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1 Introduction

If pis a prime and G is a finite group a p-weight of G is a pair (P, y) where
P is a p-subgroup of G and y is an irreducible complex character of N;(P)/P
with p-defect zero.

In the fundamental paper [1], Alperin conjectured that the number of G-
conjugacy classed of p-weights and the number of irreducible p-Brauer characters
of the group G coincide. In contrast to the situation for Lie type groups, it
is not true that a natural correspondence between Brauer characters and weights
exists. It is the aim of this paper to show the following.

Theorem A. If G is a finite group of odd order, there exists a natural bijection
between the G-classes of p-weights of G and the irreducible p-Brauer characters
of G.

In fact, we can prove Theorem A “vertex to vertex”.

Theorem B. If P is a p-subgroup of a group of odd order G, there exists a natural
bijection between the irreducible Brauer characters of G with vertex P onto the
irreducible Brauer characters of Ng(P) with vertex P.

In the last few years, Isaacs n-theory has proven to be an important tool for
the Character Theory of the Solvable Groups. Even more, for n-separable groups
it gives a satisfactory and, we believe, almost complete character theoretic version
of the Modular Theory of the p-Solvable Groups. We will use this theory to
prove Theorems A and B, and, with the same amount of work, its respective
T-versions.

2 n-theory

In [2], Gajendragadkar introduced the 7n-special characters of a finite n-separa-
ble group G for an arbitrary set m of primes. Later, in [8], Isaacs found a
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536 G. Navarro

superset, B,(G), of the Gajendragadkar characters which provide a canonical
lift (and a proof of the existence) of the unique basis I,(G) of the complex
vector space of class functions defined on the n-elements of G satisfying

(D) If xelrr(G), then yx° is an nonnegative integer linear combination of 1,(G)
and

(FS) If p€eI,,(G) then ¢ = x° for some yelrr(G)

(where x° is the restriction to the n-elements of any class function y defined
on G). When n=p’, by the Fong-Swan theorem, I..(G)=IBr(G), the set of irreduc-
ible Brauer characters of G.

In general, it is hard to compute B, (G) for a n-separable group G. However,
if we assume some odd hypothesis, there are some useful tests available. For
instance, B,.(G), when p is not 2, is just the set of modularly irreducible p-rational
characters of G [6]. More recently, Isaacs proves the following,

(2.1) Theorem. Let G be a solvable group of odd order and suppose that n is
a set of primes. Let ¢ be a primitive |G|th root of unity and let ceGal(Q(g)/Q)
be such that o fixes all n-roots of unity and acts like complex conjugation on
m'-roots of unity. Then yelrr(G) lies B,(G) if and only if y°=y.

Proof. See (3.1) of [10].

The important fact that B,-characters behave well with respect to normal
subgroups [8] is heavily used to prove Clifford Theory for I, -characters in
[9] or, for instance, to show the n-version of a well known theorem of Huppert:
irreducible Brauer characters of p-solvable groups are induced from p’-degree
characters (this follows from (3.4) of [9]). We will use the notation given in
Sects. 2 and 3 of [9].

Finally, we need to introduce vertices for sets of primes. This is something
nontrivial which has been done in [12]. If pel,(G) and «® = ¢ for some ael,(J)
with 7n-degree then the m-complements of J (ie., the Hall n'-subgroups of J)
are uniquely determined up to G-conjugacy by ¢ and we will refer to them
as the set of vertices of ¢. Observe that if P is a vertex for ¢ then ¢ (1), =|G:P|,..

3 A correspondence of characters

By using the deep properties of the odd fully ramified sections, Isaacs showed
the existence of a natural bijection from the p’-degree irreducible characters
of a group of odd order G onto the p’-degree irreducible characters of the
normalizer of a Sylow p-subgroup (10.9 of [4]). This gave a proof of the McKay
conjecture for groups of odd order.

In fact, it is possible to replace p’ for any set of primes n in (10.9) of [4]
and still having a natural bijection *: Irt™(G)— Irr™(Ng(H)), where H is a =n-
complement of a group of odd order G, and Irr*(G)={xelrr(G) of n-degree}
(to be more precise it suffices only to assume that 2¢n but our interest here
is focused in groups of odd order).

