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0 Introduction

Suppose E is a complex Banach space and D<E is the open unit ball of E.
Then the linear geometry of E is completely determined by the holomorphic
structure of the open unit ball D, more precisely (compare [15]): Two complex
Banach spaces are isometrically isomorphic if and only if the corresponding
open unit balls are biholomorphically equivalent. In the linear theory it is stan-
dard to consider besides the norm topology on E other topologies like the
weak topology w or w* if E has a predual. The question arises which of the
holomorphic transformations of the open unit ball D of E are also continuous
in these other topologies.

In this note we study the special case of complex Banach spaces E where
there are many biholomorphic automorphisms of the open unit ball, more pre-
cisely where the group Aut(D) of all biholomorphic automorphisms is transitive
on D. It is known [13] that these Banach spaces can be algebraically character-
ized by a certain ternary-type structure (called JB*-triple) given by a (uniquely
determined) Jordan triple product {xyz}. For instance, the underlying Banach
space of every C*-algebra A is a JB*-triple and {xyz} =(xy*z+zy*x)/2 in this
case.

In Sect. 3 of this paper we answer the above question in the following way
(compare 3.6 and 3.7): Denote by C:=Cont,,(E) the set of all acE such that
the a-squaring map q,: x+>{xax} on E is weakly continuous on bounded subsets.
Then C is a closed characteristic (triple) ideal in E and geAut(D) is weakly
continuous if and only if g(0)eC holds. In Sect.2 we compute this space for
various examples. It turns out that the elements of Cont,,(E) are closely related
to compact operators on Hilbert space.

Notation. For every complex Banach space E denote by .#(E) the Banach alge-
bra of all bounded linear operators on E and by GL(E) the subgroup of all
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invertible operators. /" (E) is the subalgebra of compact operators and # (E)<
Z(E) is the R-linear subspace of hermitian operators on E. By #(E, F) we
denote the Banach space of all bounded operators E — F. For every locally
compact topological space S we denote by %,(S) the space of all continuous
complex-valued functions on S vanishing at oo endowed with the sup-norm.
In case S is compact we simply write %(S). For every topological group G
we denote by G° the connected identity component of G. Although we consider
various topologies on Banach spaces the notion of boundedness always refers
to the norm topology.

1 Preliminaries

We recall that a JB*-triple (compare [13]) is a complex Banach space E together
with a continuous mapping (called Jordan triple product)

EXExE—E (x,y,2)—{xyz}

such that for all elements in E the following conditions (J;)}-(J,) hold, where
for every x, yeE the operator xOy on E is defined by z+—{x yz}:

(J,) {xyz} is symmetric bilinear in the outer variables x, z and conjugate linear
in the inner variable y,

(J,) {ab{xyz}}={{abx} yz}—{x{bay}z}+{xy{abz}}, Jordan triple identity)
(J3) xoxe#(E) is a hermitian operator with spectrum >0,

(o) I{xxxt]= x|

It is known [13, p. 523] that in this definition condition (J,) can be replaced
by | xOx| = | x||? and that

(1.1) Ixoyll < llx]- 1yl

holds for all x, yeE (compare [8]). The simplest example of a non-trivial JB*-
triple is the complex line € with the triple product {x yz} = x jz. More generally,
every C*-algebra A becomes a JB*-triple in the triple product {xyz}=(xy*z
+zy*x)/2 — we denote it by A4’7.

A linear subspace I E is called a subtriple if {III} = and an ideal in E
if {EEI}+{EIE}<I. For every closed ideal I cE the quotient Banach space
E/I is again a JB*-triple in the obvious triple product and the canonical projec-
tion is a homomorphism. Here by a homomorphism h: E — F of JB*-triples
we understand just a linear mapping h satisfying

h{xyz}={(hx)(hy)(hz)}

for all x, y, z in E. Every homomorphism E — C is called a character on E.
By [13, p. 505] every character is continuous.

