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Introduction and main results

Let us consider the following elliptic boundary value problem

(1) Au—30;(ay dw)=f(-,u,Vu) in Qx(0, o),
2 apVvou=g(-,u) on I x(0, o),
3) u=0 on I, x(0, c0).

Here Q is a bounded domain in R" with smooth boundary 0Q2. I7 and I,
are both open and closed subsets of Q. The outer normal on 09 is denoted
by v=(v!, ..., v".

We assume that the coefficients a;(x) are N x N-matrices, N =1, that they
depend smoothly on xeQ and that the uniform Legendre-Hadamard condition
1s satisfied, i.e.

a3 (x) &k, n,>0  forall xeQ, EelR™\ {0}, ne R\ {0}.

Note that problem (1)-(3) is a strongly coupled system of second order elliptic
boundary value problems.

fand g are given functions. We assume that they are smooth with respect
to all variables, i.e. fe C*(Q x RN x R",R¥) and ge C*(I; x RY, RY).

The elliptic problem (1)~3) is completed by the following dynamic boundary
condition

(4) dyu+ap v ou=h(-,u) on I3x(0, ),

and the initial condition

(5) u(+,00=z, on I3.

Here we assume that I3:=8Q\ (I U I) is not empty and that he C* (I3 x RN, R").

Moreover zoeB,, '/?(I3), where B, ,(I3), seR, pe(l, o0), denote the Besov spaces
over I3.
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Then we have the following local existence and uniqueness result for problem
(DH3).

Theorem 1 Suppose that p>n and that there is an increasing function q: R*
— R " and a constant ve[1, 1+ p/n) such that

1025 &I+ +D 05 f (x EMISq(ENA+Inl),  (x, & me@ xRY xR"™.

Then there is a 1o=0 such that for each z,eB), ''?(I3) and each A=7, there
exists a 0>0 such that problem (1)A5) possesses a unique weak solution
ueC ([0, 51, W, ()

Note that we only assumed growth restriction on f with respect to Vu but
not on f, g and h with respect to u.

The next theorem shows that we obtain maximal solutions, in the sense
that there are no proper extensions, provided suitable growth restrictions on
f with respect to (u, ¥ u) and on g with respect to u are satisfied.

Theorem 2 Suppose that p>n and that there is a constant M =0 such that

|62f(xa é’ r’)l ot |a3f(x’ éa 71)' é M for (X, é: }’[)EQ X RN X IRnN,
10,8y, OI=M for (y,&)el; xRN,

Then there is a 1,20 such that for each zoeB‘_””(l" ) and each 1=l there
exists a unique maximal weak solution ue C([0, t*), W,} (Q)) of (1)}~(5).

If the trace of the solution u is bounded in B , VP(I3), then u is a global
solution, i.e. ue C([0, o), W, (Q)).

Finally suppose that there is a positive constant ¢ with

() (G, Olscd+IE), (1, Oel xRN

Then the solution u exists globally.

A proof of the assertions above is given in Sects. 4 and 6 of this paper.

Last of all, let us mention that we also specify conditions (see (6.3) and
(6.4)) which imply global existence for any initial data z,e B}, '/?(I’3) — but which
allow a stronger growth rate for i than (6).

Equations of type (1)5) have been studied by several authors, cf. [11, 14,
18, 20, 24], see also [17]. In [20] Lions considered the following special case
of()(5): N=1,a k—éjk (Kronecker symbol), f=0, I =I, =0 and h(&)= —|{|°<,
p>0. Using monotonicity and compactness methods he proved existence and
uniqueness of global solutions of the following problem

Au=0 in 2 x(0, o),
du+0,u+|ufu=0 on Q2 x(0, 00),
u(-,0)=z, on 0Q.

In this context, Lions introduced the following operator # ¢:=0,®, acting on
B2(8Q), where @ is the unique solution of the following Dirichlet problem

AP=0 in Q, &=¢ on IQ
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In a recent paper [18], Hintermann investigated the operator # (in a very
general situation) by means of the theory of pseudo-differential operators and
the Mikhlin-Hormander multiplier theorem. The main result in [18] shows that
— % generates an analytic semigroup on B}, /?(09), l <p<oo, and that the
linear problem

(7 0;(aj Ou)=f in Qx(0, 00),
dyu+ayvou=h  on dQ2x(0, ),
u(-,0)=z, on 0Q,

is well posed in W72(Q), ie. for each zoeB}, '/?(02) there is a unique solution
u(zo,*) and [(zo, t)—>u(zq, 1)]e C(BE, ''7(0Q) x [0, 00), W} ().

It is the main purpose of this paper to develop a natural extension of the
results in [18]. In particular, we show that the closure of —% in B, '7(0Q)
if s< 1, respectively the maximal restriction of — % in B}, '/?(0Q) if s> 1, gener-
ates an analytic semigroup on B}, '”(d€) and that problem (7) is well posed
in W$(9Q) for seR. This weak formulation turns out to be very useful, essentially
for two reasons: First of all, in this weak setting it is possible to treat the
general case of (1)+(5), where not only h but also f and g are given nonlinear
functions (with respect to u, of course).

In [14] only linear problems of type (1}+5) are considered. In [18] Hinter-
mann investigated problem (1)«(5) in the situation where I} =1, =0 and where
f does not depend on (u, ¥ u). Some nonlinear problems possessing special struc-
tural properties have been studied in [11, 20, 24]. Moreover, it should be men-
tioned that only in [18] the situation of strongly coupled systems is considered,
whereas in [11, 14, 20, 24] the case N =1 is treated.

As a second advantage, the weak formulation turns out to be very useful
in the discussion of the dynamic behaviour of problem (1)«5). In particular,
we show that the solution of (1)—(5) exists globally, provided an a priori bound
for y;u in B, '/?(I3) is known. Here, 75 denotes the trace operator with respect
to I3.

It should be mentioned that there are different approaches to problem (7)
using Hilbert space methods. For example, in [24] the coerciveness in W (Q)
of the corresponding Dirichlet form is employed.

Recently, K. Groger informed the author that it is possible to associate to
problem (7) an equation of the following kind

®) (A+A+Bu=f+y*h, 0<i=T, (yu)0)=z,,

in the Hilbert space Vy., where V;:=L,((0, T), W' (Q)).
Here, ye 2 (W, (Q), B} (09)) denotes the trace operator, y* its dual operator
and A the extension on V. of the elliptic part in (7). B is an appropriate extension

of the operator C'([0, T, W} (Q)) - V1, ul—»dit(y*yu). Then one can show that

A+ A: Vy— Vy is monotone and coercive and that B: D(B)< Vr— V7 is maximal
monotone. Thus the general theory of maximal monotone operators (cf. [15])
ensures the existence of a unique solution ue Vy= L, ((0, T), W, (Q)).

There are significant differences between these Hilbert space approaches and
the one used in the main part of this paper.
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First of all, the latter setting takes the dynamical properties of the problems
under consideration — like global existence, blow up behaviour or stability of
solutions — better into account than the more or less stationary appraoch of
(8). For example, one should observe that the continuity of solutions with respect
to time as well as the continuous dependence of solutions with respect to the
intial data is an immediate consequence of our theory. Note also that weak
solutions obtained by Theorem 1 are Holder continuous with respect to the
spatial variable, since W, ()<= C*(Q) for nue[0, 1—n/p]. In contradistinction to
this fact, it is well known that weak solutions, in the W;' (€2)-sense, of strongly
coupled systems are not Holder continuous, in general.

Secondly a “pure” Hilbert space approach is certainly the suitable setting
to treat linear problems. However, in nonlinear problems it requires to assume
growth restrictions, particularly for 4 in the problem considered here.

Finally, we mention that for certain inhomogeneities f and g the Legendre-
Hadamard condition can be replaced by the weaker assumption that the elliptic
part in (1)~5) defines a normally elliptic boundary value problem in the sense
of [7]. This is an important observation, since the extension to W' (Q) of a
normally elliptic system is not coercive (in the sense of [15]), in general.

This paper is organized as follows. In Sects. 1 and 2 we construct an appro-
priate extension of the operator %. In Sects. 3-5 we then prove existence and
uniqueness results of an abstract version of (1)~5). Some applications to local
nonlinearities are derived in Sect. 6. Finally, in the Appendix of this paper,
we prove a maximum principle for linear equations of type (1)~(5).

