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0 Introduction

It is an important goal of complex analysis to have quite simple criteria for
g-convexity or g-completeness of a manifold: these imply cohomology finiteness
or vanishing theorems of Grauert-Andreotti type [1] and, in connection with
Morse theory [8], topological statements like Lefschetz type theorems (see [10]).

One early answer to the question, how g-convexity behaves under general
processes, like removing subsets M from complex manifolds X, was given by
Barth [2] in 1970: he showed that X\ M is g-convex if M is a g-codimensional
complex submanifold in projective space X. In 1973, Schneider [11] proved
a similar result for complements of g-codimensional complex submanifolds with
positive normal bundles in compact complex manifolds; this was generalized
to local complete intersections by Fritzsche [6] in 1976.

The subject of the present paper is the question of what can be stated for
the local g-completeness of X\ M where M is a CR-submanifold of a complex
manifold X — this simultaneously generalizes both the case of complex submani-
folds M = X and the case of real hypersurfaces M — X.

As a tool, we will use some results of Diederich and Fornaess [4, 5] and
of Peternell [9] on g-convexity with corners, an important generalization of
g-convexity which was introduced by Grauert [7] in 1981.

The article is organized as follows: The presentation of the basic definitions
in Chap. 1 is followed by the proof of a necessary condition for local g-complete-
ness of C"\M at peM, where M =C" is a smooth CR-submanifold, in Chap.
2. This criterion then implies a lower estimate for v(p; M):==min{g<n|C"\M
is locally g-complete at p} in Chap. 3, where the lower bound g’ for v(p; M)
depends on the CR-codimension of M and on the local index of convexity
of M at p which is defined in 3.1.1. In Chap. 4, the quality of g’ is discussed;
it becomes apparent that in the case of complex or of generic CR-submanifolds,
the statement of Chap. 3 is optimal, in the sense that g’ coincides with an
upper bound for v(p; M). In the general case of non-generic CR-submanifolds,
we only obtain v(p; M)<q'+1, and it remains an open question whether
v(p; M)< ¢ is valid.
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A geometric interpretation of the index of convexity in terms of the Levi
form of M at p which is given in Chap. 5 makes it clear that the index of
convexity is a CR-invariant, which implies that the local results given are inde-
pendent of any choice of a CR-imbedding M < C". Transferring the local results
to smooth CR-submanifolds M in complex manifolds X, we give some globaliza-
tions of the local results in Chap. 6.

1 Preliminaries

In the sequel, let M = C" be a smooth closed submanifold of real codimension
k>1.
1.1. Definition. For peM, m:=dimgM, k:=codimgM=2n—m and U
=U(p)<C" an open neighborhood of p, we call a k-tuple (p,, ..., pi)y of func-
tions p;: U - R, p;eC*(U) Vi=1, ..., k, defining functions for M on U if:
(1) MAU={zeC"|p;(z)=0Vi=1,...,k} (2) dpyA...Adp+0o0n U.

Given (py, ..., p)y defining functions for M on the open neighborhood

U=U(p) of peM in C", we can describe the holomorphic tangent space of M
at p as

T,'° M ~ker (M)
0z; Jisisk1zizn
where (M) : C"— C" is the linear map
0zj Jij
4 &y
opip)\ . L), 0pi(p)) %]
oz; Jij | : 0z; Jij| :
Ca Ca
Obviously, dim¢ T,'°M =n—rank(agiz(p )) , so dim¢ T,)°M is minimal if
. il
(M) has maximal rank at p, i.e.
0z )i

rank(api(p)> _ { n(m=n)

0z; 2n—m(m>n)’

In this case we define:

1.2. Definition. Let M = C" be a closed smooth submanifold of real dimension
m, pe M. M is said to be generic at p if dim¢ T,'® M = max {0, m—n} holds. Being
generic is of course an open property.

The particular class of smooth submanifolds we deal with is:

1.3. Definition. A smooth submanifold M =C" is called CR-submanifold of type
(m, ?) if:
(1) dimgM=m (2) YpeM:dimc T,)° M =/.
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Here, ¢ is called CR-dimension of M, the CR-codimension of M is given by
d:==n—¢.

In this terminology, generic CR-submanifolds M = C" of real dimension m
are of type (m, 0) for m<n and of type (m, m—n) for m>n.

Finally, in order to clarify the notation:

1.4. Definition. Let M = C" be a smooth submanifold, pe M and Q< C”" an open
set.

(1) A real-valued function feC*(Q) is called g-convex or strictly g-convex if
for any xeQ, the Levi form %;(x)(, ) of f at x has at least n—g+ 1 positive
eigenvalues; f'is called weakly g-convex if the Levi form of f has at least n—q +1
non-negative eigenvalues everywhere on Q.
(2) fis called an exhaustion function of &, if:

D> Thereis a coeRU {+ 00}, such that Q. :={zeQ|f(z)<c}€RVc<cy.

> For each compact set K = Q, there is a constant ¢ <c, with K< €,.
(3) We call C"\M locally g-complete at p if there is an open neighborhood
U=U(p)=C" of p such that U\ M admits a g-convex exhaustion function.

2 A necessary condition for local g-completeness of C"\ M

During the course of this work, the following criterion will prove to be very
useful:

2.1. Theorem. Let M = C" be a smooth submanifold such that C'\M is locally
g-complete at peM. If d,, denotes the euclidean distance to M, then there is
an open neighborhood V=V (p)=C" of p so that the function —log(d?):

Cm
N\ M ——R is at least weakly q-convex on V\ M.

Our proof of this theorem is based on Lemma 2.3, a simplified version of
a lemma by Peternell [9, Lemma 7] where the following terminology is used:

2.2. Definition. Let U = C" be open, f: U — R a real-valued function and xe U.

(1) f is called g-convex with corners at x if there is an open neighborhood
V=V (x)cU of x and a finite number of functions fi, ..., f, g-convex on V such
that fj, =max(fi, ..., f;)-

(2) f is called g-convex with corners on U if f is g-convex with corners at x
for every xeU. The set of all functions g-convex with corners on U will be
denoted by F,(U).

(3) U is called g-convex with corners if there is a compact set K< U and an
exhaustion function g of U such that ge F,(U\ K).

2.3. Lemma. Let X be a complex manifold, dim¢ X =n, S= X x X an open subset
and A:={(z, w)e X x X |z=w} the diagonal in X x X let fe F, . ,(S\4) be a function
which is (n+ r)-convex with corners outside A. If NyEN,E€X are open sets such
that Ny x N, €S and the function s: N; — R, s(x):=sup{f(x, y)| ye N;\ N, }, satisfies
s(x)>f(x, y) VxeN,, yeON,, then the following statement holds:

If N, is g-convex with corners then for every open set DEN, and for any >0,
there is a function geF, (D) satisfying |g(x)—s(x)| <eVxeD.
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Lemma 2.3 will be applied to a certain class of functions that are n-convex
in (C" x C")\4; the construction of these functions makes use of several proper-
ties of the functions h: C"x C"— Ry, h(x, y):=|x—y||?, and —log(h) which are
collected in the following lemma:

2.4. Lemma. If the function h: C*" >Ry is defined by h(z)=Y. |z;—z,., |, then
the following are satisfied : j=1

(1) For any zeC?", {, ne T,}° C?",

2n n 2n
L@ n=73 Cj-ﬁ,-—( (ifljent X Cj'ﬁf—n)-
ji=1 j=1

\j j=n+1

(2) For any zeC?", %,(2),r10c2+ 20, and
(@), =0 for L={{eT'° C*"|{;={i,Vi=1, ... n}.

(3) If 4 denotes the diagonal in C"x C" and if, for ze(C*™\4), Q, is the real
hypersurface Q,:={weC*"\ 4|h(w)=h(z)}, then

L togn(Dr, 01100, =072 C*"\ 4.