Like in the C*-algebra case, those JB*-triples are of particular interest in
which the points can be separated by characters. By definition the JB*-triple
E is called abelian or commutatitve if EDEc % (E) is a commutative set of
operators. Clearly, A’ is a commutative JB*-triple for every commutative C*-
algebra A. On the other hand, to every JB*-triple E and every acE there is
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a closed abelian subtriple of E containing a. By [13, p. 507] the abelian JB*-
triples are, up to isomorphism, exactly the spaces

E5(S):={ fe%,(S): f(ts)=tf(s)for all tT)

where T:={teC: |[t|=1} and S is a locally compact T-principal fibre bundle.
Furthermore the characters on 4§ (S) are just the point evaluations h(f)=f(s)
at points seS. From this, the following result is an easy consequence (realize
that the homomorphic image of an abelian subtriple is contained in a closed
abelian subtriple and get the statement for abelian triples by lifting back charac-
ters — compare also [1]):

(1.2) Proposition. Let h: E—F be a homomorphism of IB*-triples. Then h is
a contraction, i.e. |h(x)|| = ||x|| for all xeE. In particular, h is continuous. Further-
more the image of h is closed in F and h induces an isometry E/I ~h(E).

(1.3) Corollary. Let E be a JB*-triple and I, F = E closed subtriples. Then also
I+ F is a closed subtriple if I is an ideal in E.

Proof. Apply (1.2) to the canonical projection E— E/I. []

Let E be a JB*-triple and denote by Aut(E)cGL(E) the subgroup of all
triple automorphisms of E. The elements of Aut(E) are precisely the isometries
in GL(E). Aut(E) is a real algebraic subgroup of GL(E) in the sense of [9]
and in particular a real Banach Lie group. The Lie algebra aut(E) of Aut(E)
can be identified with the space of all derivations of E, i.e. of all linear mappings
d: E— E with

{xyz}={0x)yz} +{x(0y)z} +{xy(62z)}

for all x, y, ze E. All derivations on E are automatically continuous (compare
[2]). By [13, p. 523] we have

(1.4) aut(E)=i#(E).

Notice that, by polarization, the Jordan triple identity J, is equivalent to iaOa
being a derivation of the triple product for every acE. For every x, yeE in
particular the operator exp(xOy—y0Ox) is in Aut(E). The subgroup generated
by all such elements is denoted by Int(E), the group of all inner automorphisms
of E. It is a connected normal subgroup of Aut(E).

A JB*-triple E is called a JBW*-triple if E is a dual Banach space (compare
[11, 3]). In that case it has a unique predual E, and we refer to w*:=a(E, E,)
as the weak*-topology on E. Every automorphism of a JBW*-triple is w* —w*-
continuous. The bidual E** of any JB*-triple E is a JBW*-triple whose triple
product extends that of E and is separately w*-continuous. For every norm
closed ideal I = E the w*-closure J of I in E** is an ideal in E** with JNE=1.
Often this can be used to reduce the study of ideals in JB*-triples to the special
case of JBW*-triples. We give some examples:

First recall the definition of a JB*-algebra (sometimes also called a Jordan
C*-algebra). This is a complex Jordan algebra B with a complete norm and
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conjugate-linear involution * such that the Jordan product x-y and the derived
triple product

(1.5) {xyz}=xo(y*oz)—y*o(zox)+zo(xoy*)

satisfy the conditions (J,)(J¢) where

Js) lxoyl x| -yl
Jo) (xoy)*=y*ox*.

Every C*-algebra 4 with product x y becomes a JB*-algebra A” in the Jordan
product xoy=(xy+yx)/2 and every JB*-algebra B becomes a JB*-triple BT
in the triple product (1.5). The identity A’"=(4")" is easily verified. In case
the JB*-algebra B has a unit e, the Jordan product and involution on B are
recovered from the Jordan triple product on B” by xcy={xey} and x*={exe}.
For every JB*-algebra B, the bidual B** is a JB*-algebra with unit.