Notations. Let E and F be Banach spaces over R. Then Z(E, F) denotes the
Banach space of all bounded linear operators from E to F. For the set of
all isomorphisms in £ (E, F) we write Isom(E, F). Moreover, % (E, F) denotes
the vector space Z(E, F), equipped with the strong topology. Furthermore,
#(E, F:R) stands for the Banach space of all continuous bilinear forms from
ExF to R. The norm in Z(E, F;IR) is given by |a|:=sup{la(x,y); [xlg
<1, |lylp£1} for ae Z(E, F;R). Finally, we write E< F, if E is continuously

d
embedded in F. If, in addition, E is dense in F, we write E& F.

1 A scale of analytic semigroups

The purpose of this section is to construct an appropriate extension of a pseudo-
differential operator introduced by Hintermann in [18]. Using the main result
in [18] and some interpolation techniques, we obtain a scale of generators
of analytic semigroups on some Besov spaces.

In the following, Q denotes a bounded domain in R", n=1, of class C*.
Suppose that I;, 1<i<3, are both open and closed in 0%, the boundary of
Q, with 6Q=1I; U, UT; and I;I[;=9 for i +j. Moreover, we assume that I3 +.

For 1<g<oo and seR we denote by Hj(Q2):=H;(2,RY), N=1, the Bessel
potential spaces over Q with norm ||, , and by B(I}):=B;, '“(I;,R") the Besov
spaces over I; with norm |- |; ., 1<i<3, cf. [8] or [27]. Furthermore -, *)
and (-, *); stands for the duality pairing in L,(2):=(L,(<2, RM), |-|,) and L,(I})
=(Ly(,R"), || *]l;,,), 1=i<3, respectively. We fix T>0 and we suppose that
for some pe(0, 1):

(1‘1) ajk=akjs ajaaoecp([09 T],C‘”(Q, g(]RN)))’ léjakén-
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Then we define the following second order differential operators

(1.2) oA (t)u=—0;(a;(t, *) Ou)+a;(t, *) d;u+a,l(t, -)u,
d#(t)(P‘:_aj(aka(t’ ‘)ak(P)_aj(ajT(fa Do) +ai(t, ),

for ueH3(Q) and @eH}(Q), where pe(l, ), %—:zl—% and where a” stands

for the transposed of ae Z(R").

Denoting by y;€ £ (H}(2), By(I)), s>% and y € Z(H%.(Q), B, (I))), t>%, the
trace operators with respect to I, 1<i<3, we define the following boundary
operators
(1.3) %i(t)u::ajk(ta *) Vj"r'i Oku+bi(t, *) y;u,

BF ) @:=aji(t, )y O +(a] (&, ) V4] (t, )y o,

for ue H2(Q), peHZ(Q), te[0, T] and 1=<i<3. Here v=(v', ..., V") is the outer
normal on ¢Q2 and

(1.4 bieC*([0, T], C*(I;, Z(RY), 1=i<3.

Finally, we assume that .o/ (z) satisfies the uniform Legendre-Hadamard condi-
tion, i.e.

(1.5) a5t x) & En,n,>0  for (t,x)e[0, T]x Q
and ¢eR"™\ {0}, neRM\ {0}.

and that, if I7 0, the boundary operator (%, (t), y,, y3) satisfies the normal com-
plementing condition with respect to <7 (t) in the sense of [7].

For the remainder of this section we fix te[0, T] and suppress it in our
notation. The following a priori estimate is of fundamental importance. A proof
can be found in [16, 3]. See also [1].

There exist constant ¢>0, 4,>0, 3€(0, n/2) such that

(1.6)  (A+2,8,,7,,73)€lsom(H3(Q), L,(Q) x B (I) x B;(I3) x By (I3))
and

(1.7) |2 [l + [l 2, p S € {2+ )l + L+ 2DV Byully 4,

+(1+ Ml)(z— ”p)/z(“hu” 2,2, lvs ““3.2,p)}

for all 2eS(9, 1,):={zeC;larg(z)| <9+ n/2 and |z|= 1, } and ue H;(Q).
It should be mentioned that assumption (1.5) can be considerably weakened.
For example, it is sufficient to assume that (< (t), #(t), 2, y3), te[0, T], defines

a normally elliptic boundary value problem in the sense of [7].
Due to (1.6) we define for 1= 4, the following Green operators

(1.8) R=Ry=(A+ o, By, 72,73) ' | L,y(Q) x By (I}) x {0} x B3(I3),
P=F =R, Lp(@) x BL ) x {0}, T =F;:=R,]{0} x B(I).
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Let (f, g, h)eL,(2)x By(I1) x BX(I3) be given. Then u:=2(f, g, h) is the unique
solution of the following elliptic boundary value problem:

A+A)u=f in Q HB,u=g on I, y,u=0 on I, ysu=h on I;.
Similar w:=%(f, g) and z:=.7 h solve uniquely:

A+L)w=f in Q H,w=g on I}, y,w=0 on [, y;w=0 on I3

and
(A+2)z=0 in Q #,z=0 on I}, v,z=0 on I,, 7y3z=h on I3,

respectively.

The formal adjoint operators 2%, #* and 7 * are defined analogously.
With these notations we are able to formulate the following a priori estimates
for the operator #5.7 and its formal adjoint Z§ 7 *:

Theorem 1.1 There exist constants ¢>0, p,>0 and fe(0, n/2) such that

() w+@, T elsom(BAT), BLLY,  u+B3 7 * elsom(BL(13), BLALY),
(b) L zls,0, 0+ 12132, Scl(u+B3T)zl5,1,ps
W31, W32 Scli(ut+ B T *)W 50,0

for all ueS(B, u,), ze BX(I3) and ye BL(I3).

Proof. This follows by obvious modifications of the proof of Theorem 1.11 and
of Example 1.2 in [18]. [
As an immediate consequence of Theorem 1.1 we have

Corollary 1.2 —%,.7 (resp. —B5 7 *) generates an analytic semigroup on B} (I3)
(resp. B, (I3)).

Proof. Using Theorem 1.1(a), we see that ;7 is a closed operator in B, (I3).
Since D(#37)=B}(I3) is dense in B, (I3), the assertion follows from Theorem
1.1(b) and a well known characterization for generators of analytic semigroups
(cf. Theorem 4.2.1in [13]). [

Let E, F be Banach spaces and suppose that Le #(E, F). Then we denote by
I*e Z(F',E') the dual operator of L. Suppose in addition that E is densely
embedded in F. If we consider L as a — in general unbounded — linear operator
in F, then its dual operator

L: D(L)cF' - F with
D(L):={y'eF'; there is a x'e F’ such that (), Lx) ={x’, x», x€ E}, Ly’ :=x/,

is also well defined.

Again, we consider a linear operator L: D(L)c F — F and we suppose that
E< F. Then the E-realization Lg is the linear operator in E, given by D(Lg)
:={xeD(L)nE; LxeE} and Lyx = Lx, xe D(Lg). Finally, we denote in the follow-
ing by [, *]s, 0€(0, 1), the standard complex interpolation functor. We refer
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to [8], [19] or [27] for the general theory of interpolation. For interpolation
in Hilbert spaces see also [22].

The next lemma shows that (5 7 *)* restricts to a bounded linear operator
from B2(I3) to B} (I3). This implies in particular that (83 7 *)* is a morphism
from the couple (B%(I3), B3(I3)) to the couple (B, ' (I3), B,(I%)) of the category
%, of compatible couples in the sense of [8].

Lemma 1.3 (B 7 *)*|BX(I3)=%,7 .
Proof. Choose ze D(%3.7 )= B2(I3) < BY(I3)=D((#5 7 *)*) and y € B}.(I3) arbi-
trarily and put u:zﬂ'zeHg(Q), p:=F *YyeHL(2). Then we have (4
+.of, B,,y,)u=0 and (A+./* BF,77)9=0. Thus the divergence theorem
implies

Y, By T 2)3=C By T*Y,2);=Y,(BF T *)*z);.
Since B2 (I3) is dense in Bj (I3)=(B,(I3))’, we obtain % T z=(B¥ T**z. O

Now we define B_,,:=B(I3)-realization of (83 7 *)* and Bf,=%7 T ¥,
Using the fact that (BS) =B, "%, s€RR, cf. [8, Corollary 6.2.8] and the fact that
the spaces B are stable under complex interpolation, ie. [ By, B, ly=B+11 9,
s, teR, 0€(0, 1), cf. [8, Theorem 6.4.5], we can prove the following

Lemma 1.4 (B_,,)=B{, and —B_, , generates an analytic semigroup on
By (I3).

