

Werk

Titel: 0 Introduction and statement of results.

Jahr: 1993

PURL: https://resolver.sub.uni-goettingen.de/purl?266833020_0212|log72

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

© Springer-Verlag 1993

On a borderline class of non-positively curved compact Kähler manifolds

S.-T. Yau 1 and F. Zheng 2, *

- ¹ Department of Mathematics, Harvard University, Cambridge, MA 02138, USA
- ² Department of Mathematics, Duke University, Durham, NC 27706, USA

Received November 26, 1991; in final form June 16, 1992

Contents

- 0 Introduction and statement of results
- 1 Decomposition of the holomorphic bisectional curvature
- 2 Curvature decomposition in the degenerate case
- 3 Proof of Theorem A
- 4 The conformal relations of holomorphic bisectional curvature
- 5 Proof of Theorem B
- 6 An example

0 Introduction and statement of results

Let M be a compact complex manifold. Denote by $\mathscr{F}(M)$ the space of all Kähler metrics on M with non-positive holomorphic bisectional curvature. Since the summation of two such metrics still has the same curvature property, $\mathscr{F}(M)$ forms a convex subset in $\mathscr{C}(M)$, the linear span of the space of all Kähler metrics on M.

Definition. M is said to be semi-rigidly non-positively curved, or simply semi-rigid, if $\mathcal{F}(M)$ is not empty, and its linear span in $\mathcal{C}(M)$ is finite dimensional.

It is not hard to see that for a finite unbranched cover $\pi: M \to N$, M is semi-rigid if and only if N is so; and for a product manifold $M = M_1 \times M_2$, M is semi-rigid if and only if both M_1 and M_2 are so.

Apparently, if there is a metric g on M which has strictly negative holomorphic bisectional curvature at a point $x \in M$, then any small perturbation of g near x is also in $\mathcal{F}(M)$, so M cannot be semi-rigid. In other words, semi-rigidity is likely to occur only when the cotangent bundle T_M^* is semi-ample but not ample in certain strong way, which could give lots of flat directions for the curvature of any g in $\mathcal{F}(M)$. This would tie the elements of $\mathcal{F}(M)$ together.

^{*} Research supported by NSF Grant DMS-91-05185 and Duke University