For all three structures (i.e. C*-algebras, JB*-algebras, JB*-triples) the notion
of ideal exists and behaves very well by passing from one structure to the other,
more precisely

(1.6) Lemma. Let B be a JB*-algebra, E=B” the corresponding JB*-triple and
I =B a closed linear subspace. Then the following two conditions are equivalent:
(1) I is a (Jordan algebra) ideal in B, i.e. Io-B<1,

(2) 1is a (triple) ideal in E, i.e. {EEI} +{EIE} 1.

Each of these two conditions implies

(3) I is =-invariant, i.e. [*=1.

In case B= A’ for a C*-algebra A, condition (1) is also equivalent to

(4) 1 is a (two-sided associative) ideal in A, i.e. [A+Al<1.

Proof. (1)=(3) follows from [18, p. 98] and also gives (1)=>(2). The implication
(2)=(1) can easily be shown by passing to the bidual. Finally, (1)=>(4) follows
from [18, p. 107]. O

The essential part of the following proposition (i.e. the direction (1)=>(3))
can be found in [7, p. 330]. We provide an alternative proof:

(1.7) Proposition. Let E be a JB*-triple and I c E a closed linear subspace. Then
the following conditions are equivalent:

(1) I is invariant under all operators xOx, x€E,
(2) 1 is invariant under the group Int(E) of all linear automorphisms,
(3) I is an ideal.

Proof. (1)=(2) is obvious from the definition of Int(E) and the fact that (1)
implies { EEI} = I by polarization.

(2)=>(1) Suppose I is Int(E)-invariant. Int(E) contains the real one-parameter
subgroup exp(itxoOx) for every xeE. Differentiating with respect to ¢ implies
that I is invariant under the operator ixOx and hence under xOx.

(1)=(3) Suppose IcE satisfies (1) and hence {EEI}cl. We have the show
that {EIE} 1. After passing to the bidual of E we may assume without loss
of generality that E is a JBW*-triple. But then the closed unit ball of E has
an extreme point e. By [16, p. 190] the element e is a complete tripotent in
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E, ie. {eee}=e and E=E, @ E,, where E, is the k-eigenspace of the hermitian
operator 2ede for k=1, 2. From (1) we get I=1, ® I, with I,:=InE,. Then
E is a Jordan algebra in the product xoy:={xey} and clearly I is an algebra
ideal in E. The subalgebra E,cE is a JB*-algebra with unit e and involution
a—a*={eae}. By 1.6 the algebra ideal I,cE, is x-invariant. For yeE, the
formula (1.5) with y replaced by y* is nothing but the Jordan triple identity,
ie. {EIL,E}cI. Because of {E,E,E,}=0 we only have to show that
{E\I, E}cl. For every x, yeE, the element F(x,y):=2{xye}€E, satisfies
F(x,y)=F(y, x)*. This implies for every yel, the inclusion F(x,y)el, and in
particular {xyx}=2F(x, y)oxel, (compare [17, p. 76] and also [14, p. 469]),
ie. {E; I, E,}<I,. The only missing inclusion {E, I, E,} =I, now is obtained
in the following way: For every xeE,, yel,, acE, the first three terms in
the equation

{ea*{xye}}={{ea*x} ye} —{x{a*ey}e} +{xya}
belong to I by what has been proved so far, i.e. {xya}el,. [J

In referring to [18, p. 107] in the proof of 1.6 we implicitely used already
the notion of an M-ideal, which is defined for arbitrary Banach spaces X as
follows: The closed linear subspace Y= X is called an M-ideal in X, if the
dual Banach space X* admits a direct sum decomposition X*=N @ M into
closed subspaces such that N={le X*: A(Y)=0} is the annihilator of Y and
v+ ull=Iv| + || holds for all ve N and ueM.