Proof. By the definition of B_, , it follows that
Y, B_y)p273= <]Br/2 ¥,z2)3,zeD(B_,),), l//ED(]Br/z)
and consequently we have (B_, ;) > B{,,. From Theorem 1.1(a) we know that
pe+ (B3 T *)*elsom(By(I3), B, ' (I3)).
Thus it follows from Lemma 1.3, Theorem 1.1(a) and by interpolation that
o+ By elsom(BY(13), BY(T3),

and therefore (4, +B_,,,) =p, +(B_,,,) is also one to one. This, together with
Theorem 1.1(a), implies that (B_,,,)’ cannot be a proper extension of B,
which proves the first assertion. Since B_ ), is closed in By (I), it follows that
B_,,,=(B{,). Now Corollary 1.2 and the reflexivity of B} (Iy) imply the second
assertion. [

In the following we denote by {(B,_ 5, E,); xR} and by {(B}, /5, ES'); aeR}
the scale of generators constructed by Amann [4, 5] starting with E :=BY(I3),
A=B_,,, and E* =B, (I}), A*:=B{),, respectively. For completeness, we list
some of the most important properties of (B, ,,, E,) which will be used below.

Theorem 1.5 Let — oo <ff<a<oo. Then

(@) E,=B%(I3) and B, _,; is the Bj,(I3)-realization of By_ /5.
(b) —IB,_,,, generates an analytic semigroup {e"™Ba-12;¢ >0} on Bj(I3) and
e—rB““/2=e_tB"‘”2|B;(B).

(© u+B,_,elsom(By” (1), By(T)), nZ .

(d) (E,y =E*, and (B,) =B?*, (as unbounded operators).



420 J. Escher

2 The parabolic fundamental system

In this section we return to the time dependent case. Let us first recall the
concept of parabolic fundamental systems. To this end, we fix T>0 and put
T,:={(t,5)eR?*;0<s<t<T}. Let E,, E, be Banach spaces with E; - E, and
assume that {B(t);te[0, T]} is a given family of closed linear operators in E,
such that D(B(t))=E, for te[0, T].

Then for (f, x, s)e C([0, T, E¢) x Eq % [0, T] we consider the following linear
Cauchy problem in E, :

©) Z+B(t)z=f(t), s<t=T, z(s)=x.

We say z is a solution of (C) iff ze C([s, T], Eq)nC*((s, T], Eq)n C((s, T], E;)
and z satisfies (C) pointwise on [s, T].
A function V: T,— Z(E,) is said to be a parabolic fundamental system for
the family {B(t); te[0, T} if
Py) VeC(Ty, Z(Eg) N C(Ty, Z(E,)) such that
sup{(t—s)[|B(t) V(t,5) |l &y 0Ss<t< T} <00.

(Py) If (1, x,5)e C([0, T], Eo) X Ey x [0, T] and z is a solution of (C),

then z(t)=V(t, s)x + jt Vit,7)f(t)dz, te[s, T].

The space E, is called regularity subspace for V.

The main result of this section is Corollary 2.2, which shows that for 20e(1/
p, 1+ 1/p) the family {IB,,_;,,(t); te[0, T]} possesses a unique parabolic funda-
mental system. For this purpose, we need some basic properties of the so called
Lions-Magenes extension for nonhomogeneous elliptic boundary value prob-
lems. For a proof of the following facts see [21] or [5].

First we note that .o/ (t) as well as .« * (t), considered as unbounded operators
in L,(2) and L, () respectively, are closable. We denote their closures by .27 (1)
and &/ ¥ (t), respectively. Furthermore there exist extensions

(7:(0), Bi(1)e £ (D( (1)), By(I) x B, ' (),
(77" (0), B ()e £ (D( * (1)), By () x B, ' (I)

of (y;, :(t)) and (y*, B (1)), 1 i <3, respectively, such that the following gener-
alized Green formulas hold:

21) Lo, LW +F @, B (uy, — B 1), T2(O)ud,+ <5 @, B3 (t)u);
={L* (), u) +<{BF V)@, T, (Oud, — <3 @, B, (t)u),
+<{ B (), 73()u);,

te[0, T], pe HZ (), ue D (A (1)),

(22) <o, A (M)ud>+ <77 (), B1()u), — B3 )@, y2() u), + <73 ()@, B3()u),
=¥ O, u)+<{BY (1), 7:(Oud, —<F5 (), Br (D, + (BT ()@, y2(O)u)s,

te[0, T], peD(Z * (1)), ue H2(9Q).
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Moreover, we have

(23) (l #+ 'Sg(t)’ '@l (t)1 ')72 (t), ?3 (t))EISOITl (D(‘g(t))a Lp(Q)
x B, '(I) x B(I3) x By (I3),
G+ 7% (1), BT (0,73 (1), 75 () elsom(D(7 * (1)), L, (2)
x By ' (I) x By.(I3) x By (I3)),

for te[0, T, A= 4,. 3
Due to (1.6), (2.3) and D((t)) = L,(2), we obtain by interpolation (cf. [5,
Theorem 6.3]):

2.4 ReC?([0, T], £ (L, () x B}’ ~1(I}) x BY*(I3), H7* (),
FeC?([0, T], £(L,(Q) x B}’ (), Hy (),
7 eC?([0, T], £ (B2(I3), H*(Q))), 0<[0, 1].

Analogous results hold for 2%, ¥* and 7 *.
Next we define for te[0, T, 20€(1/p, 1 +1/p), pe HZ* ~?(Q) and ueH;°(Q)
the following time dependent bilinear form:

a()(p, W= [ [(0;@la;u(t, ) ) +(@layt, *) O;u+ao(t, -)u)] dx
e

+ [ @t elbit, ) piwda+ | (F @lbs(t, *) ysu)do.

r1 r!

The bilinear form a(t) is called the Dirichlet form associated to the elliptic bound-
ary value problem (< (t); %, (t); y2; #3(1)), te[0, T].
We have (cf. [5, Sect. 13]):

(2.5) aeC?([0, T, Z(Hﬁ.“ ~9(Q), Hf,"(Q); R))
as well as
(2.6) a(t) (@, u)=<A * )@, u),

for te[0, T], ue H3(Q) with y,u=0 and e Hj (Q) with (BFW®), 7%, 85 (1)e=0.
Finally, we put a,:=a+ A, *) for AeR.

Lemma 2.1 Forte[0, T], 20e(1/p, 1+ 1/p) and A= A, we have

@ a,(@, 20 & 2D=<Co, [H+OTe, g1 +070, Biy_3,0):z
+B,() L0, 23, for feL,(Q), geB2*~'(I), zeB}’(I3) and ¢eH}'~?(Q)
satisfying y5 ¢ =0.

(b) a,()( R} (S, g V) w=<f, u>+<g puyi+<Bir_2O)Y+B3) S )
(f,8), y3u)s3, for feL,.(Q), geBL2°(I), yeB}' ~(I3) and ue H2%(Q) satisfying
‘))2u=0.
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Proof. Fix te[0, T], 20€(1/p, 1 +1/p), A=/, fe L,(Q) and choose any ze B} (I3),
geB, (1), e Hy (Q) satisfying (B (1), 73 , 25 (1)) =0. Since y, Z,(1)(f, g 2)=0,
we conclude from (2.6) and the generalized Green formula (2.1):

a; ()@, Z, ()£, 8, 2) = (A +A* (D) @, Z,(O)(f, 8 2)>
={@, A+ A (D) R, ()£, 8. 2>+ <yt 0, B () R:(1) (S8, 2))
—< B3 )@, 72(t) Z,(1)(£: 8, 2))>
+<v3 0, Z5() 2,(1(£,8,2))5.
Thus by the definition of #,, &,, 7 and by Theorem 1.5(a) we obtain:
a0, 2,0, 8 2) =K. [ D+ 1 @,801 +<yT 0, By 3, ()2
+283(1) L2(0)(f,8)>3-

Now let X *(t):=ker((Z7 (1), y5 ., 2% (1))| H:(2)). Then by well known results of
Seeley [23] we have:

XS [Ly (@), X* (0], _p=ker(yF | HZ1 9 (@),

Hence the first assertion follows from (2.5), (2.4), B,‘,(F]):»Bﬁ"“‘(ﬂ),

d
B}(I3) < B2(I3), the trace theorem and Theorem 1.5(c). Assertion (b) is proven
analogously. [

Using Lemma 2.1 it is now easy to prove

Corollary 2.2 For each 26€(1/p, 1+ 1/p) there is a unique parabolic fundamental
system Usq_ 5., for the family {B,,_ 5,,(1);1€[0, T1} possessing B2°(I3) as regulari-
ty subspace. If, in addition, 1/p<20<2n<1+1/p then Uy, 3, =U4_3,,|B}"""
(13) and

sup{(t—s)' "7 27 Usg-3/2(8 Sl o (Bgn- 1), Bgouray s 0S s <t < T} < o0.

