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1 An approximation result

This paper is a continuation of [P]. The main result of [P] is that there are
functions G defined in a neighborhood of the origin in the complex plane, which
behave in a sense as z2, such that G together with z2 separates the points of (small)
disks D around the origin, and such that the function algebra [ 22, G; D] on D is not
the same as the algebra C(D) of all continuous functions on D. In this paper we
show that the other possibility also can occur: for a large class of functions
G defined in a neighborhood of the origin we show [z2, G; D] = C(D) for suffi-
ciently small disks D around 0. We will adopt notation from [P]. In the following it
will be convenient to write the function G in the form

G(z) =z*(1 + g(2))* .

We like to mention that Pascal Thomas, independently from us and at the
same time, worked out a special case of our main result, i.c. the case g(z) = z,

[T].

Theorem. Let g be defined in a neighborhood of the origin in the complex
plane, of class C', with g(0)=0, and such that |g,(0)] > |g;(0)|. Then
[z2, z2%(1 + g(z))*; D] = C(D) for sufficiently small disks D centered at the origin.

Proof. Let a = ¢g.(0) and b = g;(0). By the change of coordinate z = iw/a we may
and will assume without loss of generality that a = i and |b| < 1. Since the first
order partial derivatives of g are continuous near 0, Taylor’s formula can be
applied to Re g and Im g to obtain that if ¢ is a number with 0 <& < 1 — |b| the
function

r(z) =g(z) —iz — bz
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satisfies the inequality
Ir(2)] < élz|

for all z in a sufficiently small disk D around 0. Note also that the generators of the
algebra separate the points of sufficiently small disks D.
We now follow the proof of Theorem 1 in [P].

Define X = {(z% 2%(1 + g(2))*): ze D} .
Consider the map IT: €C? — C?, defined by
(g4, 82) = (842,057 .
Then T 3(X)= X, uX,UX;uUX, with
X, ={(z,2(1 + g(2))): zeD}
X, ={(—z — (1 + g(2))): zeD} = {(z, Z(1 + g( - 2))): ze D}
X3 ={(—z (1 + g(2))): zeD)
Xo={(z, — (1 + g(2))): zeD} = {(— 2, Z(1 + g( — 2))): z& D} .

By Wermer’s theorem it follows that the sets X; are polynomially convex. Now
Kallin’s theorem is also valid if the two angular sectors are replaced by
S, ={Imi>0}u{0}andS_ = {ImA < 0} U {0} (see reference [9] of [P]). With
p({1,¢2) =4 + {, we notice that for z in D:

p(z,Z(1 + g(z))) = z + z + zg(z) = 2Rez + i|z|* + bz? + Zr(z)

where |zr(z)| £ ¢|z|%

It follows that p(z, z(1 + g(z)))eS+ so p(X;) = S+. In a similar way one
shows that p(X,) = §_. Since p~*(0) (X, U X,) contains only the origin in C?
we can apply Kallin’s theorem and conclude that X'; U X, is polynomially convex.

Using the polynomial p({1,{,) = — {; + {, one shows similarly that X; U X,
is polynomially convex.

We apply Kallin’s theorem for the third time, now with p({4, {;) = {,1{,. Since
p(X, U X,) is contained in an angular sector near the positive real axis and
p(X5;U X,) in an angular sector near the negative real axis, it follows that
I Y(X)=X,uX,uUX;3u X, is polynomially convex. By Sibony’s theorem and
the O’Farrell-Preskenis—Walsh result we conclude as in in the proof of Theorem 1
in [P] that P(X) = C(X). This is equivalent to

[2% 2%(1 + g(2));; D1 = C(D) .

2 Examples

Suppose g is of class C*! and both g,(0) and g;(0) are equal to 0. It can happen that
the algebra [2z2, z2(1 + g(z))?; D] is unequal to C(D) and it is also possible that
this algebra is equal to the algebra C(D).

(1) In [P] it is shown that [z% z2(1 + 23)~%/3; D] % C(D) for (sufficiently small)
disks D.
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(2) Let f'be a real-valued function of class C?, defined in a neighborhood of 0, such
that fis even, and such that f(0) =0, f(z) > 0if z = 0.

The functions z* and z%(1 + izf(z))* separate the points of (small) disks
D around 0, and as in the proof of the theorem above we find
[2%, 22(1 + izf (2))*; D] = C(D).
(3) Also [2%,2%(1 4+ iz*)*; D] = C(D) if D is a disk centered at the origin. Using
the same pull-back IT as in the proof of the theorem and with

X ={(z%2*(1 + iz®)?: ze D}
one now finds
X, ={(z,2(1 + iz?)): ze D}
X, ={(—z —2(1 +iz%):zeD} = {(z, 2(1 — iz%)): ze D}
X;={(—2z2(1+iz*):zeD}
Xy ={(z, —2(1 + iz®)):ze D} = {( —z Z(1 — iz%)): ze D}.

Use p({1,{2) = + ¢, to show that X; U X, is polynomially convex and
p(l1,82) = — {4 + {53 to show that X3 U X, is polynomially convex. It follows
as in the proof of the theorem that [22, z2(1 + iz3)*; D] = C(D).

3 Remarks

(1) Isit true (if z* and G separate the points of D) that [z, G; D] + C(D) for every
antiholomorphic function G? In the light of the theorem and the examples above
one might even conjecture that [z, z2(1 + g(z))*; D] + C(D) for every g with
19:(0)] < |g=(0)].
(2) It is not clear whether the theorem can be generalized to the situation where
F and G behave like z™ and z™ with m > 2. So there is nothing known about
[F, G; D] for this case (except for even values of m: in this situation we know that
there exist examples with [F, G; D] + C(D)).
(3) Consider once again the situation that F and G are of the form
F(z) = z"(1 + f(z)), G(z) = 2"(1 + g(z)) where f and ¢ are functions defined in
a neigborhood of the origin, with f(0) = 0, g(0) = 0. The functions f and g were
supposed to be of class C' but if one is willing to drop this differentiability
condition, just assuming continuity of fand g, then one can find a counterexample
for the case m = n in the following way.

Choose sequences (ay), (ri), (Ry) of positive numbers converging to 0 and such
that 0 <r, < R, and a4+, + Ry+; < ax — R, for each k.

Let Dk={lz_ak|§rk} and Ek={lz—ak’éRk},k=l,2,3,... Let
F(z) = z™ and define a modification G of the function z™ + z™*! on the complex
plane in the following manner:

G(z)=2z"+z"*! outside E, UE, U .. ., in particular g(0) = 0
G(z)=a™ + a™*! on D,.

For an appropriate choice of the sequences (r;) and (R,) and the values of G on the
sets E, — D, the function g is continuous and moreover the functions F and
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G separate the points. For any disk D centered at O the elements of [F, G; D] are
analytic on the interior of all sets D, which belong to D. So for any such disk
D:[F,G;D] + C(D).
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Note added in proof

The second author recently proved a generalization of the theorem for the situation where F and
G behave like z™ and z™ with m > 2.



	
	Approximation on a disk II.


