

Werk

Titel: 2 Curvature decomposition in the degenerate case.

Jahr: 1993

PURL: https://resolver.sub.uni-goettingen.de/purl?266833020_0212|log74

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

For any i < j, write $\Omega_{i\bar{j}} = \sum_{k,l=1}^{n} c_{k\bar{l}} \psi_k \wedge \bar{\psi}_l$. Then by Lemma 1, $\Omega_{i\bar{j}} = c_{i\bar{j}} \psi_i \wedge \bar{\psi}_j$

 $+c_{j\bar{i}}\psi_j\wedge\bar{\psi}_i$, and $c_{i\bar{j}}\cdot c_{j\bar{i}}=0$, $|c_{i\bar{j}}|^2+|c_{j\bar{i}}|^2=1$. By the first Bianchi identity $^t\varphi\wedge\Theta=0$, here $\Omega=\Theta$ as e is unitary, we know that $c_{j\bar{i}}$ must vanish. Therefore, $\Omega_{i\bar{j}}=c_{i\bar{j}}\psi_i\wedge\bar{\psi}_j$, $c_{i\bar{i}}=1$, and $|c_{i\bar{j}}|^2=1$.

Let $C = (c_{ij})$. Then C is a nowhere zero Hermitian matrix. By the last equality in Lemma 1, rank $(C) \le 1$, hence $C = b \cdot b^*$ for a column vector b. Replace ψ_i by $b_i \psi_i$, we get the desired decomposition of Ω . QED

Proposition 3 For any $x \in U_g$, and any tangent frame e near x, let ψ be a coframe near x satisfying $\Omega = -\psi \wedge \psi^*$ as in Proposition 2. Then there exists a 1-form λ near x such that $\overline{\lambda} = -\lambda$, $d\psi = \theta \wedge \psi - \lambda \wedge \psi$ and $d\lambda = -\operatorname{Ric}_g(\theta)$ is the connection matrix under e).

Proof. Again we may assume that e is unitary. Since $d\varphi = {}^{t}\theta \wedge \varphi$, and ψ forms a coframe, one can write $d\psi = \theta \wedge \psi + \xi \wedge \psi$ for some $n \times n$ matrix of 1-forms ξ . Plug it into the second Bianchi identity $d\Theta = \theta \wedge \Theta - \Theta \wedge \theta$, and $\Theta = \Omega = -\psi \wedge \psi^*$, one gets:

$$\xi \wedge \psi \wedge \psi^* + \psi \wedge \psi^* \wedge \xi^* = 0.$$

Its (2, 1)-parts gives:

$$\xi^{(1,0)} \wedge \psi \wedge \psi^* + \psi \wedge \psi^* \wedge \xi^{(0,1)*} = 0.$$

This implies that

$$\xi^{(0,1)*} = \alpha I$$

$$\xi^{(1,0)} \wedge \psi = -\alpha \wedge \psi.$$

Therefore

$$\xi \wedge \psi = -(\alpha - \bar{\alpha}) \wedge \psi$$
.

Let $\lambda = \alpha - \bar{\alpha}$, then

$$\bar{\lambda} = -\lambda; \quad d\psi = \theta \wedge \psi - \lambda \wedge \psi.$$

Differentiate the last equality, one gets $d\lambda = -\text{Ric}_g$. QED

2 Curvature decomposition in the degenerate case

Let V_g be the Zariski open set $\{x \in M : \text{Ric}_g^{n-1}(x) \neq 0\}$. In this section, we shall consider the decomposition of Ω in V_g , since it will be needed later in the proof of Theorem A.

Let us fix a point $x \in V_g \setminus U_g$. Choose an unitary frame e with the dual frame φ such that

$$-\operatorname{Ric}_{\mathbf{g}} = \lambda_1 \, \varphi_1 \wedge \bar{\varphi}_1 + \ldots + \lambda_n \, \varphi_n \wedge \bar{\varphi}_n$$

where $\lambda_1 \ge ... \ge \lambda_{n-1} > \lambda_n \ge 0$ in a neighbourhood V of x. Write $U = V \cap U_g$, then $\lambda_n > 0$ in U and 0 = 0 along $V \setminus U$.

