

Werk

Titel: Weights, vertices and a correspondence of characters n groups of odd order.

Autor: Navarro, Gabriel

Jahr: 1993

PURL: https://resolver.sub.uni-goettingen.de/purl?266833020_0212|log67

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Weights, vertices and a correspondence of characters in groups of odd order

Gabriel Navarro

Department d'Algebra, Facultat de Matematiques, University of Valencia, Burjassot, E-46100 Valencia, Spain

Received December 6, 1991; in final form June 5, 1992

1 Introduction

If p is a prime and G is a finite group a p-weight of G is a pair (P, γ) where P is a p-subgroup of G and γ is an irreducible complex character of $N_G(P)/P$ with p-defect zero.

In the fundamental paper [1], Alperin conjectured that the number of G-conjugacy classed of p-weights and the number of irreducible p-Brauer characters of the group G coincide. In contrast to the situation for Lie type groups, it is not true that a natural correspondence between Brauer characters and weights exists. It is the aim of this paper to show the following.

Theorem A. If G is a finite group of odd order, there exists a natural bijection between the G-classes of g-weights of g and the irreducible g-Brauer characters of g.

In fact, we can prove Theorem A "vertex to vertex".

Theorem B. If P is a p-subgroup of a group of odd order G, there exists a natural bijection between the irreducible Brauer characters of G with vertex P onto the irreducible Brauer characters of $N_G(P)$ with vertex P.

In the last few years, Isaacs π -theory has proven to be an important tool for the Character Theory of the Solvable Groups. Even more, for π -separable groups it gives a satisfactory and, we believe, almost complete character theoretic version of the Modular Theory of the *p*-Solvable Groups. We will use this theory to prove Theorems A and B, and, with the same amount of work, its respective π -versions.

2 π -theory

In [2], Gajendragadkar introduced the π -special characters of a finite π -separable group G for an arbitrary set π of primes. Later, in [8], Isaacs found a

Research partially supported by DGICYT. PB 90-0414-C03-01

superset, $B_{\pi}(G)$, of the Gajendragadkar characters which provide a canonical lift (and a proof of the existence) of the unique basis $I_{\pi}(G)$ of the complex vector space of class functions defined on the π -elements of G satisfying

(D) If $\chi \in Irr(G)$, then χ° is an nonnegative integer linear combination of $I_{\pi}(G)$ and

(FS) If $\varphi \in I_{\pi}(G)$ then $\varphi = \chi^{\circ}$ for some $\chi \in Irr(G)$

(where χ° is the restriction to the π -elements of any class function χ defined on G). When $\pi = p'$, by the Fong-Swan theorem, $I_{\pi}(G) = IBr(G)$, the set of irreducible Brauer characters of G.

In general, it is hard to compute $B_{\pi}(G)$ for a π -separable group G. However, if we assume some odd hypothesis, there are some useful tests available. For instance, $B_{p'}(G)$, when p is not 2, is just the set of modularly irreducible p-rational characters of G [6]. More recently, Isaacs proves the following.

(2.1) Theorem. Let G be a solvable group of odd order and suppose that π is a set of primes. Let ε be a primitive |G|th root of unity and let $\sigma \in Gal(Q(\varepsilon)/Q)$ be such that σ fixes all π -roots of unity and acts like complex conjugation on π' -roots of unity. Then $\chi \in Irr(G)$ lies $B_{\pi}(G)$ if and only if $\chi^{\sigma} = \chi$.

Proof. See (3.1) of [10].

The important fact that B_{π} -characters behave well with respect to normal subgroups [8] is heavily used to prove Clifford Theory for I_{π} -characters in [9] or, for instance, to show the π -version of a well known theorem of Huppert: irreducible Brauer characters of p-solvable groups are induced from p'-degree characters (this follows from (3.4) of [9]). We will use the notation given in Sects. 2 and 3 of [9].

Finally, we need to introduce vertices for sets of primes. This is something nontrivial which has been done in [12]. If $\varphi \in I_{\pi}(G)$ and $\alpha^G = \varphi$ for some $\alpha \in I_{\pi}(J)$ with π -degree then the π -complements of J (i.e., the Hall π' -subgroups of J) are uniquely determined up to G-conjugacy by φ and we will refer to them as the set of vertices of φ . Observe that if P is a vertex for φ then $\varphi(1)_{\pi'} = |G:P|_{\pi'}$.

3 A correspondence of characters

By using the deep properties of the odd fully ramified sections, Isaacs showed the existence of a natural bijection from the p'-degree irreducible characters of a group of odd order G onto the p'-degree irreducible characters of the normalizer of a Sylow p-subgroup (10.9 of [4]). This gave a proof of the McKay conjecture for groups of odd order.

In fact, it is possible to replace p' for any set of primes π in (10.9) of [4] and still having a natural bijection $*: Irr^{\pi}(G) \to Irr^{\pi}(N_G(H))$, where H is a π -complement of a group of odd order G, and $Irr^{\pi}(G) = \{\chi \in Irr(G) \text{ of } \pi\text{-degree}\}$ (to be more precise it suffices only to assume that $2 \notin \pi$ but our interest here is focused in groups of odd order).

Some of the properties of this correspondence have been recently studied by Williams in [13]. We will use, with his kind permission, some of his results in this section.

As we can see in [4], Isaacs correspondence is constructed by showing the existence of a natural bijection between $Irr^{\pi}(G)$ onto $Irr^{\pi}(\mathcal{O}^{\pi\pi'}(G)'N_G(H))$. How-

ever, to prove most results on the correspondence (as happened in [14]), one immediately needs to relax the algorithm.