(1.8) Proposition. Let E be a JB*-triple. Then for every closed linear subspace
I E the following conditions are equivalent:

(1) I is invariant under all hermitian operators on E,

(2) I is invariant under all derivations of E,

(3) I is an M-ideal in the underlying Banach space of E,
(4) Iis anideal in E.

Proof. (1) < (2) follows from 1.4, (3)=>(1) is contained in [18, p. 107] and (1)=>(4)
follows from 1.7 since every operator xOx is hermitian on E. It remains to
show (4)=>(3): Suppose that I is an ideal in E. Then the w*-closure J of I
in the bidual E** is an ideal in E** with JAnE=1. By [11, p. 128] the ideal
I admits a complementary w*-closed ideal in E** ie., J is an M-summand
of E** in the sense of [6]. By [6, p. 305] also I is an M-ideal in E. []

under all automorphisms of E.
Notice that by (1.7) every characteristic closed linear subspace in E automati-
cally is an ideal in E.

(1.10) Example. Let S be a locally compact topological space and E:=%,(S).
Then the closed ideals IcE are well known to be precisely the subsets
I={a€E: a|T=0} with TcS a closed subset. The ideal I is characteristic in
E if and only if Tis invariant under all homeomorphisms of S.

2 Weak continuity and squaring in JB*-triples

In the following let E be a JB*-triple. For every acE then E becomes a Jordan
algebra with the product xoy:={xay}. This product depends on the choice



282 J.M. Isidro and W. Kaup

of the element a and is uniquely determined by the corresponding squaring
mapping q,: E — E defined by g,(x):={xax}.

With v the norm topology on E, we call a locally convex topology t on
E admissible if it is coarser than v, i.e. t<v. We are mainly interested in the
weak topology w=g(E, E*) on E, which clearly is admissible.

In case E is a JBW*-triple we get further examples of admissible topologies
on E by w*=0(E, E,), t* the Mackey topology associated to the duality {E, E,>
and the strong* topology s* as defined in [2, 19]. These satisfy w*<s*<t*<v
and all are invariant under Aut(E).

Suppose E is a JBW*-triple and t is a linear topology on E with w*<t=<v.
Then in [20] the notion of a t-compact element was introduced — this is an
element acE such that g, is w*—t-continuous on bounded subsets of E. By
this — essentially for t=w* — the compactness of arbitrary elements aeE can
be characterized in terms of the triple product structure without realizing a
as an operator on a Hilbert space. Here we modify the notion of t-compactness
slightly and extend it to arbitrary JB*-triples E: For every admissible topology
t on E, we denote by Cont,(E) the set of all aeE such that g, is t —t-continuous
on bounded subsets of E. Then the following statement is obvious

(2.1) Lemma. For every closed subtriple Fc E
F nCont,(E)< Cont,(F)

holds, where the restriction of t to F is again denoted by t.
In the same way as in [20, p. 175] one can show

(2.2) Lemma. Cont,(E) is a norm closed inner ideal in E, i.e. a linear subspace
C of E with {CEC} cC.

As an application of (1.7) we get furthermore

(2.3) Proposition. Let E be a JB*-triple and t an admissible topology on E which
is invariant under the group Aut(E) — for instance, t=w, the weak topology or,
in case E is a IBW*-triple, t one of w*, s*, 1*. Then Cont,(E) is a closed characteris-
tic ideal in E.

For the rest of this section we restrict t to the weak topology t=w. Since
for every JB*-triple E the triple product is w-continuous in every variable sepa-
rately, an element a€E is in Cont,,(E) if and only if the following is true: For
every bounded net (x,),., converging weakly to 0, also the net (y,),c 4 With
Ya:={X, ax,} converges weakly to 0.

(24) Lemma. Let be a JB*-algebra with unit e. Then the following three condi-
tions are equivalent

(1) Cont, (E)=E,

(2) For every bounded self-adjoint net (x,) in E converging weakly to 0, the same

is true for the net (x2),
(3) For every bounded net (x,) in E converging weakly to 0, the same is true

for the net (x¥ox,).