Using the function —log(h), we now construct n-convex functions f on
C" x C"™\ 4 with sub-level sets { f<c} relatively closed in (C" x C")\ 4 as follows:
For any real-valued function ¢eC*(R), ¢’'>0, ¢” >0, the composed function
@eo(—log(h))=:ro(—h)for r: x+—p(—log(—x)), is weakly n-convex in C" x C"\ 4;
more precisely we know, with the notations of Lemma 2.4:

(1) EL(—M(Z),J,@(T;on,)@O and (2) $o<—h)(z)|(1;0!zz)i>0

for every zeC" x C"\ 4. Now, for any ¢ >0, the plurisubharmonic functions
Yo: C" >Ry, Yize Y |z
i=1

are strictly plurisubharmonic in the J,-directions. Consequently, for any &¢>0,
the function

J=ro(=h)+y,,
SO )=r(=lx=yl®)+e-[x|%  (x,y)eC"xC™\4,

is strictly n-convex in (C"x C")\4, the sub-level sets {f,” <c} being relatively
closed in (C" x C")\ 4 for each ceR; in particular, f” e F,(C" x C™\ 4).
Now we are ready for the

Proof of Theorem 2.1 Let U=1U(p)<=C" be an open p-neighborhood such that
U\M is g-complete, and U be chosen so small that d,eC®(U\M). Let
V=V (p)€U be small enough so that d\,(x)=dy;,;u(x) Vxe V\M (where dp ;¢
denotes the euclidean distance of points in N;:==U\M to MudU,
dpooveC®(V\M)). Furthermore, let N, be an open neighborhood of U with
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N,eN,eC", peC>(R) an arbitrary convex increasing function and r the com-
posed function r: x> ¢ (—log(—x)). For any £¢>0, define s : N; - Rg by

sO(x):=sup { [V (x, Y)| ye N,\ N, }
=sup{f"(x, y)|yedUu M}

=ro(—djoov)(x)+e- x|

As sO(x)>f"(x,y)Ve>0, xeN;, yedN,, and as N;=U\M is g-complete
one can, in view of Lemma 2.3, approximate each s{” on relatively-compact
subsets DEN, by functions ge F,(D). The maximum principle then implies that
the function ro(—d%)=q@(—logdy) is at least weakly g-convex in V\M. As
this holds for any real-valued, convex increasing function ¢ € C* (R), the function
—log d% has to be weakly g-convex in P\ M, too. []

3 The best possible local g-completeness of C"\ M

Let again M < C" be a smooth CR-submanifold and pe M. From Theorem 2.1
we will deduce a lower estimate for v(p; M):=min{g<n|C"\M is locally g-
complete at p}. The lower bound for v(p; M) will be determined by the CR-
codimension of M and by an entity that will be called the “index of convexity”;
some of its basic properties are introduced below.

3.1 The index of convexity and its basic properties

3.1.1. Definition. Let M = C" be a smooth CR-submanifold of real dimension
diITlRM'——m.

(1) E;(p) holds at pe M if there are defining functions py, ..., P2p—m for M near
p such that the Levi form of p, at p has j positive eigenvalues on T, ° M.

(2) The index of convexity of M at p is defined by b(p):=max {jeN|E;(p) holds
at p}.

(3) The local index of convexity of M at p will be given by

5(p)::M§*p b(p).

From the definition of the superior limit, respecting the fact that the function
b: M —>N, b: p—b(p), has integer values, we immediately obtain that the local
index of convexity has the following properties:

3.1.2. Lemma. Let M = C" be a smooth CR-submanifold, pe M and b(p) the local
index of convexity of M at p. Then:

(1) There is an open p-neighborhood U < C" such that b(p)=max{b(p')|p'eUn
(2) Given an arbitrary open neighborhood V=V (p) of p in C", there exists a point
p'€eVn M satisfying b(p')=b(p).
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The key for a better understanding of the index of convexity is the knowledge
about the relation between different sets of defining functions for M near p;
a standard application of the inverse function theorem shows:

3.1.3. Lemma. Let M = C" a smooth submanifold of real codimension codimg M
=k, peM, U and U open neighborhoods of pand (py, ..., p)us (P1s - P
two sets of defining functions for M near p. Then, there is an open neighborhood
V=V(@)cUNU of p and a matrix H:=(h;j); <i,j<x of C*-functions h;;: V- R
such that:

P P1
(M SRR

P Pk
2) det H(x)+0VxeV.

An immediate consequence of Lemma 3.1.3 is:

3.1.4. Lemma. Let McC" be a smooth submanifold of real codimension
codimg M=k, peM and b(p) the index of convexity of M at p. If (p,, ..., P
is an arbitrary set of defining functions for M on an open neighborhood
U=U(p)<=C" of p, then:

k
(1) There is xeR*\{0} and a real linear combination p,:= Y o p; of the functions
Pi» such that &, (p)rion has b(p) positive eigenvalues.  '=!
p

k
(2) For no real linear combination Pn==IZ Bi-p:i» BeRX, does ’g:’p(p)lT;OM have

i=1

more than b(p) positive eigenvalues.

Now we are ready to establish a lower estimate for v(p; M); we will first
do this in the case of generic CR-submanifolds M.

3.2 A negative result in the case of generic CR-submanifolds

If McC" is a smooth CR-submanifold, U= U (p)=C" an open neighborhood

of pe M and if p;: v, R, 1 i<k, are defining functions for M on U, then

the function

k
p: U=SRE, o x> p(x)= ) pf(x),
i=1

is the square of a distance function to M; the Levi form of p is influenced
by the Levi forms of the defining functions as follows: for xeU and {, ne T,° C*,
we have

k

k n n
Zen=23 (3 H0) (3 20 ) +2 3 i 2, ()G,
u=1 n

i=1\j=1 J i=1
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If now xe U\M, (p;(x), ..., pi(x))=:2€R*\ {0}, then the Levi form of the function
k

pai= Y, ;- p; satisfies

2,0 0=2-%, () OV{eT!" M,

where M, :={zeU |p;(z)—p;(x)=0Yi=1, ..., k}. So, at points xe U\ M suitably
chosen, the Levi form of p will have b(p) positive eigenvalues on T!°M,.. On
the other hand, if ne T,!° C" is transverse to T,'° M, then

2
>0,

n a i
Z—g;(f_)'lj

k
Zp)n.m=23
i=1

j=1

thus the Levi form of p has d positive eigenvalues in directions transverse to
T,'° M, where d denotes the CR-codimension of M. This motivates the following
theorem:

3.2.1. Theorem. Let McC" be a generic CR-submanifold of real dimension
dimgM =m, k:=2n—m its real codimension, d:=corank¢ T°M, peM, and let
b(p) be the index of convexity of M at p. Then, for any choice of defining functions
(P15 > Py for M near p, there exists a sequence (x,),= U\M converging to

k
p such that the Levi form of p:= Y, p} has d+b(p) positive eigenvalues at each
point x,,. i=1

Proof. For any system of defining functions (py,...,pJu of M near p,

rank(a P:(P)) =min{n, k} is maximal because M is generic, so rank (M)

0z; Ji o)
is maximal at each xeU if U=U(p)=C" is chosen sufficiently small. Then,
M ={zeU|p;(z)=pi(x)Vi=1, ...,k} = U is a generic CR-submanifold of type

(m, n—d) for every xe U, coinciding with M for xe M n U, and

H=\) {x}xT°M,, ranke#=n—d,

xelU
is a complex subbundle of T'°U. For xeU and (eT/°C", the Levi form of

k
pi=7, ptis:

i=1

n a .'
T 2oy

i=1

k 2 k
(*) LX) 0)=2} +2 3 pi(x) £, 0.
i=1 i=1

We distinguish two cases:

Casel:d=n
Then M has CR-dimension 0, i.e. M is totally real, which implies T,'° M ={0}
and b(p)=0. From () it follows that the Levi form of p is positive definite
at p; obviously, the statement of Theorem 3.2.1 is then valid for any sequence
(x,),c V\ M.
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Case 2:d<n

Again, () implies that for every linear subspace W, < T,'° C" transversely inter-
secting T,)°M at p, Z,(P)w, 1s positive definite; in particular, this holds for
the d-dimensional space

n 0 "
(T;OM)J"z{"]= Z njg(p)ej;lo cr Z ”j.Z}:OVCE'I;}OM}s
ji=1 J J=1

so there is ¢; >0 and an open neighborhood V; =V, (p)€U of p such that

(1 VxeVi: Zx)m mze,Inl*Vne(T° M)*

In view of Lemma 3.1.4, one can choose an a=(ay, ..., %,)eR*\ {0}, a function

k
pei=Y, %;p; and a b(p)-dimensional subspace L,=T}°M so that 2%, (D)L, 18
i=1
positive definite.

Now let a4, ..., 04, be sections of # such that {o,(p), ..., 64, (p)} is a
basis for L,; then there is an open p-neighborhood V, and a constant ¢, >0
such that L,:=spanc{o;(x), ..., 04 (x)} is a b(p)-dimensional linear subspace
of T!° M, for each xeV, and that

@ L. Oz, [C)I?YxeV,, VeL,

is satisfied.
1 . .
For veN, let B,:=B (p, V)CC" be the ball with radius % and center p, and
B,=B,nV,nV,nU. Choose an increasing unbounded sequence (R,),.ycR ™,

such that Av==§vn{er

p,~(x)=%‘v’i=l, ...,k} is non-empty for all veN,

and assign one element x,€4, to each veN. Then (x,),.x=U\M converges
to p and, for each veN, B, :=(T}°M,)*@® L, < T!°C" is a linear subspace
of complex dimension d+b(p) where we can estimate the Levi form of p as

follows:
If &:={+nePR \{0}, ne(T;\° M, )*, {eL,,, then in view of (1) and (2),

4 2
L, (x)(G ) zey IInIIZ—R—V'Ca' Il - 1IE TR nen?

holds for c;:=sup{|%,_ (x)(u, v)|[xeV; "V, u,ve T C", [lul| = |v]| =1)}.
If now (=0, we know that #+0, and we obtain: Z,x )& E)=cy-Inl>>0.
In case {+0, we can go on estimating

2 : 2 :
)& zer- (I~ 1) + 117G - 25

2 4c3
> 2, =, s 3
= ”C” Rv (CZ ) Rv)

which is positive for all v=v,, voeN being chosen so that ¢, >

2
L 3% bolds.
vo Cy
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Hence, (x,),>,,=U\M is a sequence with limit p such that Z(x,)p, is
positive definite at each x,, v>v,, and the proof of Theorem 3.2.1 is com-
plete. [

Theorem 2.1 and Theorem 3.2.1 yield the following lower estimate for
v(p; M):

3.2.2. Theorem. Let M <=C" be a generic CR-submanifold, d:=corankc T'°M,
peM and b(p) the local index of convexity of M at p. Then, v(p; M)=d+b(p),
i.e. C"\M is not locally g-complete at p for g=d+b(p)— 1.

Proof. By contradiction:

Suppose C™\ M is locally g-complete at p for g:=d+b(p)— 1. Then, by Theo-
rem 2.1, there is an open p-neighborhood V=V(p)=C" so that the function
—logdZ is at least weakly g-convex in ¥\ M. Now choose U=0U(p)eV and

k

defining functions (p,, ..., py)y of M on U so that d =Y. pf=:p holds, which
i=1
is clearly possible if U is chosen so small that the real normal bundle of M
has an orthonormal frame on U. According to Lemma 3.1.2(2), there is
poeﬁml\[ with b(p)=b(p,), and from Theorem 3.2.1 we get a sequence
(x,)yex= UNM converging to p, such that %,(x,)=%32,(x,) has d+b(po)=d
+b(p) positive eigenvalues at each x,. So, for x:=x;e U\M =W\ M, there is
a complex linear subspace L,c T;°C", dim¢ L,=d+b(p), where &z, (%)L, is
positive definite. If now @, denotes the real hypersurface Q,:={zeU|d%(2)
=d(x)} and if L,+=L, " T° Q,, then dim¢ L, 2 d+b(p)— 1 =g, and we see that

1
Zr0gat ¥ O)= " L2, L. OV eTQ,.

As this is strictly negative definite on L, &L 1ogalp (%) can have no more than
n—dim¢ L, =n—q non-negative eigenvalues — in view of Theorem 2.1, this con-
tradicts the fact that —log d% is weakly g-convex in x. []

3.2.3. Corollary. If McC" is a totally real smooth submanifold, then C"\M is
not locally (n— 1)-complete.

3.3 A negative result for non-generic CR-submanifolds

If M is non-generic, the dimensions of the holomorphic tangent spaces of the
manifolds M, introduced in the previous section may possibly be smaller than
ranke T'°M, and one can no longer identify the Levi form of p with the Levi
form of a suitable function p, in directions tangential to M,. However, the
extra terms that occur can be controlled, and one obtains an analogue of Theo-
rem 3.2.1:

3.3.1. Theorem. Let M = C" be a non-generic CR-submanifold of real dimension
dimgM =m, k:=2n—m its real codimension, d:=corankc T'°M, peM and let
b(p) be the index of convexity of M at p. Then, for any choice of defining functions
(P15 ---» P}y for M near p, there exists a sequence (x,),=U\M converging to
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k
p such that the Levi form of p:==) p? has d+ b(p) positive eigenvalues at each
point x,. i=1

Proof. Let (py, ..., py)y be defining functions of M on the open p-neighborhood
k

UcC" and p:=) p?. As M is non-generic, d <min {k, n}, and we can assume

that i=1

dpi(x)

=dVxeU
0z; )1§i§n:l§i§d

rank (

holds on a sufficiently small neighborhood T €U of p. Now define, for xe U,
M, ={zeU|p,(2)=p,(x), ..., pa(2) = pa(x)} = T,

and put M:={zeU|p,(z)= ... =py(z)=0}. Then M, =M VxeU M, and for all

xeU, M, is generic of type (2n—d,n—d), containing M,={zeU|p;(z)

=p;(x)Vi=1, ..., k} and satisfying T,)° M = T,)° M V je U n M. Arguing with the
d

function p:=}) pteC*(0) as we did with p in the proof of Theorem 3.2.1,
i=1

we find a p-neighborhood ¥, =¥, (p)eU and a constant ¢, >0 such that

k
1) | VxeVi: L, m+ X pix) L, )0, mZcy-linll? Vae(TH M)

i=d+1

holds.
As in the proof of Theorem 3.2.1, we choose aeR*\ {0} such that the Levi
k

form of p,:= )" o;-p; is positive definite on a b(p)-dimensional complex linear
i=1

subspace L,= T,'°M = T,}° M, and smooth sections o, ..., 0Oy Of the bundle

nyu= LJ {x} X 720 Nax, ra[ﬂ(c3*0==n__d,

xel

such that L,=spanc{c,(p), ..., 0, (p)}. Again, there is an open neighborhood
V,=V,(p)€U and a constant >0 so that, for each xeV,,
L,:=spanc¢{o,(x), ..., 64, (x)} = T}° M, is b(p)-dimensional and

@) VxeVy: £, (3 DzceE)? VEeL,

is satisfied.
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Now, for xe V; "V, and &:=( +neL, ®*(T!° M,)*,

k k
L0 H=%0mm+2 Y pix) L, (x)0nn)+4Re Z pi(x)- £, (x)(,m)

i=d+1 i=1
k k n ) 2
$23 o 506042 3 |3 B0 )
i=1 i=d+1lv=1 ¥

k k
2cp-nlP+4Re Y pi(x) L, () +2 ) pilx) £, () 0)

i=1 i=1

in view of (1'). The right-hand side of the above estimate is exactly the same
sum of terms which was estimated in the proof of Theorem 3.2.1 after the
consideration of (1); repeating these arguments, we conclude the proof of Theo-
rem 3.3.1. O

Obviously, applying Theorem 2.1, one gets a result for non-generic CR-
submanifolds which is completely analogous to Theorem 3.2.2:

3.3.2. Theorem. Let M = C" be a non-generic CR-submanifold, d:=corank¢ T°M,
peM and b(p) the local index of convexity of M at p. Then, v(p; M)=d+b(p),
i.e. C"™\M is not locally g-complete at p for q=d+b(p)— 1.