Since $\Omega_{i\bar{i}} \leq 0$, and $\operatorname{tr}_{\omega} \Omega_{i\bar{i}}(x) = \operatorname{Ric}(e_i, \bar{e}_i)|_x = -\lambda_i(x)$, hence $\Omega_{i\bar{i}}(x) \neq 0$ for $1 \leq i \leq n-1$ and $\Omega_{n\bar{n}}(x) = 0$.

Therefore, there exist (1,0)-forms ψ_1,\ldots,ψ_{n-1} in V such that $\Omega_{i\bar{i}} = -\psi_i \wedge \bar{\psi}_i$ for each $i \leq n-1$, and $\psi_1 \wedge \ldots \wedge \psi_{n-1} \neq 0$ in V.

Write
$$\psi_i = \sum_{j=1}^{n-1} a_{ij} \varphi_j + b_i \varphi_n$$
, and $A = (a_{ij})$. Then $\Omega_{nn}(x) = 0$ gives ${}^t A \overline{A}(x)$

= diag($\lambda_1(x), \ldots, \lambda_{n-1}(x)$) > 0, hence det $A(x) \neq 0$. Thus by shrinking V if necessary, we have $\psi_1 \wedge \ldots \wedge \psi_{n-1} \wedge \varphi_n \neq 0$ in V.

For any $y \in U$, Proposition 2 gives that $\Omega = -\psi' \wedge {}^t \overline{\psi}'$ for some coframe $\psi' = B \varphi$ near y. Then for $1 \le i \le n-1$, $\psi'_i = \alpha_i \psi_i$ near y for some $|\alpha_i| = 1$. By the first Bianchi identity: ${}^t \varphi \wedge \Theta = 0$, hence ${}^t B = B$.

Write:

$$B = \begin{pmatrix} H & b \\ {}^{t}b & c \end{pmatrix}.$$

Since

$$\operatorname{Ric}_{\mathbf{g}} = \operatorname{tr}(\Omega) = -{}^{t}\psi' \wedge \overline{\psi}' = -{}^{t}\varphi(B\overline{B})\overline{\varphi}$$

we have

$$H\bar{H} + b^t \bar{b} = \operatorname{diag}(\lambda_1, \dots, \lambda_{n-1})$$

 $H\bar{b} + b\bar{c} = 0$
 $^t b\bar{b} + c\bar{c} = \lambda_n$

therefore

$$\sum_{i=1}^{n-1} \lambda_i |b_i|^2 = \lambda_n \sum_{i=1}^{n-1} |b_i|^2.$$

This together with the fact that $\lambda_1 \ge ... \ge \lambda_{n-1} > \lambda_n \ge 0$ implies that near y:

$$b=0;$$
 $\Omega_{n\bar{n}}=-c\bar{c}\,\varphi_n\wedge\bar{\varphi}_n.$

Now if we write $\Omega_{n\bar{n}} = -{}^{t}\varphi E\bar{\varphi}$ in V, where

$$E = \begin{pmatrix} F & h \\ {}^{t}h & a \end{pmatrix} \geq 0.$$

Then h=0 in U, hence in V. Since $\operatorname{rank}(E) \leq 1$, while in $U, a=|c|^2>0$, therefore F=0 in U, hence in V. Namely we have

$$\Omega_{n\bar{n}} = -\psi_n \wedge \bar{\psi}_n; \quad \psi_n = \tau \, \varphi_n$$

in the whole neighbourhood V.

Use the denseness of U and $\{\psi_1, \dots, \psi_{n-1}, \varphi_n\}$ as the coframe, a little modification of the proofs of Propositions 2 and 3 gives the following:

Proposition 4 For any $x \in V_g$ and any frame e near x, there exist (1,0)-forms ψ_1, \ldots, ψ_n and 1-form λ in a neighbourhood of with $\overline{\lambda} = -\lambda$ such that

$$\Omega = -\psi \wedge {}^{t}\overline{\psi}; \quad d\psi = \theta \wedge \psi - \lambda \wedge 4; \quad d\lambda = -\operatorname{Ric}_{\epsilon}.$$