Some of the properties of this correspondence have been recently studied
by Williams in [13]. We will use, with his kind permission, some of his results
in this section.

As we can see in [4], Isaacs correspondence is constructed by showing the
existence of a natural bijection between Irr™(G) onto Irr™(0™™ (G) Ng(H)). How-
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ever, to prove most results on the correspondence (as happened in [14]), one
immediately needs to relax the algorithm.

(3.1) Theorem (Williams) Let G be a group of odd order, H a m-complement
of G and let O™ (G) Ng(H)=J < G. If xelrr™(G), then there exists a unique irre-
ducible constituent o of y; with n-degree and odd multiplicity. Moreover the map
x — o is a bijection from Irr™(G) onto Irr™(J), and o* = x*.

Proof. See [13].

A trivial consequence of Theorem 3.1 is that y* is an irreducible constituent
of ¥nga) for x€Irr®(G). Another one is that if y is an automorphism of G fixing
H then (x*) =(x")*.

By using Theorem 2.1, we can show that * maps the m-special characters
of G onto Irr(Ng(H)/H). This provides another proof (in the odd case) of a
theorem of Isaacs counting the number of n-special characters of a group G
(see (1.16) of [15]). Since the =-special characters of Ng;(H) are exactly
Irr (Ng (H)/H) (by (2.2), (4.1) and (4.2) of [2]), it will be sufficient to show the
following,

(3.2) Lemma. Let G be a group of odd order and let H be a m-complement of
G. Let xelrr(G) and let oe€lrr™(J) be such that [y;,a] is odd, where
0™ (G) Ng(H)<=J =G. Then y is n-special if and only if o is n-special.

Proof. Since both y and « have n-degree, by (5.4) of [8]:, it suffices to show
that ye B, (G) if and only if ae B,(J). By Theorem 2.1, we must show that "=y
if and only if a®=a. Since [(x);,«°]=1[xs, «], the lemma follows from Theo-
rem 3.1.

(3.3) Corollary. Let G be a group of odd order and let H be a n-complement
of G. Let yelrr(G). Then x is m-special if and only if y* is n-special. Therefore
* maps the n-special characters of G onto Irr(Ng(H)/H).

Proof. Apply induction on |G| and (3.2).

(3.4) Corollary. Let G be a group of odd order and let H be a mn-complement
of G. Then the map ¢ —¢* from {pel, (G) of n-degree} onto {@pel, (Ng(H))
of mn-degree} given by @*=(x*)°, where x* = and y is n-special, is a well defined
bijection.

Proof. By Theorem 9.3 of [8], let yeB,(G) such that y°=¢. Then x has n-degree
and thus y is n-special. Hence, x* is n-special and therefore x**el, (Ng(H)) (be-
cause by (6.1) of [2], x* restricts irreducibly to a Hall n-subgroup of Ng(H)).
If y**=y* for y and ¥ n-special characters of G, since H is contained in
the kernel of both x* and y*, we have that y*(x)=y*(x,)=y*(x,)=y¢*(x) for
all xe N;(H). Thus y*=y* and then y=y. Obviously the map is surjective.

The following, which is very much connected with [11], is one of the main
results in [13].

(3.5) Theorem (Williams) Let G be a group of odd order, let H be a n-complement
of G and let H= J<G. Let pelrr™(J) with pCelrr(G). Then (u€)* = (u*)Ne",

Proof. See [13].

The core of this section consists in proving two more properties of the * corre-
spondence. If N is a normal subgroup of a group of odd order G with G/N
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a m-group and yelrr”(G) and felrr™(N), it is not difficult to see (and it follows
directly by applying the algorithm) that y lies over 0 if and only if y* lies
over 0*. A proof of this can be found in [13]. We need to relate normal subgroups
and correspondents without imposing conditions on the normal subgroups.

We believe the following must be more general, although we only have
found a proof of the result in the form going to be needed.

(3.6) Theorem. Let N be a normal subgroup of a group of odd order G and
let yelrr(G) and O€lrr(N) be n-specials. Let H be a fixed m-complement of G
and let y™elrr(Ng(H N N)) be such that (y™)*=y*. Then @ is an irreducible
constituent of yy if and only if 0* is an irreducible constituent of (Y™ )y ~n)-

Proof. We argue by double induction on |G| and |G: N|. By Corollary 3.3, observe
that ™ is n-special.