(3.1) **Theorem** (Williams) Let G be a group of odd order, H a π -complement of G and let $\mathcal{O}^{\pi\pi'}(G)'N_G(H)\subseteq J\subseteq G$. If $\chi\in\operatorname{Irr}^\pi(G)$, then there exists a unique irreducible constituent α of χ_J with π -degree and odd multiplicity. Moreover the map $\chi\to\alpha$ is a bijection from $\operatorname{Irr}^\pi(G)$ onto $\operatorname{Irr}^\pi(J)$, and $\alpha^*=\chi^*$.

Proof. See [13].

A trivial consequence of Theorem 3.1 is that χ^* is an irreducible constituent of $\chi_{N_G(H)}$ for $\chi \in \operatorname{Irr}^{\pi}(G)$. Another one is that if y is an automorphism of G fixing H then $(\chi^*)^y = (\chi^y)^*$.

By using Theorem 2.1, we can show that * maps the π -special characters of G onto $\operatorname{Irr}(N_G(H)/H)$. This provides another proof (in the odd case) of a theorem of Isaacs counting the number of π -special characters of a group G (see (1.16) of [15]). Since the π -special characters of $N_G(H)$ are exactly $\operatorname{Irr}(N_G(H)/H)$ (by (2.2), (4.1) and (4.2) of [2]), it will be sufficient to show the following.

(3.2) Lemma. Let G be a group of odd order and let H be a π -complement of G. Let $\chi \in \operatorname{Irr}(G)$ and let $\alpha \in \operatorname{Irr}^{\pi}(J)$ be such that $[\chi_J, \alpha]$ is odd, where $\mathcal{O}^{\pi\pi'}(G)' N_G(H) \subseteq J \subseteq G$. Then χ is π -special if and only if α is π -special.

Proof. Since both χ and α have π -degree, by (5.4) of [8];, it suffices to show that $\chi \in B_{\pi}(G)$ if and only if $\alpha \in B_{\pi}(J)$. By Theorem 2.1, we must show that $\chi^{\sigma} = \chi$ if and only if $\alpha^{\sigma} = \alpha$. Since $[(\chi^{\sigma})_J, \alpha^{\sigma}] = [\chi_J, \alpha]$, the lemma follows from Theorem 3.1.

(3.3) Corollary. Let G be a group of odd order and let H be a π -complement of G. Let $\chi \in Irr(G)$. Then χ is π -special if and only if χ^* is π -special. Therefore * maps the π -special characters of G onto $Irr(N_G(H)/H)$.

Proof. Apply induction on |G| and (3.2).

(3.4) Corollary. Let G be a group of odd order and let H be a π -complement of G. Then the map $\phi \to \phi^*$ from $\{\phi \in I_{\pi}(G) \text{ of } \pi\text{-degree}\}$ onto $\{\phi \in I_{\pi}(N_G(H)) \text{ of } \pi\text{-degree}\}$ given by $\phi^* = (\chi^*)^{\circ}$, where $\chi^{\circ} = \phi$ and χ is π -special, is a well defined bijection.

Proof. By Theorem 9.3 of [8], let $\chi \in B_{\pi}(G)$ such that $\chi^{\circ} = \varphi$. Then χ has π -degree and thus χ is π -special. Hence, χ^{*} is π -special and therefore $\chi^{*\circ} \in I_{\pi}(N_{G}(H))$ (because by (6.1) of [2], χ^{*} restricts irreducibly to a Hall π -subgroup of $N_{G}(H)$). If $\chi^{*\circ} = \psi^{*\circ}$ for χ and ψ π -special characters of G, since H is contained in the kernel of both χ^{*} and ψ^{*} , we have that $\chi^{*}(x) = \chi^{*}(x_{\pi}) = \psi^{*}(x_{\pi}) = \psi^{*}(x)$ for all $x \in N_{G}(H)$. Thus $\chi^{*} = \psi^{*}$ and then $\chi = \psi$. Obviously the map is surjective.

The following, which is very much connected with [11], is one of the main results in [13].

(3.5) Theorem (Williams) Let G be a group of odd order, let H be a π -complement of G and let $H \subseteq J \subseteq G$. Let $\mu \in \operatorname{Irr}^{\pi}(J)$ with $\mu^{G} \in \operatorname{Irr}(G)$. Then $(\mu^{G})^{*} = (\mu^{*})^{N_{G}(H)}$.

Proof. See [13].

The core of this section consists in proving two more properties of the * correspondence. If N is a normal subgroup of a group of odd order G with G/N

a π -group and $\chi \in Irr^{\pi}(G)$ and $\theta \in Irr^{\pi}(N)$, it is not difficult to see (and it follows directly by applying the algorithm) that χ lies over θ if and only if χ^* lies over θ^* . A proof of this can be found in [13]. We need to relate normal subgroups and correspondents without imposing conditions on the normal subgroups.

We believe the following must be more general, although we only have found a proof of the result in the form going to be needed.

(3.6) Theorem. Let N be a normal subgroup of a group of odd order G and let $\chi \in Irr(G)$ and $\theta \in Irr(N)$ be π -specials. Let H be a fixed π -complement of G and let $\chi^{(N)} \in Irr(N_G(H \cap N))$ be such that $(\chi^{(N)})^* = \chi^*$. Then θ is an irreducible constituent of χ_N if and only if θ^* is an irreducible constituent of $(\chi^{(N)})_{N_N(H \cap N)}$.

Proof. We argue by double induction on |G| and |G:N|. By Corollary 3.3, observe that $\chi^{(N)}$ is π -special.

We certainly may assume that N < G and that $N_G(H \cap N) < G$.

Step 1 G/N is cyclic of prime π' -order.