4 Positive results on the local g-completeness of C*\ M
We will first generalize the local version of Barth’s [2] results (which was men-

tioned in the introduction of this paper) to complex foliated CR-submanifolds,
using methods of Peternell [9].

4.1 Complex submanifolds and complex-foliated CR-submanifolds M < C"

If

2

}1‘}" Z xi~)7,~

i=1

(1+ » |x,-|2)~(1+ » |y,~|2)’

i=1 i=1

df: C"xC"—>[0,1], df(x,y):=1—

then hf:=—log(d")eC*((C"x C")\4) (where 4 again denotes the diagonal in
C"x C", and h" is n-convex near but outside of 4 (see [9]). The Fubini distance
of points in C" to a smooth submanifold McC" is given by dy:
x—inf{d"(x, y)|yeM}, xeC", and there is a neighborhood U of M so that
dEeC®(U\M) and ddf(x)#0VxeU\M (see [2]). From these facts we will
derive:

4.1.1. Theorem. Let M =C" be a smooth submanifold, pe M, h*, d}; as before.
Let KcC"x C"\4 be a compact set so that h* is n-convex outside K, and
V=V(p)=C" a sufficiently small open neighborhood of p so that dy e C*(V\ M)
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and (V\M) x (VN M)<=(C" x C'\A)\K. Let d}; ., denote the Fubini distance of
points in Vto MV, and let xe V\M, ye VA M satisfy d&; ., (x)=dF (x, y).

If there exists an s-dimensional complex manifold A,cM passing through
YEA,, then the function —log(d; .v) is (n— s)-convex at x.

Proof. Given xe V\M and ye¥Vn M, choose open neighborhoods U= U (x)&
VAM and W= W(y)c C" such that A,nW=M nVand U x W&(C" x C"\A)\ K.
Then, the function h*: U x W— R, h:=—logdF, is n-convex in U x W, and so
i Ay« 4, its restriction to the complex manifold U x 4,. As sup Ay « 4, <0,
the function

g: U-R, g(u):=sup{—log(d”(u,v)|veA,}

has an (n—s)-convex support function at x (see [9, Lemma 4]). But g itself
is differentiable at x, so g is (n—s)-convex at x and on a small neighborhood
U=U(x)€U of x. At the same time, g is a support function for —log(d%;.v)
at x; therefore, —log(dk;.y) must be (n—s)-convex at x, and the proof of Theo-
rem 4.1.1 is complete. []

An immediate consequence of Theorem 4.1.1 is:

4.1.2. Corollary. Let M <C" be a CR-submanifold and pe M. If, near p, M is
Joliated by s-dimensional complex manifolds, then C"\M is locally g-complete
at p for qg=n—s.

Remark. In view of Theorem 3.2.2 and Theorem 3.3.2, the result in Corollary
4.1.2 is optimal in the case of a complex submanifold M cC" as well as in
the case of a maximally complex foliated CR-submanifold M = C". The following
examples show that the situation is different if M is not maximally complex
foliated:

4.1.3. Examples. For n=4, the real hypersurfaces

M ={2€C"||2,- o + 1z 1| + |22 — 1=, ()= 0},
Myi={2€C"||z, o~ |21 +]2,* — 1= 0, () =0}

are foliated by (n—3)-dimensional complex manifolds near p:=(0, ...,
0,1)eM; " M, so by Corollary 4.1.2, C'\ M, and C"\ M, are locally 3-complete
at p.

The local index of convexity of M, at p is by, (p)=2, therefore by Theorem
3.2.2, v(p; M,)=3. For v(p; M,) we only know 2=v(p; M,)<3 as EMz(p)=1.
The following results will enable us to see that v(p; M,)=2 is correct.

4.2 A positive result for generic CR-submanifolds M = C"

In the case of a generic CR-submanifold M =C”, the lower bound for v(p; M)
given by Theorem 3.2.2 is an upper bound for v(p; M) at the same time; we
show:

4.2.1. Theorem. Let M<C" be a generic CR-submanifold, d:=corankc T'°M,
peM, and b(p) the local index of convexity of M at p. Then, C"\M is locally
g-complete at p for q:=d+b(p) which means that v(p; M)<d+b5(p). Actually,
v(p; M)=d+b(p) in view of Theorem 3.2.2.
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Proof. For d=n, the statement is trivial. For d <n, we have d =codimg M because
M is generic; the proof is done in two steps described by the following theorems:

4.2.2. Theorem. Let M cC" be a generic CR-submanifold of real codimension
k,peM, (py, ---s P deftmngfunctwnsfor M on the open neighborhood U = U (p)

of pin C", and p:= Z p?. Then, there is a ball B=B(p)cU centered at p and
i=1
a constant ¢, >0 such that for all xe B\M:

(1) The level set Q. :={zeU]|p( z)—p(x)} of p is a real hypersurface
(2) Vr’e('I;lOQ) g-logp(x)(r’, ) ( ) HV[“Z

4.2.3. Theorem. Let M = C" be a generic CR-submanifold of type (m,£), f{ =m—n

>0, k:=codimg M, d:=corankc T'° M, pe M and b(p) the local index of convexity

of M at p. If then (py, ..., pu)y are defining functions of M over U=U (p)=C"
k

and if p= Z p?, it follows:

(1) There is a p-neighborhood UcU so that M,:={ze Ulp,() pi(x) Vi
=1, ...,k} < U is a generic CR-submanifold of type (m, ¢) for each xeU.

() There is a ball B=B(p)€U centered at p and a constant c¢,>0 such that,
at each point xe B\M, there is a complex linear subspace W< T,}° M, dim¢ W,
>¢—b(p), such that

g—logp(xhwx(Ca C)g —Cy ”C”z

Theorem 4.2.2 and Theorem 4.2.3 imply Theorem 4.2.1 as follows:

Given defining functions (p;, ..., py for M over the open p-neighborhood
U=U(p), choose a ball B= B(p)CU which is so small that the statements of
Theorem 4.2.2 and of Theorem 4.2.3 hold simultaneously. Then,

a?—logp(-’c)(é’ 6)': g—logp(x)(C) C)+$—logp(x)(',’ 'I)+2 Re eg—logp(x)(Ca ’1)

for xe B\M and for &:={+neW,®*(T.!° Q,)*. Estimating the first two terms
on the right-hand side by Theorem 4.2.2 and by Theorem 4.2.3 and observing
that

Rl NS
| logp(x)(‘: ")lfl/p—(;cj ”CH “’7“

for a suitable constant ¢; >0, we obtain

1 1
L 10 ()6, O 2 —Cl'|\C||2+Cz-p(x)'H'Illz—203'—pm' ICH- ml

A 2 2
Z—(ei+=—=) IClI* = =<l
C2

If now @eC®(B) is a strictly plurisubharmonic exhaustion function of the ball
B, then the function

¥: B\M >R, y(x)=—logp(x)+2c|x[*+o(x),
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is a smooth (d + b(p))-convex exhaustion function of B\M.
So, it suffices to prove Theorem 4.2.2 and Theorem 4.2.3.