We certainly may assume that N <G and that N;(H N N)<G.
Step 1 G/N is cyclic of prime n'-order.

Suppose that N <M <]G. Assume first that y lies over 0. Let yelrr(M) be under
x and observe that, because y is m-special, by (4.1) of [2], 5 is n-special. By
induction, 7™ lies over 6* and y™ over n* Since N;(HNN)<G and
()N HAN) — M) by induction (and using the other direction), it follows that
x™ lies over n'™, and hence, over 6%*.

Suppose now that y™ lies over 8* and let Y elrr(N,(H nN)) over 8* and
under ™ (hence Y is m-special). By induction, y* lies under y*’. Now let
nelrr(M) with n*=y*. Since y =nV), again by induction, # lies over 8 and,
therefore y over 6.

By comments after Theorem 3.5, we may assume that G/N is cyclic of prime
n’-order.

Step 2 0,.(N)=1.

Write U =(@,.(N). Since 0 and y are n-specials, U = ker 0 nker y. Also observe
that Ng,y(H/U)= Ng(H)/U and Ng,,(H/U A N/U)=Ng(H ~ N)/U.

Write jelrr(G/U) and felrr(N/U) for the characters corresponding to
and 6, respectively. Notice that j*=y* (to convince yourself of this fact just
use Theorem 3.1, Lemma 3.2 and an inductive argument). Hence (jV/V))* = z*
=x* =(x™)* = (y™)* and therefore, 7'V = y™. Now, if |G/U| <|G|, by induction,
it follows that y lies over 0 if and only if ¥ lies over @ if and only if g™V
lies over 0* if and only if y™ lies over * if and only if y™ lies over 8*.

Step 3 If M is any normal subgroup of G contained in N, then x,, is homogeneous.

Since y has n-degree, all irreducible constituents of x,, have stabilizers with
n-index in G, and thus, it is possible to choose ¢ an irreducible H-invariant
constituent of y,,. Let yelrr(T|p) such that %=y, where T=1I(p). Observe
that n is m-special: in the notation of Theorem (2.1), we have that # and #°
are two characters over ¢ = ¢ such that n°= y =y =(1°)¢. By uniqueness, § =17°,
and since n has n-degree, by (5.4) of [8], # is n-special.

Suppose that T<G. By induction, it follows that ™ lies over ¢*. We claim
that Np.(H N M)=Iy_~um(@*). Since Ng(HNM) acts on M fixing HN M, it
follows that (¢*)* =(¢*)", for any ye N;(H n M), and since * is one to one, the
claim is proved. Therefore, (y™)NsI "M err(N;(H n M)). By Theorem 3.5, we
have that (("(M))Nc(HnM))*=,7*N¢;1H)=X*_.___(X(M))* and then, (ﬂ(M))NG(HﬁM)zx(M)'
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By the same argument, since #r.y is the Clifford correspondent of
s (NP ) VNH A0 = (3 D,

Now, since (yM)V~H~M) — (M and since Ng(H n M) < G (by Step 2), it suffices
to show that y lies over 0 if and only if ¥*’ lies over ™ and apply the inductive
hypothesis to the proper subgroup Ng(H N M) with the normal subgroup
Ny(H n M) and to the characters '™ and 0.

Since T< G, by induction (1""V)y_ m~ny =7 n)*

Now, Ny nv(HNM) is normal in Nr(HN M) and
Ny 1o ary(H O Np o ;f(H A M))=Np(H N N). Therefore, TN =(n*)Nr-nHM),
Since 7T M lies over (71 x)* =((n1-x)™)*, we may apply the inductive hypothe-
sis to the proper subgroup of G, Ny(Hn M) to conclude that n™ lies over
(1r~n)™, and therefore, (1™ ). s =074 M.

Now, since ¥ has n-degree and it is induced from #™, it follows that
|Ng(H N M):Ny.(H ~M)| is a z-number. Since, by step 1, G/N is a n’-group, we
have that N;(HM)=Ny(HnM)Ny(HAM). By Mackey, (x™)yianm
=((™MNeHM)y wronny = (117 ) M)V IO = ().

