

Werk

Titel: Matrix transformations involving analytic sequence spaces (Errata).

Autor: Grosse-Erdmann, Karl-Goswin

Jahr: 1993

PURL: https://resolver.sub.uni-goettingen.de/purl?266833020_0212|log21

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Matrix transformations involving analytic sequence spaces

Karl-Goswin Grosse-Erdmann

Fachbereich Mathematik, Fern-Universität Hagen, Postfach 940, W-5800 Hagen, Federal Republic of Germany

Math. Z. 209, 499-510 (1992)

In Theorem 3.2 one has to assume that E is solid, for in general (b) only implies that there are sequences $\xi^{(1)}, \ldots, \xi^{(m)} \in E$ with $\sup_{x \in B} \left| \sum_{n=0}^{\infty} x_n y_n \right| \leq \sum_{k=1}^{m} \sum_{n=0}^{\infty} |\xi_n^{(k)}| |y_n|$ for

 $y \in F$, so that if E is solid we may take $\xi = \left(\sum_{k=1}^{m} |\xi_n^{(k)}|\right)_n$.

To give a concrete counter-example, let (q_n) be an enumeration of \mathbb{Q} , and let $x=(1,0,1,0,1,\ldots)$ and $y=(q_1,1,q_2,1,q_3,\ldots)$. We put $E=\varphi \oplus \langle \{x,y\} \rangle$ and $F=E^\times$. The solid span |E| of E is a diagonal transform of l^∞ , so that $F=|E|^\times$ is a diagonal transform of l^1 and $(F,\nu(F,E))=(F,\nu(F,|E|))$ is barrelled. But we show that $(E,\sigma(E,F))$ is not simple. Else there would exist scalars α and β and some $z\in\varphi$ such that $|x_n|\leq |z_n+\alpha x_n+\beta y_n|$ and $|y_n|\leq |z_n+\alpha x_n+\beta y_n|$ for $n\in\mathbb{N}_0$. This implies that $\beta\neq 0$, so that we can find a sequence (n_k) with $\alpha+\beta q_{n_k}\to 0$, while we have $|x_{2n}|=1$ for $n\in\mathbb{N}_0$. This is a contradiction.

As a consequence, in *Theorem 6.1(1)* and *Theorem 6.2* one also has to assume that E is solid.