Suppose that $N < M \le G$. Assume first that χ lies over θ . Let $\eta \in Irr(M)$ be under χ and observe that, because χ is π -special, by (4.1) of [2], η is π -special. By induction, $\eta^{(N)}$ lies over θ^* , and $\chi^{(M)}$ over η^* . Since $N_G(H \cap N) < G$ and $(\chi^{(N)})^{(N_M(H \cap N))} = \chi^{(M)}$, by induction (and using the other direction), it follows that $\chi^{(N)}$ lies over $\eta^{(N)}$, and hence, over θ^* .

Suppose now that $\chi^{(N)}$ lies over θ^* and let $\psi \in Irr(N_M(H \cap N))$ over θ^* and under $\chi^{(N)}$ (hence $\chi^{(N)}$ is a special). By induction $\chi^{(N)}$ lies over $\chi^{(N)}$ is $\chi^{(N)}$ lies over $\chi^{(N)}$ lies ove

Suppose now that $\chi^{(N)}$ lies over θ^* and let $\psi \in \operatorname{Irr}(N_M(H \cap N))$ over θ^* and under $\chi^{(N)}$ (hence ψ is π -special). By induction, ψ^* lies under $\chi^{(M)}$. Now let $\eta \in \operatorname{Irr}(M)$ with $\eta^* = \psi^*$. Since $\psi = \eta^{(N)}$, again by induction, η lies over θ and, therefore χ over θ .

By comments after Theorem 3.5, we may assume that G/N is cyclic of prime π' -order.

Step 2 $\mathcal{O}_{\pi'}(N) = 1$.

Write $U = \mathcal{O}_{\pi'}(N)$. Since θ and χ are π -specials, $U \subseteq \ker \theta \cap \ker \chi$. Also observe that $N_{G/U}(H/U) = N_G(H)/U$ and $N_{G/U}(H/U \cap N/U) = N_G(H \cap N)/U$.

Write $\bar{\chi} \in \operatorname{Irr}(G/U)$ and $\bar{\theta} \in \operatorname{Irr}(N/U)$ for the characters corresponding to χ and θ , respectively. Notice that $\bar{\chi}^* = \bar{\chi}^*$ (to convince yourself of this fact just use Theorem 3.1, Lemma 3.2 and an inductive argument). Hence $(\bar{\chi}^{(N/U)})^* = \bar{\chi}^* = \bar{\chi}^* = (\bar{\chi}^{(N)})^* = (\bar{\chi}^{(N)})^*$ and therefore, $\bar{\chi}^{(N/U)} = \bar{\chi}^{(N)}$. Now, if |G/U| < |G|, by induction, it follows that χ lies over θ if and only if $\bar{\chi}$ lies over $\bar{\theta}^*$ if and only if $\bar{\chi}^{(N/U)}$ lies over $\bar{\theta}^*$ if and only if $\bar{\chi}^{(N)}$ lies over θ^* .

Step 3 If M is any normal subgroup of G contained in N, then χ_M is homogeneous.

Since χ has π -degree, all irreducible constituents of χ_M have stabilizers with π -index in G, and thus, it is possible to choose φ an irreducible H-invariant constituent of χ_M . Let $\eta \in \operatorname{Irr}(T|\varphi)$ such that $\eta^G = \chi$, where $T = I_G(\varphi)$. Observe that η is π -special: in the notation of Theorem (2.1), we have that η and η^σ are two characters over $\varphi = \varphi^\sigma$ such that $\eta^G = \chi = \chi^\sigma = (\eta^\sigma)^G$. By uniqueness, $\eta = \eta^\sigma$, and since η has π -degree, by (5.4) of [8], η is π -special.

Suppose that T < G. By induction, it follows that $\eta^{(M)}$ lies over φ^* . We claim that $N_T(H \cap M) = I_{N_G(H \cap M)}(\varphi^*)$. Since $N_G(H \cap M)$ acts on M fixing $H \cap M$, it follows that $(\varphi^y)^* = (\varphi^*)^y$, for any $y \in N_G(H \cap M)$, and since * is one to one, the claim is proved. Therefore, $(\eta^{(M)})^{N_G(H \cap M)} \in Irr(N_G(H \cap M))$. By Theorem 3.5, we have that $((\eta^{(M)})^{N_G(H \cap M)})^* = \eta^{*N_G(H)} = \chi^* = (\chi^{(M)})^*$ and then, $(\eta^{(M)})^{N_G(H \cap M)} = \chi^{(M)}$.

By the same argument, since $\eta_{T \cap N}$ is the Clifford correspondent of χ_N , $(\eta_{T \cap N}^{(M)})^{N_N(H \cap M)} = (\chi_N)^{(M)}$.

Now, since $(\chi^{(M)})^{N_N(H \cap M)} = \chi^{(N)}$ and since $N_G(H \cap M) < G$ (by Step 2), it suffices to show that χ lies over θ if and only if $\chi^{(M)}$ lies over $\theta^{(M)}$ and apply the inductive hypothesis to the proper subgroup $N_G(H \cap M)$ with the normal subgroup N_N($H \cap M$) and to the characters $\chi^{(M)}$ and $\theta^{(M)}$. Since T < G, by induction $(\eta^{(T \cap N)})_{N_{T \cap N}(H \cap N)} = (\eta_{T \cap N})^*$. Now, $N_{T \cap N}(H \cap M)$ is normal in

 $N_T(H \cap M)$ $N_{T \cap N}(H \cap M)$ $N_{N_T(H \cap M)}(H \cap N_{T \cap N}(H \cap M)) = N_T(H \cap N)$. Therefore, $\eta^{(T \cap N)} = (\eta^{(M)})^{N_{T \cap N}(H \cap M)}$. Since $\eta^{(T \cap N)}$ lies over $(\eta_{T \cap N})^* = ((\eta_{T \cap N})^{(M)})^*$, we may apply the inductive hypothesis to the proper subgroup of G, $N_T(H \cap M)$ to conclude that $\eta^{(M)}$ lies over $(\eta_{T \cap N})^{(M)}$, and therefore, $(\eta^{(M)})_{N_{T \cap N}(H \cap M)} = (\eta_{T \cap N})^{(M)}$. Now, since $\chi^{(M)}$ has π -degree and it is induced from $\eta^{(M)}$, it follows that