Similar results hold for the family {B{, _,4(t); te[0, T]}.

Proof. Due to Theorem 1.5 and well known results of Sobolevskii [25], Tanabe
[26] and Amann [6], it is sufficient to prove that

B,y 3,€C([0, T], y(Bio(rs), Bfe_ I8))

for some 7€(0, 1).

Choose  yeBZ'~%(I3), zeB2’(Iy)  arbitrarily and put ¢
=7 *()YyeH"' ~9(Q). Since Z(1)(0,0,2)=7 (1)z, y§ p=y and y§ ¢ =0, it fol-
lows from Lemma 2.1(a) that

a,(O(T * (O, T )2)=<Y, B,y 32(0)z2)5.

Now define a(t)(y, z):=a, (t)(7 * ()¢, 7 (t)z) for te[0, T]. Then by (2.4) and (2.5)
it follows that

aeC*([0, T, £(B;' ~"(I3), By’ (I3); R)).
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On the other side, we also have
la@®)] = Bae-32(0, te[0, T],

which proves the assertion. []

We mention another consequence of Lemma 2.1, which we need in the following
section.

Corollary 2.3 For 20€(1/p, 1 + 1/p) we have

B3(*) L ()eC?([0, T, L (L,(Q) x B~ (1), B~ 1 (I3),
B3 (1) F*()1eC?([0, T, L (L (Q) x By~ > (1), By~ (1))

Proof. For te[0, T], ye B2 ~?(I3) and (f, g)eL,(Q) x B2’ (I}) we define
bOW, (£2)=a,(O)(T * O, L O f)— (T * Y./ >—<f THO. >
Then it follows from (2.4) and (2.5) that
beC?([0, T1, £ (B3 ~(I3), [L, (@) x B~ "(I)]; R)),
and from Lemma 2.1(a) we obtain
bW, (f,8) = <Y, B3() L (O£, 2))3,

which proves the first assertion, since again [|b(f)|| = | %(t) & (t)|| for te[0, T].
The second assertion can be obtained analogously. [

3 Weak, mild, and classical solutions

In this section we introduce the notion of weak and mild solutions. While weak

solutions take account of the variational structure of the problem under consid-

eration, mild solutions are of some advantage in the study of nonlinear problems.

However, we show that weak and mild solutions are in fact the same.
Throughout this section we assume that

(3.1) 1£20<2n<1+1/p, zoeB¥(I3),
(£,8)eC([0, TIxH’(Q), L, (@B} '(I),
(32) he C([0, T1x By (I3), By"~ ' (I3)).

Then we consider the following abstract initial value problem
(A4 (O)u=f(t,u)
B, (u=g(t, u)
(Py) Y2u=0
(y3u)' + &3 (O u=nh(t, y3u)
(3w (0)=z,.

0<t=T,
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We say u is a weak solution on J of (P,) iff ue C(J, H3%()), where J is a nontrivial
subinterval of [0, T] containing 0, such that y,u=0, (y;u)(0)=z, and

-
J {=<0F o). psuds+a;(-) (o, u)} dt
0

T
= .’. {<(Paf('su)>+<}’r§0,g('a“)>1+<'V;t (P,h(',h“»s} dt+<(y§ (p)(O)!ZO>3
0

for every T'eJ\ {0} and every
@eCo . ={YeC([0, T'], H3"' ~2(Q); 75 Y =0,F Y)(T)=0
and iy eC'([0, T'], B, *°(I3))}.

Formally, we obtain this identity by multiplying the equations in (P;) with
appropriate test functions and by integrating by parts with respect to time.

Suppose now that 0<s<T'< T, zo€ B;°(I3) and we C([s, T'], H2(Q)). Then
we define

z(8, 2o, W, t):=U (t, 5) 2o+ f U(t,7) F(t,w(r))dr, te[s, T7],

where U:=U,4_5,, and
F(t,w(®)=h(t,7; w(t)) —B3(0) L (O (& w@), g(t, w(®)), te[s T'].
Further, we put for te[s, T']:
K(s, 2o, w)(2):==2(t)(f (t, w(0)), g (¢, w(1)), 2(s, Zo, W, 1)).
Then u is said be a mild solution on J of (P,) iff ue C(J, H2%(Q)) and u satisfies
u(t)=K(0,zq,u)(t), ted.

Finally, we say that u is a classical solution on J of (P,) iff ueC(J, C*(Q))
such that y;ue C'(J\ {0}, C'(I3)) and u satisfies (P,) pointwise on J.

A given solution u is said to be a maximal solution of (P;) if there is no
proper extention of u. If u is a maximal solution on J of (P,), then J is the
maximal interval of existence.

Proposition 3.1 (a) u is a weak solution on J of (P,;) iff u is a mild solution
on J of (P)).

(b) Every classical solution of (P,) is a weak solution.

Proof. (a) Suppose first that u is a mild solution of (P;) on J. Observe that
due to (3.1), (3.2) and Corollary 2.3 we have

(3.3) F(-,u)eC([0, T'], BX""'(Iy)), T'eJ\{0}.

Therefore [5, Theorem 9.3] and Corollary 2.2 imply that z:=z(0, z,, *) is the
solution of the linear Cauchy problem

(3.4) Z4+Byg_3,()z=F(t,u), O<t=T, z(0)=z,.
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In particular, z satisfies

T -
(3.5) j {—=<0F o), 203+ o, By_32(*)2>;}dt= _f 3@, F(-,u)p;dt
0 0
+<(3F 9)(0), 20)3,

for all T’eJ\{0} and all peCy, ..
On the other hand, we conclude from Lemma 2.1(a) and the definition of
mild solutions:

(3.6) <)’§ @, ]Bzo—a/z(')z>3=a/1(')((/” u)—<o.f (-, u)>—<3’;t 0, g(-,u)),
'—<’V;#(PJ %3(-),7(')(f(',u), g("u))>3‘

Since y;u=7; K(0,z,,u)=z, it follows from (3.5) and (3.6) that u is a weak
solution on J.

If ueC(J, H¥(Q)) is a weak solution on J, we fix T'eJ\{0} and define w(r)
=K (0, zo, u)(t), te[0, T"]. Then y;w satisfies again (3.5) for each peCy r.. Now
let v:=u—w. Then we deduce from (3.5), Lemma 2.1(a) and the definition of
weak solutions the following identity

i
(3.7) J{=<03 9),v3003+a,() (@, 0)} dt=0,  @eCyr.
0

Choose any reL, (2), ke C([0, T"], R) and put
H(t)=—k(T'—t) B3 (T'—0) S*(T'—1)(r,0), te[0, T'].

Then HeC([0, T'], B, (I3)), by the formal adjoint analogue of (1.6). Thus the
linear Cauchy problem

Y4B, (T —y=H, O0<t<T, ¢(0)=0
possesses a unique solution
YeC([0, T, B;* ~(I3))n C([0, T'], B, **(I3)).
Now define
o(t):=k(t) F*¥(@O)(r,00+ T *()Y(T"—1), te[0,T7].
Then ¢eCy 1 and
@3 o) (=B 53 o(®—H(T'—1), te[0,T7].