Proof of Theorem 4.2.2 Given defining functions (g, ..., p)y of M over U
=U(p)=C", the vectors 0p.(p), ..., 8 pi(p) are lmearly mdependent in the holo-
morphic cotangent space (T,,° C")* of C" at p as M is generic. Let the coordinates
of C" be chosen such that at p,

{@pi(p), apj(p)>=5ij7 1=i,j<k,

where (, > denotes the unitary product which is induced on (T,'° C")* by the
euclidean metric. If now V=V (p)cU is so small that 0p,(x), ..., 0pi(x) are
linearly independent at each xe V] then dp(x)+0V xe '\ M, so Q, is a real hyper-
surface. A basis for (T”’ Q) ={neTr°C"|<{n, {>=0Ve T“’.Q .} is the vector

n(x):= Z 6p(x) 6 , X€ V\ M, and the square of the euclidean length of 5(x)
is just

% |op(x)]? k . A
®  eir= T 2 Y <00 20,00,

v=1 v i, j=1

By continuity, for every ¢>0 there is an open neighborhood U,=U,(p)<=V of
p such that

@ Vxel;: [<0pi(x), 0p;(x)>—d;l<e

holds; for the moment, let us fix an ¢y <1 and an accompanying U,. If xeU \M
and n:=n(x)e(T1° Q x)* we obtain:

Igl* (> 8
(3) E_logp(x)('l,ﬂ)gp(x)(p(x) ”'ﬂ le

i)/ p(x)-c

(x)<{0pi(x). dp J(x)>

ji=1
p(x)

k

where c::max{ Y 1% WE Ollyel,, EeTrOC, ||&]| = 1} If we were now giv-
i=1

en a constant y >0 satisfying

o> 8 &
@ (,,(y) Mo &,

k 2
¥ p,-(y)<ap.-(y),ap,~(y>>‘ );y>0\/yeum\M,

=1

then

2
L g (0,102 (1= 21} )0
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would follow from (3). If we then choose ¢,>0 and B=B(p)€U,, so small
that VxeB: (y—2-])/p(x)-c)2c, >0, we get

& logp(x)(na x)l

cy
)
and the proof of Theorem 4.2.2 is complete.

Indeed, (4) holds if the above ¢, is small enough:
k

For any yeU,, [n(0)[*>=4 Y. pi(y)-p;(y)-<0p:(y), 0p;(y)> according to (1),
i,j=1
which would equal 4p(y) if the vectors dp;(y), 1 £i<k, were pairwise orthonor-
mal at y. But the vectors dp;(p), 1Si<k, are palrwise orthonormal; so if g
is appropriately small, we can always achieve ||n(y)|*=3p(y) VyeU,,. By similar
arguments we can see that

2

<3p(Vyel,

>

i=1

Z p;i(W<8p; (), 0p;(y)>

j=1

if &, is small enough, so we get

2 8
(Hn(y)ll . 5

p(»  nWI* 5

Z pi(1<ap;i(y), dp;

j=1

7 16
);(2 7p(y) ZP(y))_'DO

for all ye U, \ M. The proof is complete. []

Proof of Theorem 4.2.3 (1) follows immediately from the fact that the matrix

(g‘g) has maximal rank k at p. If (p,, ..., pi)y are defining functions for M
il

k
on U=U(p)=C", 0py A ... AOpyp=+0, and p:=) p;, we can locally describe
i=1
the euclidean distance d to M in terms of the functions p;, so there is a small
neighborhood V=V (p)€U of p and a constant &> 0 so that on ¥, we can control
d, by the estimate

I\

(1) A4 <é-p.
Now choose a ball B=B(p)€V so small that b(p)=max {b(p)| je M n B} holds
(see Lemma 3.1.2(1)) and so that the vector bundle # = {x} x T,'° M, has

xelU
an orthonormal frame {(,, ..., {;} over B. Then, for any xe B\M and for every
Ce ']';10 M

) L rogs om0 =—;1/—(—i)5- L, (ron (G0
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k
holds for p,:== 3 o; p;, o;:= pix) ,1Zik, a=(ay, ..., a)eR¥, ||a|| =1. In order
=1 ) plx

to estimate the Levi form of p,, fix a point fe M with d,,(x)= | x— j|. By defini-
tion of b(p) and by choice of B, £, (P)riom has at least /— b(p) non-positive
eigenvalues which means that there are linear subspaces Wy, Wy < T,'°M with
the following properties:

(@) %, (P)w; isnegative definite (c) Wy LW,
(b) £, B)Cm=0Y{eWp,neT°M (d) dimc(WY @ W,")=¢—b(p).
Now define
'3 3
V°=={7:eC’ '21 ri~Ci(ﬁ)eVVp°}; V‘:={aeC’ Z o;-C;(P)e Wp‘},
i= j=1

2 4
and put Wx°=={C= Y 1-lix)|Te V°}, W, =={n= Y o;-¢(x) oeV‘}. Then,
i=1 ji=1
dim¢ W) =dime W), dime W, =dim¢ W,™, WOLW,”, and W,=W2@®
W,” =T!° M, is a subspace of dimension at least £ —5(p). Take any ¢(x)e W2,

r’(x)EVVJN |I€(x)” = H”(x)” =1 Then there are T=(Tls BEay T()Evos U=(Gla L | 0{)
¢ 1

eC’, |t| =l =1, such that &(x)= Y 7;-{;(x), n(x)= Y. 0;-{;(x) hold. Putting
¢ i=1 j=1 ¢

E(D):=) t-Li(P)e Wy, according to (b), one obtains for 7(p):= Y 6;-¢;(p) that
i=1 i=1

%, (B)(E(P), n(p))=0. Now define

¢ 4

fona: B—C, fa.f,g(z)==z,,<z)(z 44, Y o cj(z)).

i=1 j=1

Looking at the power series expansion of the smooth function Re Ju.r.c about
D, one obtains

() [Re Z, ()EX), 1N =IRefyc,e (NS [x =B (0, a W) + 18z z, 0 (W)1])

for a suitable w on the straight line between p and x. The norm of df, . ,,
0f,..,s can be estimated uniformly on B, independent of the parameters o, t,
o. In view of (1) and (3), we conclude:

@) [Re %, (x)E® N2 p(x)VEX WL, n(x)e W, [E)] = ()] =1
2

where the constant ¢; >0 does not depend on a.
If, however, n(x)e W,™, |n(x)| =1, there is a unit vector 6=(a, ..., 6,)eV "
'

with n(x)= ) 0;-{;(x). By (a), we know that %, (5)(7(p),n(5)<0 for 5(p)
4 ji=1

= 0, L;(PEW, .
o)

J

Case 1: &, (x)(n(x),n(x) <0.
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Then, jn view of (2),
2100 (X)) = —ﬁ L. ()00 ()20 —c;.

Case 2: &, (x)(n(x), n(x))>0.
As %, (P)(n(P),n(p) <O, there must be a w on the straight line between p
and x with %, (w)(n(w), 7(w))=0. Just as in (4), we find that

2., 1N <51/ P ()

which, in view of (2), again yields
2
<. logp(x)(”(x)s r](x)) = _m ,%a(X)(V](X), i’](X)) g —Cy.

So, we always have

) L 10gp(X)N(X), (X)) 2 —c VX)W, [In(x)|=1.