 $|N_G(H \cap M): N_T(H \cap M)|$ is a π -number. Since, by step 1, G/N is a π' -group, we have that $N_G(H \cap M) = N_T(H \cap M) N_N(H \cap M)$. By Mackey, $(\chi^{(M)})_{N_N(H \cap M)} = ((\eta^{(M)})^{N_G(H \cap M)})_{N_N(H \cap M)} = ((\eta^{(M)})^{N_N(H \cap M)})_{N_N(H \cap M)} = ((\eta^{(M)})^{N_N(H \cap M)})_{N_N(H \cap M)} = (\chi^{(M)})_{N_N(H \cap M)} = (\chi^{(M)})_{N_N($

Final Step

Let $K = \mathcal{O}^{\pi\pi'}(G)$, L = K', $J = LN_G(H)$ and observe that $\mathcal{O}^{\pi\pi'}(N) \subseteq K \subseteq N$, KJ = Gand (by an standard argument) that $K \cap J = L$.

First we claim that if $L \subseteq Y \subseteq K$ for a normal subgroup Y of G, then all complements of K/Y in G are G-conjugate. Let $Y_{\rho} = YN_{G}(H)$. We know that Y_a is a complement of K/Y in G. If Y_1 is another such complement, we may assume that $H \subseteq Y_1$. Then, since KH is normal in $G, KH \cap Y_1 = HY \triangleleft Y_1$, and thus $Y_1 \subseteq N_G(HY) = N_G(H) Y = Y_o$. By order considerations, $Y_1 = Y_o$.

We choose now K/L_o a chief factor of G and let $J_o = JL_o = L_o N_G(H)$. Since $K \subseteq N$, it follows by the previous step that χ_K and χ_{L_a} are homogeneous. Write $\chi_K = e \, \xi$, where $\xi \in Irr(K)$. By the going down Theorem 6.18 of [5], ξ_{L_e} is irreducible or fully ramified over K/L_o . Therefore, by Corollary 4.2 of [8], the previous claim and Theorem 9.1 of [4], we can write

$$\chi_{J_{\theta}} = \beta + 2\Delta_1,$$

where β is an irreducible π -special character of J_a (by two applications of Theorem 2.1), Δ_1 is a character of J_o or zero, and $\beta^* = \chi^*$ (by Theorem 3.1).

If $\mathcal{O}^{\pi\pi'}(N)=1$, by step 2, N would be a π -group. But in this case, $H \cap N=1$ and the theorem is true. Now let $\mathcal{O}^{\pi\pi'}(N)/Y$ be a chief factor of G and let $X_o = YX$, where $X = \mathcal{O}^{\pi\pi'}(N)'N_G(H \cap N)$. Since $NN_G(H \cap N) = G$, it follows that $\mathcal{O}^{\pi\pi'}(N) X = G$. Also, $\mathcal{O}^{\pi\pi'}(N) \cap X = \mathcal{O}^{\pi\pi'}(N) \cap N_N(H \cap N) \mathcal{O}^{\pi\pi'}(N)' = \mathcal{O}^{\pi\pi'}(N)'$ and therefore, X_a is a proper subgroup of G.

We claim that all complements of $\mathcal{O}^{\pi\pi'}(N)/Y$ in G are G-conjugate to $X_{\mathfrak{o}}$. Since $N \cap X_o$ is not normal in G (because $|N:N \cap X_o|$ is a π -number and N $=(N\cap X_o)\mathcal{O}^{\pi\pi'}(N)$ and X_o is maximal in G, it follows that $X_o=N_G(N\cap X_o)$. Since complements of $\mathcal{O}^{\pi\pi'}(N)/Y$ in N are conjugate in N by the previous claim, this claim follows.

Now, by the same argument as before, we may write

$$\chi_{X_s} = \tau + 2\Delta_2$$

where τ is π -special (by two applications of Theorem 2.1) and Δ_2 is a character of X_s or zero. Then $\chi_{N \cap X_s} = \tau_{N \cap X_s} + 2\Delta_{2N \cap X_s}$ and by Theorem 3.1,

$$(\tau_{N\cap X_n})^* = (\chi_N)^*.$$

Now let $\chi_{\circ} \in Irr(X_{\circ})$ and $\beta_{\circ} \in Irr(X_{\circ} \cap J_{\circ})$ be the π -specials characters with $\chi_{\rho}^* = \chi^* = \beta_{\rho}^*$. Since $\mathcal{O}^{\pi\pi'}(X_{\rho})' N_{X_{\rho}}(H) \subseteq X_{\rho} \cap J_{\rho}$, we can write

$$\tau_{X_2 \cap J_2} = \tau_e + 2A_1 + B_1$$

where all irreducible constituents of B_1 do not have π -degree, τ_{\emptyset} is π -special and $\tau^* = \tau_o^*$.

Also, since $\mathcal{O}^{\pi\pi'}(N \cap J_{\epsilon})' N_{N \cap J_{\epsilon}}(H \cap N) \subseteq N \cap X_{\epsilon} \cap J_{\epsilon}$, we can write

$$\beta_{N \cap X_{\sigma} \cap J_{\sigma}} = \varepsilon + 2A_2 + B_2$$

where all irreducible constituents of B_2 do not have π -degree, ε is π -special and $\varepsilon^* = (\beta_{N \cap J_{\varepsilon}})^*$. Since $J_{\varepsilon} < G$, by induction, $(\beta^{(N \cap J_{\varepsilon})})_{N_{N \cap J_{\varepsilon}}(H \cap N)} = (\beta_{N \cap J_{\varepsilon}})^*$.