This last identity implies, together with (3.7) and Lemma 2.1(b), that
-
[ k<rvydt=0
0

for all keC([0, T'],R) and all reL,(Q). Consequently, v=u—K(0,zo,u)=0,
which means that u is a mild solution of (P,) on [0, T'].
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(b) Assume that ueC(J, C*(Q)) is a classical solution of (P,). Fix T'eJ \{0}
and let z:=ypsu, w(t):=L()(f(t, u(?)), g(t, u(t))), te[0, T']. Then it follows from
(P,) that u=w+.7 (*)z. Further we have

(rau) +B3(u=2+85(:) 7 (*)z+Bs(-)w=h(-, 73u).
Thus it follows from Theorem 1.5(a) that
(3.8) i+Bye_3,()z=F(t,u), O<t=T, z(0)=z,.
Since the linear Cauchy problem (3.8) possesses the unique solution z(0, zy, u, *),

we have z=z2(0,z,,u,+). Now it follows from u=w+.7 (+)z that u is a mild
solution of (P,;). [

4 Existence and uniqueness results

Throughout this section we assume that

4.1) p=z2, 1220<2y<1+1/p, zoeB}’(3).

4.2) (f,2)eC® ([0, T] x H;e(Q), L,(Q)x B,(I})) with
021 (. w)|+10, g, w <4, (t,we[0, T] x H2(Q).

4.3) heCO 1 ([0, T] x B2(I3), B2~ '(I3)) and  h(, -)

is bounded on bounded subsets of B2%(I3), uniformly in ¢.
There exists a Z,€R such that

4.9 veHZ(Q),uecH*(Q),te[0, T],A>1, and
(A—=0,f(t,u)+ 4 (t)— 0, g(t, )+ B, (1), 72, 73)v=0
imply v=0.

We first prove the following local existence, uniqueness and continuity result
for problem (P,).

Proposition 4.1 Suppose that A< B2°(I3) is compact. Then there exists a 1o2 A,
(not depending on A) and a bounded closed neighbourhood V in BX*(I3) of A
with the following property:

For each s,e[0, T) and each 1= I, there is a 6€(0, T—s,) such that K (s, , *)
possesses for each se[0,s,] and each ZeV a unique fixed point u(-,Z,s,4) in
C([s, s+0], H2*(Q)). Furthermore, there is a positive constant ¢ such that

|u(t’ 2; S, /l)_u(t’ fs S, z)lZO,péc ||§— f” 3,20,p
for all se[0,s,], te[s,s+0], 2, 2€V.
Proof. From (4.2) we deduce the existence of L, >0 with
4.5) (£, 8)(t, ) — (£, 8) &, V)L o) x Bpry) S Ly [4—1l 20,

for all u, ve H2%() and te[0, T].
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Further it follows from (1.7) that
AL D+ 1S 20 Bl p Ze(fl,+(1 +/1)7%||é|| 11,00
for (f, g)eL,(2) x B, (I), .= 4, and te[0, T]. Thus by interpolation we obtain
1Oty oy S+ AP,

te[0, T], 0€[0, 1], A= 4,.
Let fe(0, 1) be given. Since 20<1+1/p=2—1/p’, there exists a ZO;A* such
that

1—
(4.6) | (Ol 2 (L) x Bp ), B3P = i ﬂ,
1

te[0, T, A= 7.
Now we fix A=7, and s,e[0, T). From (4.3) and the compactness of A
it follows that there are constants L, >0 and r>0 with

4.7) IF(t,uy)—F(t, )l 3,20-1,p= Loty —Uzl20,p

for all te[0, T] and all u;e H2%(9Q) satisfying 5 u;€ Bpzo(r,)(4, 3r), i=1, 2.

Now we observe that Ue C(T}, Z,(B3°(13))) and the uniform boundedness
principle imply that sup{|U(t, s)l|l #@zecrs) s (& s)€ Ty} <oo. Using this fact and
again UeC(T,, #4(B2°(I3)), the compactness of 4 ensures the existence of a
5,€(0, T—s,) and of a bounded closed neighbourhood V in B;°(I3) of 4 such
that

(4.8) Ve BB;,B(FJ)(A’ r),
4.9) (U, 8)2—2]3.20 ,<1, 5€[0,50], te[s,s+0,], ZeV.

Next we define a:=max{||.7 (t)]| ¢@pors. mem s t€L0, T]} <o,

s
k==TB(2W+SUp{aIIles,ze,p+If(t, 0)lp/Ls + g0 1, 1,/L1; [0, T],

ZeV})< o,

M=) {ueH2*(Q); lu— T ()2 < 20r+k, [0, T]}.

zeV

Note that .# is bounded in H2%(Q). Thus it follows from (4.3), (4.5) and Corollary
2.3 that M:=sup {||[F(t,u)] 3,29~ 1.p; (t, )€[0, T] x .#} is finite. By Corollary 2.2
there is a §,€(0, T— s,) such that
(4.10)
t
: B r
§ lue, D)l 2 @Bgn-1r3). B3 (rs) dt<min {m;, M se[0,s0], te[s,s+d,].

Now let §:=8, A, and define for se[0, 5,] and ZeV:

X :={ueC([s,s+5], H*(Q); [(y3w)(t) = U(t, 5)Zll3,20,, =T [u(t)— (T y3w)(®)l20,p
<k, tels,s+0]}.
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Then X is a complete metric space and for ue X we have z(s,Z, u, -)eC([s, s
+46], B2*(I3)), due to (3.3) and Theorem 9.3 in [5]. Consequently, it follows
from (2.4) that

K(s,Z,u)eC([s,s+9], Hf,"(Q)).
Furthermore, we have for ue X :
@4.11) [u(£)— T (t)2],9,,=2ar+k, te[s,s+4],

since (4.9) implies that (7 y3u)(t)—F (t)Z],4 ,<2ar. Now using the identity
y3 K(s, Z, u)=z(s, Z, u, *) it follows from (4.10) and the definition of M:

||V3 K(S, Ea Ll)(t)— U(ts 5)5”3.26‘p§r: [G[S, S+5:|

Next we note that [u(t)|,g,,<k+0a(2r+ | Z]l3 20,,), te[s,s+05], by (4.11). Thus
it follows from (4.5) and (4.6) that

IK (s, 2, u)(t) = (T 3 K(s, 2, ) ()] 20,, =L (O (S (&, u(1)), g (&, u ()24,
(=B (u®)lz6,,+1/ (2 0)p/Ly + [Ig( 01,1, ,/L1)
S(1=Pk+(1—-PRar+alZls,26,+1S @ 0p/Li+ 18t 0)1,1,,/L1) Sk,

te[s, s+0]. Hence we have K (s, Z, X)< X.
Finally, take u,, u,€X. Then (4.9) shows that

(vs ud()—Z|3,26,,<2r, tels,s+6], i=1,2.
Therefore (4.6), (4.7), (4.8) and (4.10) imply
|K(S,Eaul)(t)_K(SszyuZ)(t)llo.p

§(1—ﬁ)|u1(f)_u2(t)|zo.p+°‘j 1U (&, )| I[F (7, uy () — F (t, () 3,29-1,, 47

§(1—§) luy—usllx, te[s, s+0].

Now the first assertion follows from Banach’s fixed point theorem.

To prove the second assertion, let se[0,s,], Z;eV be given and denote by
v;==u(-, Z;,s,1), i=1, 2 the unique fixed points of K(s,Z ) in X. Since
73 vi(t)e]BBEo(rj)(A,3r) for te[s,s+ 0], it follows from (4.5)+4.7), the definition
of z(s, Z, v;, *) and Corollary 2.2 that for each te[s, s+4d]:

[v1 () —v2(0)|20,p =K (S, 21, 04) () — K(8, 23, 02)(0)] 20,
SIL O @ () —f (©2(0), g(01 (1) — g (02@))l26.
+1T (O)(z(s, 21,01, ) —2(5, 23, 2, )26,
SU=PB)v1 (&) —v2 20, U, $)(Z1 —Z5)ll 3,20,

+aL, j (‘—‘5)2‘"—‘”~ ! vy (T)_UZ(T)IZO.p dr.

S
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Consequently, we find constants ¢y, ¢, >0 such that for te[s, s +J]

t
[v3 () —v2() 20, , €1 12— 25 ||3.2o,p+czj (L=1)* "7y (1) —0,(7)| 26, p d T
S

Since >0, the assertion now follows from a generalized Gronwall inequality,
cf. Lemma 3.3 in [3]. [

Theorem 4.2 There is a 1o= A, such that (P;) possesses for each zoeB;"(I}) and
each 1= a unique maximal weak solution u(+,zq, A)e C(J(zo, ), H3%(Q)) and
a maximal interval of existence is right open in [0, T].