Now, if yy=0, certainly y™ lies over O™. Conversely, if x* lies over
OM (yp )M =6™ and thus yy =0 by uniqueness. This proves Step. 3.

Final Step

Let K=0""(G), L=K', J=LN;(H) and observe that 0" (N)cK<N, KJ=G
and (by an standard argument) that KnJ=L.

First we claim that if L Y= K for a normal subgroup Y of G, then all
complements of K/Y in G are G-conjugate. Let Y,=YN;(H). We know that
Y, is a complement of K/Y in G. If Y; is another such complement, we may
assume that H<Y;. Then, since KH is normal in G, KHnY;=HY<Y;, and
thus Y, = N;(HY)=N;(H) Y=Y,. By order considerations, Y; =Y,.

We choose now K/L, a chief factor of G and let J,=JL,=L, N;(H). Since
K <N, it follows by the previous step that y, and y, are homogeneous. Write
xx=e&, where Eelrr(K). By the going down Theorem 6.18 of [5], &, is irreduc-
ible or fully ramified over K/L,. Therefore, by Corollary 4.2 of [8], the previous
claim and Theorem 9.1 of [4], we can write

ij=ﬁ+2d1a

where f is an irreducible n-special character of J, (by two applications of Theo-
rem 2.1), 4, is a character of J, or zero, and *=y* (by Theorem 3.1).

If 0" (N)=1, by step 2, N would be a n-group. But in this case, HNN =1
and the theorem is true. Now let @™ (N)/Y be a chief factor of G and let
X,=YX, where X=0""(N) Ng(H N). Since NNz(HnN)=G, it follows that
O™ (N) X =G. Also, O*%(N)n X =@ (N)n Ny(HN) 0" (N)Y =0 (N) and
therefore, X, is a proper subgroup of G.

We claim that all complements of ¢@"* (N)/Y in G are G-conjugate to X .
Since Nn X, is not normal in G (because|N: NnX | is a n-number and N
=(NnX,) 0™ (N)) and X, is maximal in G, it follows that X =N;(NnX,).
Since complements of @™™(N)/Y in N are conjugate in N by the previous claim,
this claim follows.
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Now, by the same argument as before, we may write
XX. =T+ 2 A 2y

where 1 is 7m-special (by two applications of Theorem 2.1) and 4, is a character
of X, or zero. Then yy~x,=ty~x.+24,5~x, and by Theorem 3.1,

(tnax)*=0n*.

Now let y,elrr(X,) and B,elrr(X,nJ,) be the n-specials characters with

r=x*=4.
Since 0™ (X,) Nx.(H) =X, J,, we can write

T%.n2.=T,+24,+B,,

where all irreducible constituents of B; do not have n-degree, t, is n-special
and t*=1*.
Also, since 0" (NN J,Y Ny;.(HNN)SNnX,nJ,, we can write

Bnnxens.=e+2A,+B,,

where all irreducible constituents of B, do not have n-degree, ¢ is m-special
and &*=(By,)*. Since J, <G, by induction, (BN )y gom=By~s)*

Now, observe that (8,)N"*-"7) s a character of Ny_,,, (HnN)=N, (HNN)
(because X, contains Ng(H N N)). Also, BN’ is a character of N, (H N).
Now, we have that (B )N XonJd= BNNI2) (because their * is the same, y*), and
therefore it follows that (8,)""*-"7-) lies over (By.,)*=¢*. By induction, §,
lies over € and hence B,y ~x, . =¢&

We have that yy.,  x,=(Ivorax.=Bnes.nx.¥24inns.nx.=E+24,
+B;+24,nny.~x,- Therefore [ynx~; x.,e]=1mod2. Also, yyns.~x.
=tNrsnX. F2doNnsnx,=ToNnr.ax. Y2 Ainas.nx. ¥ Binoas.ax, ¥ 2428 A g nx. -

Since ¢ is X,nJ,-invariant, X ,nJ,/X_ nJ,N N is cyclic and all the irreduc-
ible constituents of B, have not n-degree, we have [B;y.,. ~x., £]=0. Then
1—[XNn.I.nX ] 8] [toNhJ.hX ] 8] mod 2 and thUS ToNnI.AX. =&