Now, observe that $(\beta_{\circ})^{(N\cap X_{\circ}\cap J_{\circ})}$ is a character of $N_{X_{\circ}\cap J_{\circ}}(H\cap N) = N_{J_{\circ}}(H\cap N)$ (because X_{\circ} contains $N_{G}(H\cap N)$). Also, $\beta^{(N\cap J_{\circ})}$ is a character of $N_{J_{\circ}}(H\cap N)$. Now, we have that $(\beta_{\circ})^{(N\cap X_{\circ}\cap J_{\circ})} = \beta^{(N\cap J_{\circ})}$ (because their * is the same, χ^{*}), and therefore it follows that $(\beta_{\circ})^{(N\cap X_{\circ}\cap J_{\circ})} = \beta^{(N\cap J_{\circ})}$ lies over $(\beta_{N\cap J_{\circ}})^{*} = \varepsilon^{*}$. By induction, β_{\circ} lies over ε and hence $\beta_{\circ N \cap X_{\circ} \cap J_{\circ}} = \varepsilon$.

We have that $\chi_{N\cap J_{\circ}\cap X_{\circ}} = (\chi_{J_{\circ}})_{N\cap J_{\circ}\cap X_{\circ}} = \beta_{N\cap J_{\circ}\cap X_{\circ}} + 2\Delta_{1N\cap J_{\circ}\cap X_{\circ}} = \varepsilon + 2A_{2} + B_{2} + 2\Delta_{1N\cap J_{\circ}\cap X_{\circ}}$. Therefore $[\chi_{N\cap J_{\circ}\cap X_{\circ}}, \varepsilon] \equiv 1 \mod 2$. Also, $\chi_{N\cap J_{\circ}\cap X_{\circ}} = \tau_{N\cap J_{\circ}\cap X_{\circ}} + 2\Delta_{2N\cap J_{\circ}$

ible constituents of B_1 have not π -degree, we have $[B_{1N \cap J_s \cap X_s}, \varepsilon] = 0$. Then

 $1 \equiv [\chi_{N \cap J_{\varepsilon} \cap X_{\varepsilon}}, \varepsilon] \equiv [\tau_{\varepsilon N \cap J_{\varepsilon} \cap X_{\varepsilon}}, \varepsilon] \mod 2 \text{ and thus } \tau_{\varepsilon N \cap J_{\varepsilon} \cap X_{\varepsilon}} = \varepsilon.$ Now, τ_{ε} and β_{ε} are two π -special extensions of ε . Since $X_{\varepsilon} \cap J_{\varepsilon}/N \cap J_{\varepsilon} \cap X_{\varepsilon}$ is a π' -group, by (6.1) of [2], $\tau_o = \beta_o$. Then $\tau^* = \tau^*_o = \beta^*_o = \chi^*_o$ and thus $\tau = \chi_o$. Also, $(\tau^{(X_o \cap N)})^* = \tau^* = \tau^*_o = \beta^*_o = \chi^* = (\chi^{(N)})^*$ and hence $\tau^{(X_o \cap N)} = \chi^{(N)}$. By the inductive hypothesis, $(\tau^{(X_o \cap N)})_{N_N(H \cap N)} = (\tau_{X_o \cap N})^*$.

Now $\chi_N = \theta$ if and only if $(\tau_{X_o \cap N})^* = \theta^*$ if and only if $(\tau^{(X_o \cap N)})_{N_N(H \cap N)} = \theta^*$ if and only if $(\tau^{(X_o \cap N)})_{N_N(H \cap N)} = \theta^*$

if and only if $(\chi^{(N)})_{N_N(H \cap N)} = \theta^*$.

When the group of odd order G happens to have a normal Hall π -subgroup, say \mathcal{O} , then the normalizer of a π -complement H of G is $H \times C_{\rho}(H)$ and, of course, the Isaacs correspondent χ^* of some $\chi \in Irr^{\pi}(G)$ is very much related to the Glauberman-Isaacs correspondent $(\chi_o)^* \in Irr_H(\mathcal{O})$. It is an easy exercise to check that $\chi^* = 1_H \times (\chi_o)^*$.

To end this section we need the following.

(3.7) **Theorem.** Let N be a normal π -subgroup of G, where G is a group of odd order. Let $\chi \in \operatorname{Irr}^{\pi}(G)$ and let $\theta \in \operatorname{Irr}_{H}(N)$ be under χ , where H is a fixed π -complement of G. Then the Glauberman-Isaacs correspondent $\theta^* \in Irr(C_H(N))$ lies under the Isaacs correspondent $\chi^* \in Irr(N_G(H))$.

Proof. First we claim that if M is any normal subgroup of G and $\eta \in \operatorname{Irr}^{\pi}(MN_G(H))$ is such that $\eta^* = \chi^*$, then η is an irreducible constituent of $\chi_{MN_G(H)}$.

We prove the claim by induction on |G|. Certainly, we may assume that $MN_G(H) < G$. Let $\overline{G} = G/M$, $\overline{K} = \mathcal{O}^{\pi\pi'}(\overline{G})$ and let $\overline{L} = \overline{K'}$. Since $N_G(\overline{H}) < \overline{G}$, then $\overline{L}N_G(\overline{H}) < \overline{G}$, and thus $LN_G(H) < G$. Now, $\mathcal{O}^{\pi\pi'}(G)'N_G(H) \subseteq LN_G(H) < G$ and therefore by Theorem 3.1, there exists a π -degree irreducible constituent ψ of $\chi_{LN_G(H)}$ such that $\psi^* = \chi^*$. By induction, η is a constituent of $\psi_{MN_G(H)}$ and therefore of $\chi_{MN_G(H)}$.