Proof. Define 1y:=max {1, Z,}, where 1, and 7, are the constants from (4.4)
and Proposition 4.1 respectively, and fix A= 4,. Then by Proposition 4.1 there
isat,;>0 and a unique u, e C([0, t,], H2’(Q)) satisfying

4.12) u, (t)=KI(0,zo,uy)(t), te[0,t,].

If t, < T, define z,:=2(0, zo, u,, )€ B2%(I3). Then, again by Proposition 4.1, there
isat,>t, and a unique u,eC([t,, t,], H2*()) such that

(4.13) u,()=K(ty,zy,u)t), telty, 2]

Now define u: [0,t,] - H2%(Q) by u(t):=u,(t) if te[0,¢,) and by u(t):=u,(t) if
te[t,,t,] and let d;:==u,(t,), i=1, 2. Then using (4.12), (4.13) and the definition
of K(s, zy, w) we obtain:

A+ (t,), By (), 72 (t,), T3 ) i =(f (t1, &), g(ty, %), 0,21),  i=1,2.

Since (f(ty, ), g(ty, @))€ L, (L) x B,(I;), we conclude from (1.6) that v:=i,
—ii,€ H(Q). Due to assumption (4.2), it follows from the mean value theorem
that for some we H2?(Q)

(A—=0,f (ty, W)+ (ty), — 0, g(t;, W)+ B1(t1),72,73) v=0

and therefore v=0, by (4.4). This shows that ue C([0,t,], H3°(Q)). Further, it
follows from basic properties of the parabolic fundamental system U and from
Proposition 4.1 that u is the unique fixed point of K (0, zo, *) in C([0, t,], H;°(Q)).
Now define

J(zo, 4)=U{[0, 1< [0, T]; K(0, zo, -) has a fixed point in C([0, t], H2%(Q))}.

Then J(z,, ) is a nontrivial subinterval of [0, T] containing 0 and Propositions
4.1 and 3.1 show that there is a unique weak solution on J(z,, 4). Furthermore,
J(zo, 4) is the maximal interval of existence and J(z,, A) is right open in [0, T,
since otherwise Proposition 4.1, applied to the right endpoint, would give a
contradiction. [

Remark. It should be observed that an essential point in the proof of Theorem
4.2 is the fact that the constant 1 in Proposition 4.1 does not depend on s,€[0, T).
This is a consequence of the second assumption in (4.2). However, if one is
only interested in local solutions, a carful check of the proof of Proposition
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4.1 shows that the second assumption in (4.2) can be dropped. Note also that
assumption (4.4) was only used for the proof of Theorem 4.2, but not for the
proof of Proposition 4.1. []

For A= 4, we define
Z(2)={(t, 2)e[0, T) x B}*(I}); te J (2, A)}.

Then we prove the following continuity result:
Theorem 4.3 2(2) is open in [0, T) x B2°(I3) and u(-, -, 2)eC®'~(2(2), B3*(I3)).

Proof. For a given (ty,2,)e 2 (4) let A:={ul(t, zo, ); te[0, to]}. Since 4 is a com-
pact in H2°(Q), it follows from the trace theorem that A:=y,(A4) is compact
in B2°(I3). Hence by Proposition 4.1 there is a d€(0, T—t,) and an £>0 such
that for each se[0,t,] and each Ze V==]BB;9(F3)(A, ¢) the operator K(s, Z, *) pos-
sesses a unique fixed point u(-,Z,s, 4) in C([s, s+], H:°(22)). Moreover, there
is a ¢>0 with

(414) Iu(t’ Z’ S, l)—u(t, 27 S, A‘)lZG,péc ||2_£” 3,20,p

for se[0, ty], tels,s+0d] and Z, Ze V.

Now suppose that t,€[0, §). Then put s=0 in (4.14) and the assertion follows
by observing that u(+, 2 A)=u(+, %0, 4) and that u(-, Z, )e C(J(, 4), H*(Q)) for
each zZeV.

Next suppose that t,e[d,20). Clearly, we can assume that 26 < T. Define

&y ~¢ and fix Ze€ B:=Bpgo(r,(20, o). Then u(+, 2,0, 2) is well defined on

~clys]
[0, 6] and for Z,:=y5 u(d, Z, 0, A) we have by (4.14):

12, =73 u(9, 20,0, /1)||3,ze,p§0 73l ”2_20“3'20.p§8'

Consequently, Z,eV and therefore u(-,Z,,d,4) is well defined on [J,26]. By
a similar argument as in the proof of Theorem 4.2 we find that u(+,Z, A) is
well defined on [0, 26]. Hence [0,26]<=J(Z, 1) and since [0,2d] x B is a neigh-
bourhood of (to, z,) we find that 2(4) is open in [0, T) x B2?(I3). Finally, take
Z, 2e B. Observe that B< V. Thus we know from (4.14) that

|u(ta Z, l)_u(t’ 23 A)lzﬂ,péc Hz—f|l3,20,p, te[or 5]
as well as

lu(t, 2, A)—ult, 2, Dl zq, = u(t, 73 u(9, 2,0, 4), 6, ) —u(t, y3 u(d, £,0, 1), 6, A4,
Scllyslllu(d, 2,0, )—u(3, 2,0, Az,
<yl 12—2]3,20,p» t€[0,20).

This proves the assertion for t,e€[J, 26).
We now obtain the general case by iterating the arguments above. []
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5 Global solutions

In this section we assume that (<7, %,, %) and (f, g, h) do not depend on t.
In other words, we consider the following autonomous problem

2+l u=](u)

Biu=g([u)
(AR 72u=0
(y3u)' +Bzu=h(ysu)
(yaw)(0)=z,.

Furthermore, we assume that (4.1)-(4.4) hold. We fix A=/, and suppress it
in our notation. For z,eB2%(I3) we denote by u:=u(*, zo) the unique maximal
weak solution of (4) on J:=J(zo). Moreover, we put t*:=supJ and z
:=z(0, zo, u, *). Note that due to Proposition 3.1(a) we have z(t)=7y; u(t), teld.
Finally, we define 2:={(t,%)e[0, o) x Bz’(I3);teJ(?)} and o: 9 - B(I3),
o(t, 2)=y3 u(t, 2).

Theorem 5.1 Z is open in [0, c0)x B2°(I3) and @eC®'~ (2, B;*(I3)) defines a
local semiflow on B2°(I3) such that bounded orbits are relatively compact.

Proof. The fact that & is open in [0, c0) x B2°(I3) and that ¢ defines a local
semiflow on B2°(I3) follows from Theorem 4.3 and Theorem 4.2, respectively.
Following the lines of the proof of Theorem 12.3 in [5] we easily obtain the
third assertion, since B3(I3) is compactly embedded in B4(I) fora>p. [

t>0,

Lemma 5.2 There exists a positive constant c such that

| (f @(®)) —F ((s)), g () —g (20, p S l2()—2()l3,20.p 5, LEJ.

Proof. Denoting by L, >0 the Lipschitz constant of (f, g) it follows from (4.6)
that there is a f€(0, 1) such that

<1_ﬁ

“y“.Y’(LP(Q)XB;,(I‘l),Hf,"(ﬂ))= L. °
1

Therefore we obtain for s, teJ:

| (f (t) —f (u(s)), g (1) — g ()20,
S(1—P)|u(t) —u(s)l20,,=(1 = B)IK(0, o, u)(t) = K(0, 2o, u)(5)l20.
S(1=PRIL (S @) —f @(s), g @) =g (s2e,p+ (1= AIT (2() = 2(N2o.p-

Now the assertion follows by observation of (2.4). [
Theorem 5.3 (a) Assume that
(5.1) sup{[|(y3u)()]13,20,55 t€[0, " A T)} <00

for every T>0. Then u is a global solution, i.e. tt=00.
(b) Suppose there is a constant ¢ =0 such that

(5.2) (3w @) 3,20-1,, S+ 1G30)Dl3,20,0)  tEJ.
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Then u exists globally.
(¢) If t* < oo, then the solution blows up as t —>t*, that is

lim sup [u(t)l4 ,= and lim |u(t),;,=o0  foreach >0.
t—tt =t

Proof. (a) Suppose that t™ <oo. Then by (5.1), (4.3) and Lemma 5.2 we find

that F(u(+))€L,((0, t*), B2"~'(I3)). Consequently, Proposition 1.3 in [3] implies

that ze C([0, t*], B2%(I3)). Hence, by using u= K (0, z,, ) on J and again Lemma

5.2, it follows that ue BUC([0,t*), H2%(2)). Now define : [0,17] - H;°() by

a(t):==u(t) if te[0,t*) and @(t*):== lim u(t). Then ﬁeC([O,t+],H§9(Q)) and @
t—>tt

=K(0,z,, %) on [0,¢*]. Thus @ is a weak solution of (A;) on [0,7"] extending
u. But this contradicts the maximality of u since t*¢J.