Proof. Since Cont,,(E) is an ideal in E, condition (1) is equivalent to ee Cont,,(E).
For the proof of the remaining equivalences write x,=u,+iv, with u,, v, self-
adjoint. Then x*ox,=uZ+vZ. [
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Statement (3) in 2.4 is similar to a condition in [5, p. 60] characterizing the
Dunford-Pettis property of C*-algebras: By definition a Banach space E has
the Dunford-Pettis property if for all weakly null-sequences (x,) and (4,) in
E and E* respectively, lim 4,(x,)=0 is true. One of the conditions occuring

in [5] in case of a C*-algebra A is the following: For every weakly null-sequence
(x,) in A also the sequence (x}-x,) is weakly null, where o is the Jordan product.
Two differences to (3) in 2.4 seem to occur here: 1. Instead of nets there are
sequences. This can be formulated in terms of sequential continuity. 2. No boun-
dedness is required. This is not a difference, since by the principle of uniform
boundedness the following holds: Every weakly convergent sequence in a Banach
space is norm bounded.

(2.5) Definition. For every JB*-triple E, let CONT, (E) be the set of all acE
such that the squaring map gq,: E — E is sequentially w—w-continuous on E
or, equivalently, such that for every weakly null-sequence (x,) in E also the
sequence ({x, ax,}) is weakly null.

It is easily verified that CONT,,(E) is a closed linear subspace of E that
is invariant under all automorphisms of E. With 1.7 we conclude

(2.6) Proposition. For every JB*-triple E the space CONT, (E) is a closed charac-
teristic ideal in E containing Cont,,(E).

(2.7) Proposition. Let A be a C*-algebra with unit and let E= A'" be the under-
lying JB*-triple. Then E has the Dunford-Pettis property if and only if
CONT,(E)=E.

In [5] all W*-algebras with the Dunford-Pettis property have been classified.
These are precisely the [*-sums of W*-algebras of type I, with sup(n;)<oo.
k

Furthermore the Dunford-Pettis property is inherited to C*-subalgebras. So
in particular all commutative C*-algebras have the Dunford-Pettis property
— a result originating from Grothendieck. As a consequence we get

(2.8) Proposition. CONT,, (E)=E for every commutative JB*-triple E.

Let us present also a direct proof. Since E is of the form #a(S) by Sect. 1,
the statement holds if it is true for the bigger JB*-triple %,(S). So we may
assume without loss of generality that E=%(Q) for some compact space Q.
It is enough to show:

The algebra product (f, g)—fg is sequentially weakly continuous on E x E.

Proof. We identify E* with the space .# (2) of all complex regular Borel measures
on Q (compare [10, p. 364]). Suppose the statement is false. Then there is an
>0, a regular Borel measure =0 on £ and a weakly null-sequence (f,) of
real-valued continuous functions on Q such that for all n

If,I£1 and (frdp=e.
Q

The conditions u(Q)< oo and lim f,(w)=0 for all we imply by Egorov’s theo-

rem (compare [10, p. 158]) the existence of a Borel set A= such that the
sequence (f,) converges uniformly on 4 to 0 and such that u(B)<g/2 holds
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for B:=Q\ A. In particular there is an index n, with u(A4)-f,?(w)<e/2 for all
n>n, and all we A. But then

[fZduse2 and [ f?duspu(B)<e/2
B

A

for all n>n, produce a contradiction. []

(2.9) Remark. Let IcR be an open interval and E:=%,(I). Then by 2.8 we
have CONT, (E)=E. Since Cont,(E) is a closed characteristic ideal in E, only
the following two possibilities can occur: Cont,(E)=E or Cont,(E)=0. We
conjecture that the latter is true.

A connection with compact operators on a Hilbert space is given by the
following

(2.10) Proposition. Let H be a complex Hilbert space, Ec ¥ (H) a JB*-subtriple
and A" (H) the ideal of all compact operators on H. Then E n # (H) = Cont,, (E).