Now that the claim is proved, let $\eta \in \operatorname{Irr}^{\pi}(NN_G(H))$ be such that $\eta^* = \chi^*$. Because the stabilizers of the irreducible constituents of η_N have π -index, we may choose γ an irreducible H-invariant constituent of η_N . By the claim, θ and γ are two H-invariant irreducible constituents of χ_N and then, by (2.10) of [7], for instance, θ and γ are $N_G(H)$ -conjugate. Therefore, θ is an irreducible constituent of γ_N and by induction, we may assume that $NN_G(H) = G$. Now NH is a normal subgroup of G and we choose $\xi \in \operatorname{Irr}^{\pi}(NH)$ over θ and under χ . Since by comments after Theorem 3.5, ξ^* lies under χ^* , by induction, we may assume that G has a normal Hall π -subgroup. In this case, $\chi^* = 1_H \times \theta^*$ which certainly lies over θ^* .

4 Main results

Before entering into the details of the proofs of Theorems A and B, let us outline how the natural correspondence (in the classical case $\pi = p'$) is constructed.

If P is a p-subgroup of a finite group G let us denote by IBr(G|P) the set of all irreducible Brauer characters of G with vertex P. We have shown in Sect. 3, that if G is a group of odd order and P is a Sylow p-subgroup of G, then there exists a natural correspondence $*: IBr(G|P) \to IBr(N_G(P)|P)$. Now we want to remove the hypothesis of P being a Sylow p-subgroup of G. So let us assume that P is any p-subgroup of G and let $\varphi \in IBr(G|P)$. By a well known theorem of Huppert [3], we may write $\varphi = \gamma^G$, where $\gamma \in IBr(W)$ and γ has p'-degree. Since the Sylow p-subgroups of G are vertices for G, we may assume that G is an another G and therefore we have defined some Brauer character G is a G-subgroup.

We will show that $\gamma^{*N_G(P)} \in IBr(N_G(P))$, that $\gamma^{*N_G(P)}$ only depends on φ and that the map $\varphi \to \gamma^{*N_G(P)}$ is a well defined bijection from IBr(G|P) onto $IBr(N_G(P)|P)$.

The following theorem is a key result for proving the existence of vertices for sets of primes as well as for proving our main results.

(4.1) Theorem. Let $\varphi \in I_{\pi}(G)$, let N be a normal subgroup of G where G is π -separable and assume that $\varphi = \gamma^G$ for some $\gamma \in I_{\pi}(W)$. If all irreducible constituents of φ_N have π -degree then $|W: W \cap N|$ is a π -number.

Proof. See [12].

If Q is a π' -subgroup of a π -separable group G, we denote by $I_{\pi}(G|Q)$ the elements of $I_{\pi}(G)$ with vertex Q. Next one is one of the main results in [12].

(4.2) Theorem. If G is solvable with nilpotent π -complement, then $|I_{\pi}(G|Q)| = |I_{\pi}(N_G(Q)|Q)|$.

Proof. See [12].

Since (P, γ) is a p-weight of G if and only if $\gamma \in IBr(N_G(P)|P)$, Theorems A and B will be proved once we show the following.

- **(4.3) Theorem.** Suppose that G is a group of odd order and let $\varphi \in I_{\pi}(G|Q)$.
- (a) If $\alpha^G = \varphi$, where $\alpha \in I_{\pi}(W)$ has π -degree and Q is a π -complement of W, then $\alpha^* \in I_{\pi}(N_W(Q))$ induces irreducibly to $N_G(Q)$.
- (b) The map $I_{\pi}(G|Q) \to I_{\pi}(N_G(Q)|Q)$ given by $\varphi \to \alpha^{*N_G(Q)}$ is a well defined natural injection.
 - (c) If a π -complement of G is nilpotent, then above map is a bijection.

Proof. First of all, if $\varphi \in I_{\pi}(G|Q)$, let us show that there exists some $\alpha \in I_{\pi}(W)$ as in (a). Certainly, if φ has π -degree, Q is a π -complement of G and we may choose $\alpha = \varphi$. If φ has not π -degree, by repeated applications of (3.4) of [9] and the Clifford Correspondence ((3.2) of [9]), we may write $\varphi = \alpha^G$, for some $\alpha \in I_{\pi}(W)$ with $\alpha(1)$ a π -number. If Q_{φ} is a π -complement of W, Q_{φ} is a vertex for φ and thus Q_{φ} and Q are G-conjugate. By conjugating by some appropriate element, we may assume that Q is a π -complement of W, as wanted.

(a) We argue by induction on |G|. Suppose first φ has π -degree. Let $\mu \in \operatorname{Irr}(W)$ be π -special such that $\mu^{\circ} = \alpha$. Then, since $(\mu^{G})^{\circ} = (\mu^{\circ})^{G} = \alpha^{G} = \varphi$, $\mu^{G} \in \operatorname{Irr}(G)$ and by an application of Theorem 2.1, μ^{G} is π -special. Then, applying Corollary 3.4 and Theorem 3.5, $\alpha^{*N_{G}(Q)} = (\mu^{*N_{G}(Q)})^{\circ} = \varphi^{*}$ is irreducible.

Suppose now that φ has not π -degree, and let $N \lhd G$ be such that all irreducible constituents of φ_N have π -degree and are not G-invariant. Then, by Theorem 4.1, |WN:W| is a π -number and thus Q is a π -complement of WN. Consider $\alpha^{WN} \in I_{\pi}(WN)$, and notice that α^{WN} has π -degree. Thus, because the stabilizers of the irreducible constituents of $(\alpha^{WN})_N$ have π -index we may choose a Q-invariant irreducible constituent $\theta \in I_p(N)$ of $(\alpha^{WN})_N$.