(b) Let T>0 be given. Assumption (5.2) and Lemma 5.2 show that there is
a ¢>0 such that

(5.3) [F@)lls,2n-1,p=c(0+12(0)]5,20,,), ted.

Thus Corollary 2.2 implies that

1
IIZ(t)Ila.zo,p§C(1+ § t— )08 IIZ(T)lls.zo,pdf), te[0,t* A T)
0

and therefore, by a generalized Gronwall inequality (cf. [3, Lemma 3.3]),
sup{lz(t)l3,20,p5t€[0,t™ A T)} < 0.

Now the assertion follows from (a).

(c) If the first assertion is not true, if follows from the trace theorem that
sup{|1z(t)]l 3, 26,55 t€[0,17)} < 00, which gives the same contradiction as in (a).

Finally, assume that the second assertion is false. Then there is a R>0
and a sequence (fJen<[0,1") such that [u(f,)],:,<R for all keIN and such
that t, »t* as k - 00. Since H2*(Q2) is compactly embedded in H;°(Q) for £>0,
it follows that A:={y; u(t,); ke N} is relatively compact in B2°(I3). Consequently
Proposition 4.1 implies the existence of a positive d such that the solution u
exists on [0,¢,+6] for all keIN. This contradicts the maximality of u, since
t,—ttask—-o0. [

6 Applications

In this section we apply the results of Sects. 4 and 5 to the case where the
nonlinearities are induced by local functions. It should be observed that the
abstract results also apply to nonlocal operators, as they appear, for example,
in control theory.

Throughout this section we assume that

feC (@ x[0, T]x RN x R™ RY),
geC (I; x[0, T] xRN, R¥), heC'(I3x [0, T]xRN,RM).
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For a given zo€ B} (I3), where se[1, 1/p) is fixed, we consider the following nonlin-
ear elliptic boundary value problem with a dynamic boundary condition on I3 :

Q) du—ayay Ou)+a;0ju+a,u=f(,*,u,0u) in 2x(0,T],
ap vy Gutbyyu=g(-, -, y,u) on I} x(0,T],

Pu=0 on I, x(0,T],
0,(ysu)+aj Wys du+byysu=h(-, -, y3u) on I3 x(0,T],
(y3u)(+,0)=z¢ on I.

We denote by (A,) the autonomous version of problem (Q,), ie. in (A)) all
the coefficients aj., a;, ao, by, by as well as the nonlinearities f, g, h are indepen-
dent of te[0, T].

Furthermore we introduce the following growth and structural conditions
for f, g and h:

There is a positive constant M | such that

6.1) 105f 0t &M+ (L EMISMy, (%1, Eme@x [0, TIxRY xR™,
|03g(y’t’ é)léMla (yat’é)erl X[O’ TJX]RN-

h is independent of t and there is a constant M , 20 such that

(6.2) Iy, OIS M (1+1ED), (1 Hel xRN

h is independent of t and if n=2 there are constants ae[l,n—g), M;=0
with
(6.3) |0, h(y, I SM5(1+1E*7"Y),  (n el xRN

h is independent of t and there is a M,20 and a peC®*(I3; xR", R) such
that

64 (h(», NOSMy,  @(3,0=0 and 3, 9(»,O)=h(»,8), (el xR,

Further we define for (t,u)e[0, T] x H}(Q2) and ze B, (I3) the following substitu-
tion operators:

Ft, W) =f(x, t,u(x),0u(x)), xeQ,

gt w()=gWt, 1 W) yeli,

h(t, 2)(y):=h(y, t, z(y)), yels.
Lemma 6.1 (a) Suppose that (6.1) holds. Then ( 1. 8) satisfies assumption (4.2) and
(4.9) for every 6e[1/2,1/2+1/2p).
(b) If p>n, then for every 0e[1/2,1/2+1/2p) there is a n>0 such that (4.3)
hold for h. Furthermore (6.2) implies that (5.2) is fulfilled.

(c) Suppose that n=2, p=2 and that (6.3) holds. Then there is a n>1/2 such
that h satisfies (4.3) with 0=1/2.
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Proof. (a) For u, ve H,(€2) and te[0, T] we define

M (¢, u, v)(x):=03f(x, t,u(x), Ou(x)) v(x)+ 0, f (x, t,u(x), du(x)) dv(x), xeQ,
N(t, u,0)(y)=03 g(y, £, (WY (71 ) V), yely.

Then wusing the mean value theorem and the fact that H2%(Q)
x(H} ' Q) Hpy(Q)x(L,(Q)" we deduce from (6.1) that for each
(u, t)eHz"(Q)x [0, T] we have:

(65) |f(t’u+h)—'f(t7 u)—M(t’ u, h)|p=o(|h|29,p) as |h|20,p —)05
(Mt u, *)eC(H;(Q), Z (H;(Q), L,(Q)).

Since the continuity with respect to time is obvious, (6.5) shows that
feC™ ([0, T] x H2°(Q), L,(Q)) and that 8,1 (t, u)= M(t,u, *).
Observe further that by (6.1) there is a constant ¢ 20 such that

IM(t,u,v)l,<clv]z, for te[0, T] u,veH*(Q).

Hence f satisfies assumption (4.2).

To prove the assertion for ¢, let us first recall that there exists a regular
localization system {(U;, p;, w)); 1<j<n} for Q of class C*. This means that
there exists an integer m, open subsets U; of R”, 1<j<m and functions P?;,

n;, 1<j<m such that () U>Q, ¢; is a C*-diffeomorphism of U; onto IB"
j=1
if 32N U;=0 and of U;nQ onto B"nH" if 02 nU;+, 1 <j<m and such that
{m;;1 <]<m} isa C°°-part1t10n of unity on Q subordinate to {Ui:15j<m).
With these notations we define for seR "\ (N + 1/p) and ze B (I}),

|||Z|||1,[s—1/p],p’=(z Z ||aa7fj2”11,,p)”p,

Ty |a|=[s—1/p]

[Gs s r i
=S 3 [ § A EEZERAN dotido)

Iy lel<ls—1/p1 Ty Ty

Here, [r] stands for the integral part of reR and ) denotes summation over
Iy

those je{l, ..., m} for which U;nI3+0. Now we put [||z[ll; s ,»=llzlll; 15— 1/p1.»
+[z]1,5,p» 2€By(I3). Then one can show that [[|-]l|, ; , defines an equivalent
norm for B} (I3), provided seR*\(IN+ 1/p). (Note that the statement is wrong
if seIN+ 1/p, p+2, see for example Theorem 2.12 in [27].)

Using this equivalent norm on B2°(I}) for 20€[1, 1 + 1/p), the trace theorem,
the mean value theorem and assumption (6.1) it follows similarly to (6.5) that
geC% ([0, T] x H2%(Q), B} (I1)) with

0, 8(t, =N(t,u,*), (t,wel0, T]x H;°(Q),
and that there is a ¢ =0 such that
NING wo)ll,1.,=clvl26,, vEHZ’(€Q).

Consequently, ¢ satisfies assumption (4.2), too.
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Now let ue H2%(Q), ve H}(R2) and AeR be given and assume that
(6.6) (A— 057 (t, u)+ o (1), — 0, 8(t, W)+ B, (1), 3, 73)v=0.
Using (6.6), the fact that H2(2)— H3(R) and Gauss’ theorem, we find that
6.7) Alv)3 -I—r_lf [(a;i(t, ) Oxv]0;0) +(a;(t, *) O;v+ae(t, Yv—0,f(t, uyvjv)] dx

+ [ byt ")y v—0, 8(t, w)v]y, v)do=0.
ry

Next we note that due to the main result in [10] there are positive constants
A, ¢; such that

(6.8) 3+ j. [(a;i(t, ) xv|0;0)+(a;(t, *) O;0+ao(t, Yv|v)]dx=cyfvlf 5.
Q

Furthermore we fix ae(1/2, 1). Then y,e £ (H5(L), L,(I;)). Thus by (6.1) we find
a constant ¢, >0, which does not depend on u, such that

(6.9) — 5 (by(t,*) 71040, g(t, wv|y,v)do < c,|vl2 5.
r,

Since the first embedding in H3(Q) < H%(Q)< L,(2) is compact, an abstract
version of Ehring’s Lemma, cf. [28, Satz 1.7.3], implies that there is a ¢;>0
with

Cy
(6.10) |U|§,2§c_|v|f.2+cs|vlg-
2

Finally, again by (6.1), there is a ¢, >0 (not depending on ) such that

(6.11) [ @27 (6, wolv)dx = cqlvl.
o

Now define Z,:=1+c;+c, and choose 1> Z,. Then it follows from (6.7)6.11)
that we must have v=0. Hence (f, ) satisfies assumption (4.4).