Combining the results above, we obtain the desired estimate for the Levi form
of the function —log p on W, : if (=¢+neW, =W @+ W, , then

L 10go(C O Z =  (IEI2 + In1%)= =, 11C)12

as ¢ and # are orthogonal.
This completes the proof of Theorem 4.2.3 (and of Theorem 4.2.1 at the
same time). []

4.3 A positive result in the general case of non-generic CR-submanifolds M < C"

Each non-generic CR-submanifold M = C" can locally be described as a trans-
verse intersection of generic CR-submanifolds, the holomorphic tangent spaces
of which coincide with the holomorphic tangent spaces of M. This is stated
in the lemmata below:

4.3.1. Lemma. Let M c C" be a CR-submanifold of type (m, {), non-generic, pe M,
k:=codimgM and d:=corank¢ T'° M. Then there is an open p-neighborhood U
=U(p)=C" and defining functions (py, ..., pJu of M over U such that for every
subset I {1, ..., k}, [I|=d, the family {0 p;(p)|i€ I} is complex linearly independent.

Proof. If (,, ..., pr)y are defining functions for M on an open neighborhood
U=U(p) of p in C" with
rank (ﬁ&@

0z; )1Si§d;1§j§n

=d,
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(ﬁl)
Pr
where E, or E, _;denote the identity matrices with d or (k—d) rows and columns,
will yield defining functions (p,, ..., p)y of M over U with the desired properties;
for this purpose, 4 has to be a real (k—d) x d-matrix with rank A=k—d and
a;#0Vi=1,...,k—d, Vj=1, ..., d, and £¢>0 has to be sufficiently small — then,

in view of the Steinitz exchange principle, any subfamily of length d of
{0pi(p), ..., pi(p)} is complex linearly independent. []

The following is now obvious:

4.3.2. Lemma. Let McC" be a CR-submanifold of type (m,/), non-generic,
k:=codimg M, d:=corank¢ T'° M, and pe M. Then there is an open neighborhood
U=U(p) of p in C" and defining functions (p,, ..., pr)y of M over U such that:

(1) For any Ic{l,...,k}, |I|=d, and for each xeU, M{:={zeU|pi(z)
=p;(x)Viel} is a generic CR-submanifold of type (2n—d, £).

() If for arbitrary I {1, ..., k}, [I|=d, one defines MP:={ze U |p,(z)=0Viel},
then MO =M and T,'® M =T,'° MY for every peU n M.

Now we are ready to prove a counterpart of Theorem 4.2.3 in the category
of non-generic CR-submanifolds M = C":

4.3.3. Theorem. Let M cC”" be a CR-submangifold of type (m,¢), non-generic,

k:=codimg M, d:=coranke T'°M, peM, and b(p) the local index of convexity

of M at p. If an open p-neighborhood U=U (p)=C" and defining functions

(P15 ---s pu)u for M on U are chosen with the properties described in Lemma
k

a transformation of the form

() 2 )

k

432 and if p:=) p?e€C*(U), then with the notations of Lemma 4.3.2, the follow-
ing holds: i=1

There is a ball B=B(p)€U centered at p and a constant ¢, >0 such that at
each xe B\M and for every {1, ..., k}, |I|=d, there exists a complex linear
subspace W = T}° M of dimension dime WP = ¢ — b (p) such that

g—logp(x)lwg)(é é)g —Cy “6“2

Proof. Let I<{1, ..., k}, |I|=d, be fixed and put I':={1, ..., k}\I. As in the
proof of Theorem 4.2.3, choose a ball B” = B'"(p) centered at p so small that

(1) there is a constant ¢>0 with d3;(x)<¢- p(x) Vxe BD,

(2) the vector bundle #:=|() {x} x T})° M has an orthonormal frame

{(Cl""aCt} on B(I)’ _er
(3) b(p)=max {b(p)|peM ~ BD}
hold, where d,, again denotes the euclidean distance to M. Now, if xe B\ M,

k
EeT!°MP, and if p,=) o-p;, aizz—pi(—x‘v‘1§i§k, o=(ts, ..., )R,
i=1 ) p(x)
]| =1, we obtain
4 2

%, () ).
Vo) o

n 6 i
2 gz(:‘) o

2
Loiony)E D2 — 15

iel’lu=1
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As has been shown in the proof of Theorem 4.2.3, there is a complex linear
subspace W< T!° M of dimension at least /— B(p) and a constant ¢{?>0
(independent of x) such that

2 K& O D€

74 p(X)

holds; the other term satisfies a similar inequality on the whole of T!° M{P,
namely

2
y 90 e s oz veeTso Mo

ﬂlaz

3

p(x) Foop)

where the constant ¢4’>0 does not depend on x and is determined by the
maxima of the second order partial derivatives of the function

2
¥ 229,000

r=1

ngZZ

iel’v=1

on the compact set B'"", taking into account the fact that g vanishes of second
order on B n M. So putting ¢ :=c{ + c{’ > 0, we obtain

L 105w (&, &)= — - [I&]1%,

and the statement of Theorem 4.3.3 is true for ¢, :==max {c¢'"} and B:=NB". []

It is quite easy to show that there is a constant ¢;>0 and a ball B=B(p)
centered at p such that the estimate

2¢y

I/ p(x)

holds at each xe B\M and for every I<{l, ..., k}, |I[|=d. If we then had an
analogue of Theorem 4.2.2 in the category of non-generic CR-submanifolds
M < C", using Theorem 4.3.3 we could conclude, just as we did in the proof
of Theorem 4.2.1, that the complement of a non-generic CR-submanifold M = C"
of CR-codimension d were locally (d+ b(p))-complete at pe M. However, the
complex gradients dp(p), ..., 0p;(p) being complex linearly independent was
essential for our proof of Thcorem 4.2.2; as this is no longer fulfilled in the
case of non-generic CR-submanifolds we will not have a substitute for Theorem
4.2.2 here.

So, in the general case of a non-generic CR-submanifold M < C", Theorem
4.3.3 only implies:

4.3.4. Theorem. Let M cC" be a non-generic CR-submanifold of type (m,?),

k:=codimg M, d:=coranke T'°M, peM and b(p) the local index of convexity
of M at p. Then, C"\M is locally g-complete at p for q:=d+ b(p)+1 which means
that v(p; )<d+5(p)+1 More precisely, in view of Theorem 3.3.2,
d+b(p)<v(p; M)<d+b(p)+1.

It remains an open question whether v(p; M)=d+b(p) or v(p; M)=d+b(p)
+1 is true in the general non-generic case.

2Re L 10g, ()12 — Ci-Inll Ve T MP,VpeT° C”
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5 The index of convexity as a CR-invariant

From the preceding sections we know that the local g-completeness of the com-
plement of a CR-manifold M which is imbedded in C" is determined by the
CR-codimension of M and by the local indices of convexity of M. The results
presented here do not depend on the imbedding M < C"; in order to realize
this, we first give a geometric interpretation of the index of convexity.

5.1 A geometric interpretation of the index of convexity

If McC" is a CR-submanifold, peM, T,M the real tangent space of M at
p, and if J: T,C"— T, C" denotes the complex structure map, the CR-tangent
space of M at p is given by HT,M:=T,M nJT,M.

We define the intrinsic Levi form of M at p following [3]:

5.1.1. Definition. The (intrinsic) Levi form of M at p is the map
i —
Lulp): HLM=TOM > T,M/HT,M, % (p)(0)=r (5 [L.L] (p)),

where n: T,M—»T,M/HT,M is the quotient map and L is a smooth
T'°M-valued vector field satisfying L(p)={ (this definition does not depend
on the choice of such an Le (M, T'° M), of course).