By (3.2) of [9], let $\beta \in I_{\pi}(J|\theta)$ be such that $\beta^{WN} = \alpha^{WN}$, where $J = T \cap WN$

By (3.2) of [9], let $\beta \in I_{\pi}(J|\theta)$ be such that $\beta^{WN} = \alpha^{WN}$, where $J = T \cap WN$ and $T = I_G(\theta)$. Then β has π -degree, Q is a π -complement of J and $\beta^G = \varphi$. Therefore, $\beta^T \in I_{\pi}(T|Q)$ and by induction $\beta^* \in I_{\pi}(N_J(Q))$ is such that $\beta^{N_T(Q)} \in I_{\pi}(N_T(Q))$. Also, by the first paragraph of the proof of (a), $(\alpha^*)^{N_WN(Q)} = (\alpha^{WN})^*$ and $(\beta^*)^{N_WN(Q)} = (\alpha^{WN})^*$. Therefore, $(\alpha^*)^{N_G(Q)} = ((\alpha^{WN})^*)^{N_G(Q)} = (\beta^*)^{N_G(Q)}$.

Now let $v \in \operatorname{Irr}(J)$ be π -special with $v^o = \beta$ and write $v_N = e\omega$, where $\omega \in \operatorname{Irr}(N)$ is π -special and $\omega^o = \theta$. Since the \mathbf{B}_{π} -lifting is unique it follows that $I_G(\omega) = T$. Let $v^{(N)} \in \operatorname{Irr}(N_J(Q \cap N))$ be such that $(v^{(N)})^* = v^*$. By Theorem 3.6, $v^{(N)}$ lies over ω^* . Since both characters are π -specials we may considered them as $v^{(N)} \in \operatorname{Irr}(N_J(Q \cap N)/Q \cap N)$ and $\omega^* \in \operatorname{Irr}(N_N(Q \cap N)/Q \cap N)$. Now ω^* is Q-invariant (because ω is), $N_N(Q \cap N)/Q \cap N$ is a normal π -subgroup of $N_J(Q \cap N)/Q \cap N$ and by Theorem 3.7, $\omega^{**} \in \operatorname{Irr}(N_N(Q)/Q \cap N)$ (the Glauberman-Isaacs correspondent of ω^*) lies over $(v^{(N)})^* = v^* \in \operatorname{Irr}(N_J(Q)/Q \cap N)$. Since $(\omega^*)^* = (\omega^*)^*$ for $x \in N_G(Q)$, we have that $N_T(Q) = I_{N_N(Q)}(\omega^{**}) = I_{N_N(Q)}((\omega^{**})^o)$. Now $(v^*)^* = \beta^*$ lies over $(\omega^{**})^o$ and so does $\beta^{*N_T(Q)} \in I_\pi(N_T(Q)|(\omega^{**})^o)$. Then, by (3.2) of [9], $\alpha^{*N_G(Q)} = \beta^{*N_G(Q)} \in I_\pi(N_G(Q))$, as wanted.

(b) In the notation of (a), since α^* has π -degree and Q is a π -complement of $N_W(Q)$, obviously, $(\alpha^*)^{N_G(Q)} \in I_{\pi}(N_G(Q)|Q)$.

Suppose now that $\alpha^G = \varphi = \beta^G$, where $\alpha \in I_{\pi}(W|Q)$ and $\beta \in I_{\pi}(V|Q)$ have π -degree. We show that $(\alpha^*)^{N_G(Q)} = (\beta^*)^{N_G(Q)}$ by induction on |G|.

Suppose first that φ has π -degree. Then Q is a π -complement of G and if α_o is the π -special lifting of α , by Theorem 3.3, $\varphi^* = (\alpha^G)^* = (\alpha^G)^* = ((\alpha^*_o)^{N_G(Q)})^o = \alpha^{*N_G(Q)}$ and by the same reason $\varphi^* = \beta^{*N_G(Q)}$.

So we may assume that φ has not π -degree. In this case, by (3.4) of [9], let N be a normal subgroup of G such that the irreducible constituents of φ_N have π -degree and are not G-invariant. By Theorem 4.1, $|W:W\cap N|$ and $|V:V\cap N|$ are π -numbers. Let θ and η be Q-invariant irreducible constituents of $(\alpha^{WN})_N$ and $(\beta^{VN})_N$, respectively and let $\delta \in I_{\pi}(T \cap WN)$ and $\tau \in I_{\pi}(I \cap VN)$ be such that $\delta^{WN} = \alpha^{WN}$ and $\tau^{VN} = \beta^{VN}$, where $T = I_G(\theta)$ and $I = I_G(\eta)$.

Since α^{WN} and β^{VN} are irreducible constituents of φ_{WN} and φ_{VN} , respectively, it follows that $\theta = \eta^g$ for some $g \in G$, and thus, $I^g = T$ and $(\tau^I)^g = \delta^T$ (because both are the Clifford correspondents of φ over θ). Now, since $\tau \in I_{\pi}(I \cap VN | Q)$, then $\tau^g \in I_{\pi}((I \cap VN)^g | Q^g)$ and thus $\delta^T = (\tau^g)^T \in I_{\pi}(T | Q^g) \cap I_{\pi}T | Q)$. Since vertices in T are T-conjugate, we have that $Q^g = Q^t$ for some $t \in T$. Then $gt^{-1} \in N_G(Q)$, $\eta^{gt^{-1}} = \theta^{t-1} = \theta^{t-1} = \theta$ and hence η and θ are $N_G(Q)$ -conjugate. Then, certainly

we may assume that $\theta = \eta$ and $\delta^T = \tau^I$. Since T < G, by induction, we have that $(\tau^*)^{N_T(Q)} = (\delta^*)^{N_T(Q)}$. Therefore, $(\alpha^*)^{N_G(Q)} = (\delta^*)^{N_G(Q)} = (\tau^*)^{N_G(Q)} = (\beta^*)^{N_G(Q)}$. Finally, suppose that $(\alpha^*)^{N_G(Q)} = (\beta^*)^{N_G(Q)}$, where $\alpha \in I_\pi(W|Q)$ and $\beta \in I_\pi(V|Q)$ have π -degree and α^G and β^G are irreducible. We prove that $\alpha^G = \beta^G$ by induction