(b) Let 0, ne[1/2,1/2+ 1/2p) with n>6 be given. Then by a well known Sobolev
embedding theorem we have

B’ (I)o C(I3) < By~ '(I).

Using these embeddings the assumption follows again from the mean value
theorem.

(c) This is shown in [12, Lemma 4.1(a)]. [
It is now easy to prove the following

Theorem 6.2 Assume that p>n, se[1, 1+ 1/p) and that (6.1) holds.

(@) Then there is a Ao =0 such that (Q,) possesses for each zy€B;,'/?(I3) and
each A2 4, a unique maximal weak solution ue C(J(z,, A), H;(2)) and the maximal
interval of existence, J(zq, A), is right open in [0, T].
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(b) Consider the autonomous problem (A;). If sup{lysu)(t)lls,3
teJ(zg, ) N[0, T]} <oo for every T>O0, then u is a global solution, i.e.
ueC([0, 00), H},()).

If t* ==sup J(zy, 4) < 00, then u blows up in finite time, that is

limsup [u(t)l;,,=oc0 and lim |u(t), ,=c0  foreach r>s.
t—tt t—o>tt

(c) Suppose finally that (6.2) holds. Then for each (z,, 2)e B3, /P (I3) X [44, ©) the
solution u of the autonomous problem (A ;) exists globally.

Proof. This follows from Lemma 6.1(a), (b), Theorem 4.2 and Theorem 5.3. [

Remark. 1t should be observed that in the first part of Theorem 6.2 we only
assumed growth conditions for fand g but no growth restrictions for h. [J

Finally, we apply some Hilbert space techniques to problem (A;) to obtain
a priori estimates for y;u in B}F([3). For this we assume that
(6.12) p=2, 0=1/2 and

ap=ay, a;=0, 1=<j,k<n, ay=af, b,=b], by=b].
Observe that assumption (6.12) implies that the boundary value problem
(oA, %B,,7,,B>) is formally self-adjoint.

Theorem 6.3 Assume that (6.1), (6.3) and (6.4) hold. Then for each (z,,
A)e BY2(I3) x [Ag, 00) the solution u of the autonomous problem (A ) exists globally,
i.e. ueC([0, o0), H:(Q)).

Proof. It follows from Lemma 6.1(a), (c) and Theorem 4.2 that there exists a
unique weak solution ue C(J(zq, A), H3(Q)) for (z,, A)e BYZ(I3). We put z:=psu
and

1
Pz@)= [ <z(t), h(sz(®)>sds, te](zo,A).
0
Note that P defines a potential for A in the sense of [12], thanks to the structural
condition (6.4), and that P is bounded above on J(z, 4).

Next define F,(v):=—%; £ (f(v),§(v)) for ve H1(Q). Then we have due to
(1.8) and (4.2):

(6.13) F(weL,(Il3), veH(Q)
Again, from (1.8), (4.2) and (2.4), it follows that there is a ¢>0 with

1L (@), @), ScA+u®); ) =c(1+|K(©, zo, u)(®)l;,,)
Sc(1+1L(F @), g @),
+(sw)@)ls,1.2),  te(zg,A).

Thus Lemma 5.2 implies that there is a ¢>0 such that

1L (F @), g2, 2 S+ 13 )O]5,1,),
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and consequently we find a constant ¢ >0 with

(6.14) IE2 (), 2=c(+ 113 )Dl3.1,2), 1€ (20, A).

Now considering the equation z+B_  ,z=/(z)+ F, () and observing (6.13) and
(6.14), it follows along the lines of the proof of Theorem 2.7 in [12] that for
each T>0 we have:

sup{[(y3u)(t)ll3,1,2:t€[0,t* A T)} < 0.

Hence, Theorem 5.3(a) gives the assertion. []

Remark. Typical situations where assumption (6.4) is satisfied are:
@ h(y, &)=—q)IE*" & with ge C(I3, R™).

g
(b) N=1,h(y, §)¢=0and ¢(y, &):= [ h(y, s)ds, (y, el x R.
0

Appendix
A maximum principle

Throughout this section we assume that N=1 and p>n. We fix te[0, T] and
suppress it in our notation. Further we assume that —A, <min{a,(x); xeQ}
and we choose 1= 4,,.

Suppose that (E, <) is an ordered vector space. We denote by E*
=={x€E;x20} the positive cone of (E, £). Furthermore C([0, T], E) is always
given the natural ordering induced by E.

It is well known that L,(£) is an ordered Banach space with positive cone
L, (2):={ueL,(2); u(x)=0 for almost all xeQ}. Since H,(2)> L,(Q), for s=0,
cf. [8, Theorem 6.2.3], we find that H}(Q) is also an ordered Banach space
given by the natural ordering. Similar statements hold for B(I}) < L,(I}), s>1/p,
i=1,2, 3, cf. [8, Theorem 6.3.2].

The following lemma is an immediate consequence of Bony’s maximum prin-
ciple [9].

Lemma 1 Let ue HZ(Q) satisfy (A + .57, B, ,7,)u=0. Then

(@) there is a y,eIy with (y3u)(y;)<0 and (B3u)(y,)<0, provided (ysu)(yy)<0
for some yqel;.

(b) Z5u=<0, provided y;u=0.
Lemma 2 —IB,_, , is for each o> 1/p a resolvent positive operator.

Proof. (a) Assume first that «>1. Note that B, ,,z=B,,z=%;.7 z for
ze By " (I3), due to Theorem 1.5(a). Now denote by u, 20 the constant of Theo-
rem 1.1 and let u> p, as well as e B} **(I3) be given. Assume that

(A.1) (u+ B3 T)20.
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We have to show that 2>0. Suppose there is a y,el; with 2(y) <0. Defining
v:=7 £e H2(Q), we have

A+A,B,,y,)v=0 and yzv=2=2

Thus, by Lemma 1(a) there is a y,el3 such that £(y)<0 and (%;v)(y,)
=(%5 7 £)(y,;)<0. Consequently, we have u2(y,)+(%; .7 £)(y,) <0, which con-
tradicts assumption (A.1). Therefore 2=0.

(b) Now assume that oe(l/p,1) and that ZeB)"*(I3) satisfies (u
+B,_,,,)2€B3(I3)*.We choose a sequence (w,) in B,(I3)* such that w,—(u
+B,_,,)? in B:(I3)* as n— oo, and we define z,:=(u+B, ;)" 'w,, nelN. By
(a) we have z,e BZ(I3)* < B, "*(I3)*. Since z, — £ in B, "*(I3) as n— co and since
BL**(I3)* is closed, we find that 2e B, **(I3)*. [

Corollary 3 Let
(£ g WeC R*, L, (@ x By x By(I3)", >0 and zoeBi(5)*
be given. Denote by u the unique solution of

A+Lu=f in 2x(0, ),
Biu=g on I x(0, c0),
yo,u=0 on I x(0, c0),

(ysu) +Bsu=h on I3 x(0, o),

(3w (-, 0=z, on I3.

Then ue C(R*, HZ(Q))*.

Proof. Due to (1.8) and Lemma 1(b) we know that — %, #(f,g)e C(R*, B,(I3))*
and therefore F:=h—%; ¥ (f,g)e CR™, B,(I3))*. Now put

1
z(t)=e Birzy+ [ e ¢ IP2F(s)ds, t=0.
0

Then we have ze C(R*, BZ(I3))*, due to Lemma 2. Note that, again by Bony’s
maximum principle, % is a positive operator. Since u=Z(f, g, z), the assertion
follows. [
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