Now let V,cT,C" be any real hyperplane containing T,M and let
HYV,:=V,nJV, denote the maximal complex linear subspace of V,, then, for
m:=dimg M, it is clear that dimg(HV,n T,M)=m— 1. So, the following makes
sense:

5.1.2. Definition. Let M = C" be a CR-submanifold, pe M and V,c=T,C" a real
hyperplane containing T,M such that dimg(HV,nT,M)=m—1 and T,M is
split up into the half-spaces (T, M)*, (T,M)~ by HV,nT,M.

M has the property G;(p) with respect to V, if there is a complex linear
subspace I,=T,°M of dimension j and Se{(T,M)*,(T,M)"} such that

%[L, L](p)eS holds for all Le (M, T'° M) that satisfy L(p)e!,\{0}.

In the above situation, put &(V,):=max {jeN|M has the property G;(p) with
respect to V,}; for hyperplanes V, < T, C" satisfying T, M < HV, define &(V,):=0.
If ¢(p):==max {¢(V,)|V,= T,C" is a real hyperplane so that T, M < V,}, then we
obtain the following geometric notion of the index of convexity:

5.1.3. Lemma. Let M <C" be a CR-submanifold of type (m,¢), peM, b(p) the
index of convexity of M at p, and let ¢ be defined as above. Then b(p)=c(p).

Proof. First we show b(p)=c(p).

If b(p)>0, choose defining functions (p4, ..., p)y of M on an open p-neigh-
borhood U=C" and a complex linear subspace I,cT,°M of dimension
dim¢ I,=b(p) such that %, (p);, is positive definite. Then, M ={zeU|p,(z)
=0}>(MnU)is a real hypersurface, and T,M is a real hyperplane containing
T,M. As %, (p)i1,\0>0, we conclude that _?M(p)|T;oM$Oe’1},J\7I/H7},M and

therefore 7;,M¢HT,,I\7I; so dim,(HT,,MnTpM)=m—l, and there is
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ne T, M\HT,M such that T,M =(T,M n HT,M)@® spang{n} holds. If now L
is a T’OM-valyed vector field with L(p):=(elI,\{0}, then there are unique
veT,M nHT,M, v'espang {1} satisfying

SILLIp)=0+v

where v':=a-%, (p)({, {)-n and the constant aeR\ {0} depends on the choice
of n.

If (T, M)* denotes the halfspace of T, M with respect to (T, M n HT, M) that
contains v, then

%[W, W1(p)e(T,M)* YWel (M, T'° M) satisfying W(p)eI,\ {0},

as the Levi form of p, at p does not change sign on I,,. So, &(T, M) = dim, 1,=b(p)
which implies c(p) = b(p), and it remains to show that c(p) <b(p).

If ¢(p)> 0, choose a real hyperplane V,< T, C" with V,> T,M and c(p)=¢(V,).
The real conormal space of M at p, N,M, obviously satisfies
N,M > {we(T, C")*|w(v)=0VveV,}=:(V;")*. Given defining functions p,, ..., p,
for M near p, the family {dp,(p),...,dpi(p)} is an R-basis of N,M; as

k

dimg(V;")*=1, there is a=(ay, ..., i)eR*\{0} such that ) o;-dp;(p) spans
k i=1
(ViH)*. So, (V;y*=N,M and V,=T,M for p,:== Y «; p;and M:={zeU|p,(z)=0}.
i=1
Let now I,=T,)°M be a c(p)=¢&(V,)-dimensional complex linear subspace
and let (T,M)" be the half-space of T,M with respect to T,M nHT,M such
that

%[W, W1(p)e(T,M)* VWeI' (M, T'° M) satisfying W (p)eI,\{0};

then, %, (p);;, is either positive definite or negative definite. Anyhow, we find
a linear combination pp, Pe{xa}, of the defining functions p,, ..., p, of M
such that &, (p)rioy has at least c(p) positive eigenvalues, clearly c(p)<b(p)
in view of Lemma 3.1.4(2).

This completes the proof of Lemma 5.1.4. []

5.2 The behaviour of the index of convexity under CR-transformations

From the geometric notion of the index of convexity, one can easily conclude
that it is a CR-invariant. First we observe that the Lie bracket fulfills the follow-
ing compatibility relation:

5.2.1. Lemma. Let M,, M, < C" be smooth submanifolds, ¢: M, M » a diffeo-
morphism and ¢S$: I'(M,, T*M)—>TI'(M,, T°M,) the smooth map between
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the sections of the complexified tangent bundles of M,, M, which is induced
by @. Then, for every Z, Wel'(M,, T*M,):

[0$Z, oS W]=0S([Z, W)

Now suppose that M,, M, carry additional structure, namely that there
are CR-structures T'°M,cT M, and T'°M,cTM,. If p: M, > M, is a
CR-diffeomorphism, then the induced C-vector bundle isomorphism ¢ :
T€M, - T®M, restricts to a C-vector bundle isomorphism

@S riom, s T'°M, > T'°M,

between the holomorphic tangent bundles of M, and M. This is used to show:

5.2.2. Theorem. If M,, M,<C" are CR-submanifolds of type (m,¢),U,= U, (p,),
U,=U,(p,)=C" open neighborhoods of the points pyeM,, p,eM, and if ¢:

U, "M, —— U, "M, is a CR-diffeomorphism with ¢(p,)=p,, then b(p,)=b(p,).

Proof. We only have to show b(p,)<b(p,), then the statement of the theorem

follows by analogous arguments for ¢ ~': U,n M, = I v M.

If b(p1)>0 from Lemma 5.1.3 we are given a real hyperplane V, < T, C",
T, M, <V, , such that b(p,)=¢(V},). By definition of é(V;,), there is a complex
linear subspace J,, = T,.° M, of dimension b(p,) such that for all T'°M,-valued

vectorfields L satisfying L(p,)eJ,,\{0}, the Lie brackets —[L L] are always

situated in the same halfspace of T, M, with respect to HV, nT, M; let

this halfspace be denoted by (7, )f
As the CR-diffeomorphism (p: U1 N M, — U, M, induces a C-vector bundle
isomorphism

@5 T'Myp, > T My,

it follows that J,,:==¢$(J, )= T,.> M, is a complex b(pl)-dimensional linear sub-
space. If now YeI"(Uanz, ioMz) is a vectorfield satisfying Y (p,)eJ,,\{0},
then the vectorfield S '(Y)=:Lel(U,n M, T'°M,) satisfies L(p;)eJ,,\{0},

and
i = i -
L LR P10 =08 (5 11 L10)
is situated in the halfspace
(Tp, M) = 5(Ty, My)" =0, (T,, M)*
of T,, M, with respect to the codimension 1 — real linear subspace

(pg(HVplme Ml)z(p*(HVPl mTPl Ml)cT}’z M.
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Putting V,,:=0{(HV,,)@spang{o} for any 0+oeT,, M;\¢,(HV, NT, M,),
one obviously obtains a real hyperplane V, <7, C" containing T,, M, which
satisfies &(V,,) =2dim¢ J,,=b(p,). It follows that

b(p;) = c(py) = E(VLZ)Zb(I’l),
(5.1.3) Def.

and the proof of the theorem is complete. []

6 Some globalizations of the local results

We conclude the article with some remarks on global consequences of the local
theorems proved in Chap. 4.

By means of Theorem 2.1 it is easy to see that, for smooth submanifolds
M <= (", there is no difference between local and global g-completeness of the
complement C"\ M :

6.1. Theorem. If the complement C"\ M of a smooth submanifold M = C" is locally
g-complete, then C"\ M is globally q-complete.

