieN put

N= () Ni(F).

veS

We observe the following.

Proposition 2.2 For all ieN, R(N;, Yy (u), G*(u)) is a relatively compact subset
of M*'(G*(w)).

Proof. 1t is enough to prove that for each veS and ieN, n,(R(N, ¥ (u), G* (1))
is a relatively compact subset of M (I;*(u)). Observe that

,(R(N;, ¥ (0), G* (1)) = R(N;, 7, (¥ (W), I* () = R(Ni(F), 7, (9 (1), ¥ (1))
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for all veS and ieN. The proposition would therefore follow from Theorem
1.2 if we show that, for all veS, Z(x,(y(u)), I;*(r)) is the center of I*(u). Let
veS be given. Observe that 7, (C(¥ (1) =j,(¢(C(w))). Since ¢(C(u)) is Zariski-
dense in I'*(u), the centraliser of j,(¢(C(u))) in I'*(u) is contained in the center
of I'* (). Since Z (m, (Y (1)), I,* () is the centraliser in I*(u) of the the subgroup
C(m,(¥ (1)) and since the latter contains 7,(C(¥(w))), the preceding assertion
implies that the centraliser is contained in the center of I'*(u) and hence in
the center of I;*(u). This proves the proposition.

Proof of the Main Theorem. Since y(I') is a closed subgroup of G, Proposition
2.2 implies in particular that R(N,, y(u), ¥(I') is relatively compact for all
i. Since ker y =ker ¢ is a finitely generated central subgroup of I', it is strongly
root compact (cf. [H, Theorem 3.1.17 or 3.1.12]). By Lemma 2 of [Sh] these
two conclusions imply that R(N;, u, I') is relatively compact in M'(I') for all
i. An argument as in the proof of Theorem 3 of [Sh], using in particular the
criterion for shift embeddability, now shows that there exists a continuous homo-
morphism f: R, — M!(I') and a homomorphism a: Q — I'" such that u=a(1) f(1).

For any veS such that F, is a finite extension of Q,, p a prime, Lemma
4 of [Sh] shows that Im z,o{/ox is contained in a closed subgroup of I;*(u)
topologically isomorphic to Q}r for some n,eN. In real (or complex) algebraic
groups any abelian subgroup has a subgroup of finite index contained in a
closed subgroup isomorphic to T x R? for some a, b>0. Combining these obser-
vations and noting that Q has no proper subgroup of finite index we deduce
that ¥ (2(Q)) is contained in a closed subgroup of G topologically isomorphic
to T*x R x Q% x ... x Q} for some primes py, ..., p, and a, b, n,...,n,=0. We
note that the latter group has no nontrivial divisible discrete subgroups; this
follows from the fact if x is any element of the group and p is a prime such
that p+p; for any i then the set {y|y™=x for some m=p* keN} is relatively
compact. Since ¥ (x(Q)) is contained in ('), it is discrete; further it is also
divisible and hence we are led to the conclusion that o« is a trivial homomorph-
ism. Therefore «(Q) is contained in ker s =ker ¢. Since by hypothesis ker ¢
is a finitely generated abelian group, this further implies that « is trivial. Thus
we get that u=f(1) where f: R, - M!(I) is a continuous homomorphism. In
other words, i is embeddable. This proves the theorem.

Remarks. 1. The theorem implies in particular the embeddability of infinitely
divisible probability measures on finite groups, finitely generated nilpotent
groups and more generally the polycyclic groups, which was known earlier
(cf. [H] and [M2]); these groups can be realised as subgroups of GL(n, A);
(see [W, §2.1 and Theorem 2.5]). There are also other abstract conditions on
groups which ensure embeddability of a group as a subgroup of GL(n, A). We
refer the reader to a discussion on pp. 25-26 of [W] in this regard.
2. Arguing as in the above proof and using the fact that for each prime
p and neN, there is a bound on the order of finite subgroups of GL(n, Q,),
1

one can also prove the following: If I' is any discrete subgroup of [] GL(n, Q,,)
i=1

for some [, neN and primes p,, ..., p, then every infinitely divisible measure

on I is a Poisson measure.
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