Proof. Denote by S the closed unit ball of »# (H) and put C:=Cont,(E) for
short. Let (x,),.4 be a net in E converging weakly to 0 with |x,| <1 for all
a€A. Since the finite rank operators are dense in # (H) and C is closed in
E, it is enough to show that every rank-one hermitian projection a€E is con-
tained in C. So fix such an g, i.e. a(x)=(x|e)e for some unit vector ee H. Then
Vai={x,ax,}€S for all a. By [21, p. 69] the weak topology restricted to S is
the same as the weak operator topology on S, i.e. we have to show that for
every & neH the net (y,&|n) converges in € to 0. But this is obvious from

€Il =1(xaEle)Ceaelm = IS - I(xzelm)l. O

The example E=C-id shows that in general in 2.10 equality does not hold.
But then the action of E on H is highly non-irreducible. For H finite dimensional
it is known [5] that E=.%(H) does not have the Dunford-Pettis property, i.e.
CONT,(E) is a proper ideal in E. But in case H is separable, # (E) is the
only proper ideal 0 in E (compare [4, p. 841]), i.e. CONT,,(E)=Cont,,(E)
=" (H). More generally we have

(2.11) Lemma. Let H, K be complex Hilbert spaces. Then E:=%(H,K) is a
JB*-triple with respect to the triple product {xyz}=(xy*z+zy*x)/2 and
CONT,,(E)=Cont, (E)= 2 (H, K) is the space of all compact operators H— K.

Proof. Put C:=CONT,(E) and 4 ==X (H, K) for short. Since the JB*-triples
Z(H,K) and & (K, H) are isomorphic, we may assume dim H <dim K. Since
#(H, K) is isomorphic to a subtriple of #(H @ K) we get K< C by 2.10. For
the proof of the opposite inclusion suppose there exists a non-compact operator
aeC. There is a closed linear subspace L<K with a(H)c L and dim L=dim H.
Replacing #(H, K) by the subtriple ¥ (H, L) we may assume without loss of
generality that K= L and hence even that K=H, i.e. E=.%(H). We may assume
furthermore that a is self-adjoint and — after applying the functional calculus
for Borel functions in a — that a is a projection on H with infinite dimensional
range Rc H. Replacing #(H) by the subtriple #(R) we may finally assume
that R=H and that a is the identity on H. For every pair of vectors #, (€ H
let t, ;€ £ (H) be the rank-one operator defined by ¢, .({)=({|n)¢ for all {eH.
Fix a unit vector neH. Then ¢—t, . defines a linear isometry H — E. For an
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orthonormal sequence (&,) in H, the corresponding sequence (x,) in E with
X,:=t, ¢, converges weakly to 0 and violates condition (3) in 2.4, ie. a¢C in
contradiction to our assumption. []

The JB*-triples ¥ (H, K) form the first out of 6 types of the so-called Cartan
factors (compare [14, p. 473]). The types II, III can be handled in the same
way as above whereas the types V, VI are finite dimensional and hence of
no interest in this context. Cartan factors of type IV are the spin factors defined
as follows: Let H be a complex Hilbert space of dimension >2 with conjugation
x+—X. Then there is an equivalent norm | ||, on H such that E:=(H, || | )
becomes a JBW*-triple in the triple product

{xyz}=(x1y)z+(z|y)x—(x|2)J.

(2.12) Lemma. CONT, (E)=Cont,, (E)=0 for every spin factor E of infinite
dimension.

Proof. Fix an arbitrary element aeCont,,(E). Then dim(E)=oo implies the
existence of an orthonormal sequence (x,) in H with x,= —x%, and x, La, ie.
q.(x,)=a for all n. But then 0=w—lim ¢,(x,)=a and hence a=0. [

3 Holomorphic automorphisms

Let again E be a JB*-triple. In the section before, we have studied for every
acE the corresponding squaring operator ¢q,: E — E. Of importance is also the
conjugate linear operator Q,: E — E defined by Q,(z):={aza} =q.(a). This oper-
ator is called the quadratic representation, and it satisfies the fundamental formu-
la

QQ.,(b) =0,0,09,

for all a, beE (compare [17]). For every x, yeE the Bergman operator B(x,
y)e £ (E) is defined by

B(x,y)=id—2x0y+0Q,0,.