Now, 7, and B, are two n-special extensions of ¢. Since X, nJ,/NnJ,nX,
is a @'-group, by (6.1) of [2], 7,=f,. Then t*=1*=pf*=y* and thus t=y,.
Also, (tX-"Ny* — % — 7% — g* x* =(x™)* and hence t*-"M =™, By the induc-
tive hypothesis, (t'X- "”’)NN(Hn m=0x, ~N)*

Now yy=0 if and only if (‘Cx ~n)¥=0* if and only if (t*-"M)y 4y y, =0*
if and only if (X™)y @ ~m=

When the group of odd order G happens to have a normal Hall n-subgroup,
say O, then the normalizer of a n-complement H of G is H x C,(H) and, of
course, the Isaacs correspondent y* of some yelrr™(G) is very much related
to the Glauberman-Isaacs correspondent (y,)*elrry(@). It is an easy exercise
to check that y* =1 x (x_)*.

To end this section we need the following.

(3.7) Theorem. Let N be a normal n-subgroup of G, where G is a group of odd
order. Let yelrr™(G) and let Oelrry(N) be under y, where H is a fixed n-comple-
ment of G. Then the Glauberman-Isaacs correspondent 6*€lrr(Cgy(N)) lies under
the Isaacs correspondent x*elrr(Ng(H)).
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Proof. First we claim that if M is any normal subgroup of G and neIrr™ (M Ng (H))
is such that n* = x*, then # is an irreducible constituent of yyn -

We prove the claim by induction on |G|. Certainly, we may assume that
MN;(H)<G. Let G=G/M, K=0""(G) and let L=K'. Since Nz(H)<G, then
LN;(H)< G, and thus LN;(H) < G. Now, 0™ (G) Ng(H)< LNg(H)< G and there-
fore by Theorem 3.1, there exists a n-degree irreducible constituent Y of x; . )
such that y*=y* By induction, n is a constituent of Yy, and therefore
of Xmne)-

Now that the claim is proved, let nelrr™(NNg(H)) be such that n*=y*.
Because the stabilizers of the irreducible constituents of 5y have n-index, we
may choose y an irreducible H-invariant constituent of #y. By the claim, 0
and y are two H-invariant irreducible constituents of y, and then, by (2.10)
of [7], for instance, 6 and y are Ng(H)-conjugate. Therefore, 6 is an irreducible
constituent of yy and by induction, we may assume that NN;(H)=G. Now
NH is a normal subgroup of G and we choose éelrr®(NH) over 6 and under
z. Since by comments after Theorem 3.5, £* lies under y*, by induction, we
may assume that G has a normal Hall n-subgroup. In this case, y*=1, x 6*
which certainly lies over 6*.

4 Main results

Before entering into the details of the proofs of Theorems A and B, let us
outline how the natural correspondence (in the classical case m=p’) is con-
structed.

If P is a p-subgroup of a finite group G let us denote by IBr(G|P) the
set of all irreducible Brauer characters of G with vertex P We have shown
in Sect. 3, that if G is a group of odd order and P is a Sylow p-subgroup
of G, then there exists a natural correspondence *: IBr(G|P)— IBr(Ng(P)|P).
Now we want to remove the hypothesis of P being a Sylow p-subgroup of
G. So let us assume that P is any p-subgroup of G and let ¢elIBr(G|P). By
a well known theorem of Huppert [3], we may write ¢ =7%, where yeIBr(W)
and y has p’-degree. Since the Sylow p-subgroups of W are vertices for ¢, we
may assume that PeSyl,(W) and therefore we have defined some Brauer charac-
ter y*eIBr(Ny (P)).

We will show that y*¥e®®) e [Br(N;(P)), that y*¥<®) only depends on ¢ and
that the map ¢ —y*Ve® is a well defined bijection from IBr(G|P) onto
IBr(Ng(P)|P).

The following theorem is a key result for proving the existence of vertices
for sets of primes as well as for proving our main results.