The equivalence between local and global g-completeness of C"\ M follows from
two facts:

C" has strictly plurisubharmonic exhaustion functions

There is an open neighborhood U= U(M)<C" of M and a smooth function
di on U satisfying d3 >0, M = {d}; =0}, such that the following holds: If C"\ M
is locally g-complete at pe M, then there is an open p-neighborhood V=V (p)c U
so that the function —log d3; ;.\, is at least weakly g-convex in Y\ M (see Theo-
rem 2.1).

If X is a complex manifold and M = X is a smooth submanifold, then local
and global g-completeness of X\ M are equivalent if [1] and remain valid
after substituting X for C". Now it is precisely the Stein manifolds that are
characterized by the existence of strictly plurisubharmonic smooth exhaustion
functions, so in order to see that an analogue of Theorem 6.1 is valid for submani-
folds M of Stein manifolds X, we only have to prove a generalization of Theorem
2.1;

6.2. Theorem. If X is a Stein manifold and M = X is a smooth submanifold, then
there is an open neighborhood U = U (M)< X and a function d%*: U - R satisfy-
ing M= {ze U |dy*(z)=0} and —log(d;*)e C*(U\M) so that the following holds:
If X\M is locally g-complete at pe M, then there exists an open p-neighborhood
V=V(p)= U such that —log(d*),y\u is at least weakly g-convex in V\ M.

Proof. It suffices to find an open neighborhood S > 4y of the diagonal 4y = X x X
and a function Y = —logy, ¥ =0, ¥,, =0 which is strictly n-convex in S\ 4y
such that

dy?: zinf{{(z, y)|ye M)

is smooth on an open neighborhood U=U(M)<c X of M; then, using Lemma
2.3 as in the proof of Theorem 2.1, it follows that the function —log(dX?)
=sup{y(+,y)|ye M} has the required properties.
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First, there is a neighborhood § of 4y and a function h: S >R with the
following properties (see [ 10, Theorem 3.1]):
(1) heC=(8), h=0, 4x={h=0} ~
(2) Forevery (x, x)e Ax one can find an open neighborhood V.= § and a function
0. C* (V,) such that —1og by 4, + Oxjv 4y 1S strictly n-convex in V\4dy.

The union U V.o Ay of all those V, is an open covering of Ay, and
(x,x)edx
we can choose a locally finite refinement {V;},., and functions 6;e C*(V)) such
that —log hyy \ 4y + 0 4 18 strictly n-convex in V;\ 4y for each jeJ.

Now define S:=| ) V;>44 and, given a strictly plurisubharmonic smooth
JjeJ
exhaustion function @ of X x X, choose a convex increasing function r so that
ro@—0, is strictly plurisubharmonic in V;\ 4y for each jeJ. Then the function

h s
Y :=—log (W): —log(y)

is strictly n-convex on S\ Ay and satisfies { =0 and Y125 =0.
The smoothness of the function d3?: z—inf{{/(z, y)| ye M} will follow from
the implicit function theorem, applied to

0 5]
(a—;lpl(201 yO)a -'-’a—fn(zo,,"o))=0,

where y,, ..., V. are real local coordinates of M at yoeM and where zoeX
satisfies (zo, yo)€S and dl’v(fz(zo)='/7(zo, yo) O

6.3. Corollary. If the complement X\M of a smooth submanifold M <X in a
Stein manifold X is locally g-complete, then X\ M is globally g-complete.

In the general case of smooth submanifolds M in complex manifolds X
which are not Stein one can no more expect that local g-completeness of X\ M
implies global g-completeness of X\M; however, if X is a compact complex
manifold such that for smooth submanifolds M <X, property keeps valid,
after substituting X for C" and strict g-convexity for the weak g-convexity of
the function —logd, in V\ M, then local g-completeness of X\ M implies global
g-convexity of X\ M. Such a result holds, for example, in projective space:

6.4. Theorem. If the complement P,\ M of the smooth manifold M in the n-dimen-
sional complex projective space P, is locally g-complete, then P,\M is g-convex.

Proof. According to [9] the Fubini metric df is n-convex near the diagonal
Ap, in P,xP\4p, , and the Fubini distance dj;: z—inf{df(z, y)|yeM} to M
is smooth near M (see [2]). As in the proof of Theorem 6.2 we obtain, applying
Lemma 2.3, a criterion which says that for each peM, there is an open p-
neighborhood U=U(p)<P, so that —log(d5)veym is g-convex. Choosing
U:= U U (p) an open neighborhood of M in P, and putting K:=P,\U, the func-
PEM

tion —log(d%) is an exhaustion function for P,\ M which is strictly g-convex out-
side the compact set K =P,\ M, and the statement of Theorem 6.4 follows. []
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By means of the smoothing techniques of Diederich and Fornaess in [4]
and [5], one can derive global j-completeness of P,\M from local g-complete-
ness of P,\M where, in general, §>q will be valid:

6.5. Theorem. If the complement P,\M of the smooth submanifold M in P, is
locally g-complete, then P\M is globally §-complete for q:=n—[g-]+1 where

[g] denotes the integer value of 1;

Proof. If P\ M is locally g-complete, then P,\ M is globally g-convex by Theorem
6.4 and as well globally g-complete with corners (see [9, Theorem 4]). Therefore,
Theorem 6.5 is an immediate consequence of the smoothing theorems of Dieder-
ich and Fornaess. []

Combining the Theorems 6.1, ..., 6.5 with the results of Chap. 4 one obtains
global theorems on the analytic convexity of complements of smooth submani-
folds M in Stein manifolds or in P,. We only have to observe that the index
of convexity is a biholomorphic invariant which is trivial in view of Chap.
5, and we have to substitute the local index of convexity b(p) of M at p by
b:=max {b(p)|pe M} and C" by a complex manifold X of dimension n in the
local theorems of Chap. 4.

Acknowledgement. The results published in this article are taken from the author’s doctoral
thesis [12]. It is a pleasure for me to thank Prof. Dr. Klas Diederich both for drawing my
attention to the problem and for his encouragement during the completion of this work.

References

1. Andreotti, A., Grauert, H.: Théorémes de finitude pour la cohomologie des espaces com-
plexes. Bull. Soc. Math. Fr. 90, 193-259 (1962)

2. Barth, W.: Der Abstand von einer algebraischen Mannigfaltigkeit im komplex-projektiven
Raum. Math. Ann. 187, 150-162 (1970)

3. Boggess, A., Polking, J.: Holomorphic extension of CR functions. Duke Math. J. 49, 757-784
(1982)

4. Diederich, K., Fornaess, J.E.: Smoothing g-convex functions and vanishing theorems. Invent.
Math. 82, 291-305 (1985)

5. Diederich, K., Fornaess, J.E.: Smoothing g-convex functions in the singular case. Math.
Ann. 273, 665-671 (1986)

6. Fritzsche, K.: g-konvexe Restmengen in kompakten komplexen Mannigfaltigkeiten. Math.
Ann. 221, 251-273 (1976)

7. Grauert, H.: Kantenkohomologie. Compos. Math. 44, 79-101 (1981)

8. Milnor, J.: Morse theory. (Ann. Math. Stud., vol. 51) Princeton, NJ: Princeton University
Press 1963

9. Peternell, M.: Continuous g-convex exhaustion functions. Invent. Math. 85, 249-262 (1986)

10. Peternell, M.: Algebraische Varietiten und g-vollstindige komplexe Rdume. Math. Z. 200,
547-581 (1989)

11. Schneider, M.: Uber eine Vermutung von Hartshorne. Math. Ann. 201, 221-229 (1973)

12. Schwarz, W.: Lokale g-Vollstindigkeit der Komplemente von CR-Untermannigfaltigkeiten
M < C". Dissertation, Bergische Universitit GH, Wuppertal (1989)






	
	Local q-completeness of complements of smooth CR-submanifolds.