If α^G has π -degree, then Q is a π -complement of G, β^G has π -degree and since $(\alpha^G)^* = (\alpha^*)^{N_G(Q)} = (\beta^*)^{N_G(Q)} = (\beta^G)^*$, it follows by Corollary 3.4, that $\alpha^G = \beta^G$. Again, we may assume that α^G has not π -degree and we may choose $N \triangleleft G$ such that the irreducible constituents of $(\alpha^G)_N$ have π -degree and are not Ginvariant.

Since by (4.1), |WN:W| is a π -number, we certainly may choose $\theta \in I_{\pi}(N)$ a Q-invariant irreducible constituent of $(\alpha^{WN})_N$. Although at this moment we a Q-invariant irreducible constituent of $(\alpha^{WN})_N$. Although at this moment we do not know whether |VN:V| is a π -number or not, still it is possible to choose a Q-invariant irreducible constituent η of $(\beta^{VN})_N$: since $\beta^{VN} \in I_{\pi}(VN | Q)$, if ε is an irreducible constituent of $(\beta^{VN})_N$, then $\beta^{VN} = \xi^{VN}$, for some $\xi \in I_{\pi}(VN \cap I_{VN}(\varepsilon)|\varepsilon)$. Then, if P is a vertex for ξ , then P is a vertex for β^{VN} and thus $P = Q^x$ for some $x \in VN$. Therefore $\eta = \varepsilon^{x-1}$ is a Q-invariant irreducible constituent of $(\beta^{VN})_N$. Let us denote by θ^{**} the character $\omega^{***\circ}$ of part (a), and recall that $I_{N_G(Q)}(\theta^{**}) = N_T(Q)$, where $T = I_G(\theta)$. Now let $\delta \in I_{\pi}(T \cap WN | \theta)$ be such that $\delta^{WN} = \alpha^{WN}$, let $I = I_G(\eta)$ and let $\tau \in I_{\pi}(I \cap VN | \eta)$ be such that $\tau^{VN} = \beta^{VN}$. Recall that θ^{**} and η^{**} lie under δ^* and τ^* , respectively. Now since $\tau^{*N_G(Q)} = \delta^{*N_G(Q)}$, we have that θ^{**} and η^{**} are $N_G(Q)$ -conjugate. By replacing β by some $N_G(Q)$ -conjugate, we may assume that $\theta^{**} = \eta^{**}$. Then $\theta = \eta$, because both * are one to one maps. Now, I = T, $N_I(Q) = N_T(Q) = I_{N_G(Q)}(\theta^{**})$ and since $((\tau^*)^{N_T(Q)})^{N_G(Q)} = ((\delta^*)^{N_T(Q)})^{N_G(Q)}$, by uniqueness in the Clifford Correspondence, $(\tau^*)^{N_T(Q)} = (\delta^*)^{N_T(Q)}$. By induction, $\delta^T = \tau^T$, and then $\alpha^G = \delta^G = \tau^G = \beta^G$. (c) Apply (b) and Theorem 4.2.

(c) Apply (b) and Theorem 4.2.

Acknowledgment. This work has been done during a stay of the author at the University of Wisconsin-Madison supported by a Fulbright-Ministerio de Educacion y Ciencia fellowship. I take this opportunity to thank the Mathematics Department for its hospitality.

References

1. Alperin, J.L.: Weights for finite groups. In: Fong, P. (ed.) The Arcata Conf. on representations of finite groups. (Proc. Symp. Pure Math., vol. 47, pp. 369-378) Providence, RI: Am. Math. Soc. 1987

Gajengragadkar, D.: A characteristic class of finite π-separable groups. J. Algebra 59, 237–259 (1979)

- 3. Huppert, B.: Lineare, auflösbare Gruppen. Math. Z. 67, 237-259 (1957)
- 4. Isaacs, I.M.: Characters of solvable and sympletic groups. Am. J. Math. 95, 594-635 (1973)
- 5. Isaacs, I.M.: Character Theory of Finite Groups. New York: Academic Press 1976
- 6. Isaacs, I.M.: Lifting Brauer characters of p-solvable groups, II. J. Algebra 51, 476-490 (1978)
- 7. Isaacs, I.M.: Character Correspondences in solvable groups. Adv. Math. 43, 284-306 (1982)
- 8. Isaacs, I.M.: Characters of π -separable groups. J. Algebra 86, 98–128 (1984)
- 9. Isaacs, I.M.: Fong characters in π -separable groups. J. Algebra 99, 89–107 (1986)
- 10. Isaacs, I.M.: Characters and Hall subgroups of groups of odd order. J. Algebra (to appear)
- 11. Isaacs, I.M., Navarro, G.: Character correspondences and irreducible induction and restriction. J. Algebra 140, 131-140 (1991)
- 12. Isaacs, I.M., Navarro, G.: (to appear)
- 13. Williams, J.C.: PhD, University of Wisconsin-Madison (to appear)
- 14. Wolf, T.R.: Character correspondences in solvable groups. Ill. J. Math. 22, 327-340 (1978)
- 15. Wolf, T.R.: Variations on McKay's character degree conjecture. J. Algebra 135, 123-138 (1990)