(4.1) Theorem. Let @€l (G), let N be a normal subgroup of G where G is n-
separable and assume that ¢ =y° for some yel . (W). If all irreducible constituents
of @y have n-degree then |W: Wn N| is a n-number.

Proof. See [12].

If Q is a n'-subgroup of a n-separable group G, we denote by I, (G|Q) the
elements of I,(G) with vertex Q. Next one is one of the main resuits in [12].

(4.2) Theorem. If G is solvable with nilpotent m-complement, then |I.(G|Q)|
=|I,(Ng(Q)|Q)I-
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Proof. See [12].

Since (P, y) is a p-weight of G if and only if peIBr(Ng(P)|P), Theorems A
and B will be proved once we show the following.

(4.3) Theorem. Suppose that G is a group of odd order and let el (G| Q).

(@) If a®=q, where acl (W) has n-degree and Q is a m-complement of W,
then a* el (Ny(Q)) induces irreducibly to Ng(Q).

(b) The map I,(G|Q)— I,(Ng(Q)|Q) given by ¢ —a*Ns'Q is a well defined
natural injection.

(c) If a n-complement of G is nilpotent, then above map is a bijection.

Proof. First of all, if el (G|Q), let us show that there exists some aecl, (W)
as in (a). Certainly, if ¢ has n-degree, Q is a n-complement of G and we may
choose a=¢. If ¢ has not n-degree, by repeated applications of (3.4) of [9]
and the Clifford Correspondence ((3.2) of [9]), we may write ¢ =0a¢, for some
o€l (W) with «(1) a n-number. If @, is a n-complement of W Q, is a vertex
for ¢ and thus Q, and Q are G-conjugate. By conjugating by some appropriate
element, we may assume that Q is a nz-complement of W as wanted.

(a) We argue by induction on |G|. Suppose first ¢ has n-degree. Let uelrr(W)
be m-special such that u°=«. Then, since (u%)’=(u")%=a%=¢, u®elrr(G) and
by an application of Theorem 2.1, u€ is n-special. Then, applying Corollary 3.4
and Theorem 3.5, a*No(@ = (y*No@)* = * is irreducible.

Suppose now that ¢ has not n-degree, and let N <]G be such that all irreduc-
ible constituents of ¢y have n-degree and are not G-invariant. Then, by Theo-
rem 4.1, |WN:W| is a r-number and thus Q is a n-complement of W N. Consider
a"Nel (WN), and notice that «"~ has n-degree. Thus, because the stabilizers
of the irreducible constituents of («**)y have m-index we may choose a Q-
invariant irreducible constituent 0eI,(N) of (x"")y.

By (3.2) of [9], let Bel,(J|0) be such that f¥*N=u"", where J=TnWN
and T=Ig4(6). Then B has n-degree, Q is a m-complement of J and B%=¢.
Therefore, BTel,(T|Q) and by induction p*el (N;(Q)) is such that
BN @e (Np(Q)). Also, by the first paragraph of the proof of (a), (a*)Vw~@
=(aWN)* and (ﬁ’*)NW"‘Q)=(aWN)*. Therefore, (a*)NG(Q)=((aWN)*)NG(Q)=(ﬁ*)NG(Q).

Now let velrr(J) be n-special with v* = f and write vy =ew, where welrr(N)
is m-special and w*=60. Since the B, -lifting is unique it follows that I;(w)=T
Let v™elrr(N;(Q n N)) be such that (vV)*=v* By Theorem 3.6, v lies over
w*. Since both characters are n-specials we may considered them as
y¥elrr(N;(Q N N)/Q A N) and w*elrr(Ny(Q n N)/Q n N). Now w* is Q-invariant
(because w is), Ny(Q@N N)/QN N) is a normal n-subgroup of N,(Q N)/QnN
and by Theorem 3.7, o**elrr(Ny(Q)/Q n N) (the Glauberman-Isaacs correspon-
dent of w*) lies over (V™)* =v*elrr(N,(Q)/Q N N). Since (w*)** =(w**)* for
x€Ng(Q), we have that Np(Q)=1Iy,)(@**)= Iy, (@**)). Now (v¥)"=p* lies
over (w**)° and so does B*¥NT@el (N;(Q)|(w**)°). Then, by (3.2) of [9], a*Ne@
=p*Ne@e] (N;(Q)), as wanted.

(b) In the notation of (a), since «* has n-degree and Q is a m-complement
of Ny(Q), obviously, (x*)Ne@ eI (N(Q)| Q).

Suppose now that a=¢=p% where acl,(W|Q) and Bel,(V|Q) have n-
degree. We show that (a*)Ve@ = (8*)N¢@ by induction on |G].

Suppose first that ¢ has n-degree. Then Q is a mn-complement of G and
if o, is the m-special lifting of «, by Theorem 3.3, @* = (a%)* = (x&)** = ()N ?)*
=a*Ne(@ and by the same reason @* = f*Nc(@),
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So we may assume that ¢ has not n-degree. In this case, by (3.4) of [9],
let N be a normal subgroup of G such that the irreducible constituents of
¢y have n-degree and are not G-invariant. By Theorem 4.1, |W: Wn N| and
[V: VA N| are n-numbers. Let 6 and 5 be Q-invariant irreducible constituents
of (@*¥)y and (B"™)y, respectively and let el (TnWN) and tel,(InVN) be
such that 6"V =a"" and "= g"¥ where T=1;(0) and I =1,(n).

Since «"" and B"" are irreducible constituents of ¢y and ¢y, respectively,
it follows that 6=#n® for some geG, and thus, If=T and (t)*=67 (because
both are the Clifford correspondents of ¢ over 6). Now, since tel (InVN|Q),
then el (I~ VN)|Q?) and thus 6T=(t8)T el (T|Q®) 1, T|Q). Since vertices
in T are T-conjugate, we have that Q¥=Q' for some te T Then gt~ 'eN;(Q),
n¥ '=0'""'=6""'=0 and hence  and 0 are N;(Q)-conjugate. Then, certainly
we may assume that 6=n and 67 =1. Since T<G, by induction, we have that
(T*)NT(Q) = (5*)N1-(Q)' Therefore, (a*)Na(Q) = (5*)NG(Q) — (T*)NG(Q) — (ﬂ*)NG(Q).

Finally, suppose that (a*)V¢(@ = (B*)Ne(@ where acl, (W|Q) and Bel, (V|0Q)
have n-degree and «% and B are irreducible. We prove that «® = by induction
on |G|.

If % has m-degree, then Q is a m-complement of G, ¢ has n-degree and
since (a%)* = (a*)Ve@ = (B*)Na(@ = (BG)* it follows by Corollary 3.4, that = ¢,
Again, we may assume that «® has not n-degree and we may choose N <G
such that the irreducible constituents of («%)y have n-degree and are not G-
invariant.

Since by (4.1), [WN:W]| is a =-number, we certainly may choose €€l (N)
a Q-invariant irreducible constituent of («""),. Although at this moment we
do not know whether |V N:V| is a n-number or not, still it is possible to choose
a Q-invariant irreducible constituent n of (8"")y: since B*Nel (VN|Q), if ¢ is
an irreducible constituent of (B*")y, then B"¥=¢EYM for some
¢el (VNN Iyy(e)|e). Then, if P is a vertex for ¢, then P is a vertex for g¥V
and thus P=Q* for some xe VN. Therefore n=¢*""! is a Q-invariant irreducible
constituent of ("")y. Let us denote by 6** the character w*** of part (a),
and recall that I NG(Q{‘QG**):NT(Q), where T=14;(0). Now let 6l (Tn WN|0)
be such that "N=a"", let I=1;(n) and let tel,(INnV N|n) be such that ¥V
= BN, Recall that 6** and #** lie under é* and t*, respectively. Now since
t*Ne(@ = 5*Nc@  we have that 6** and n** are N;(Q)-conjugate. By replacing
p by some N;(Q)-conjugate, we may assume that ** =5**. Then 0=y, because
both x are one to one maps. Now, I =T, N;(Q)= Np(Q) =1y (0**) and since
(¥ TN = ((§*¥N T @)Nc@ by uniqueness in the Clifford Correspondence,
(t¥NT7@ =(§*)¥1(D), By induction, T =17, and then o =§%=1%=f°.

(c) Apply (b) and Theorem 4.2.
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