In case |[xOy| <1 the spectrum of B(x, y) lies in {zeC: |z—1|<1}; in particular
the fractional power B(x,y)'€e GL(E) exists for every reR in a natural way
(compare [13, p. 517]).

In the following, denote by D:={z€E: |z|| <1} the open unit ball of E. Then
a function f: D —> E is called holomorphic if the (Fréchet) derivate f’(a)e Z(E)
exists for every ae D. A holomorphic bijection g: D — D is called an automorph-
ism of D if also g~' is holomorphic. Denote by G:=Aut(D) the group of all
automorphisms of D. It is well known that the isotropy subgroup

K:={geG:g(0)=0}

consists of all linear transformations in Aut(D) (restricted to D), i.e. K= Aut(E).
As a consequence of 1.1 we have |zOa| <1 for every z, aeD. By [13, p. 515],

(3.1) g.(2)==a+B(a,a'*(1+z0a)" 'z



286 JM. Isidro and W. Kaup

defines an automorphism g,eG with g,(0)=a, g,(—a)=0 and g_,=g, ' This
means in particular that G acts transitively on D and that every geG has a
unique representation g=g,A, where a=g(0) and A€ Aut(E). In [15, p. 132] it
has been shown that every geG has a holomorphic continuation to an open
neighbourhood of D < E. With 3.1 we get a quantitative improvement:

(3.2) Propesition. Every geG has a holomorphic continuation to the open ball
with radius r=|a|| ~ !, where a=g(0).

Proof. ||z|| <r implies |zOal| <1 by 1.1. Therefore 3.1 defines g, and hence also
g=g,/ holomorphically on the ball with radius r. []

3.1 also gives a way to recover the triple product on E from the group
G =Aut(D) — more precisely:

(3.3) Lemma. For every aeD, choose an automorphism ge Aut(D) with g(—a)=0.
Let L:=g'(0)e GL(E) be the first and let Q:=g" (0): E x E — E be the second deriva-
tive of g at the origin. Then for all x, yeE the triple product is given by

{xay}=—L""Q(x, ).
Proof. Let
g@)= 3 pl2

k=0

be the expansion of g as sum of k-homogeneous polynomials p, around OeD.
Because of g(—a)=0 we have a representation of the form g=A1g, for some
le K = Aut(E). This implies p, =AB(a, a)*/? and p,= —iB(a,a)'*q,. [

Let us now fix an admissible topology t on E and let Cont,(E) be as before.

(3.4) Lemma. For every aeCont,(E) the mapping
3.5 ExE—E defined by (x,y)— B(x,a)y

is t2 —t-continuous on bounded subsets.

Proof. Obvious from the definition of Cont,(E) and the Jordan triple identity

0, 0.y=2{{yax}ax}—{ya{xax}}. O

Denote by GL,(E) the group of all linear transformations g of E such that
g and g~ ! are t—t-continuous on bounded subsets of E, and put Aut,(E)
:=Aut(E)nGL,(E). In the same way, let Aut,(D) be the group of all ge Aut(D)
that are t —t-homeomorphisms of D.

(3.6) Theorem. For every admissible topology t on the JB*-triple E the group
of all biholomorphic t—t-homeomorphisms of the open unit ball D<E is given
by

Aut, (D)={g,A:aeD nCont,(E), Le Aut,(E)}.

Proof. Fix an element aeD n Cont,(E). Then f(z):==(14+z0a)"'z=) (—zOa)*z
defines a t—t-continuous function on D, since the convergence of the sum is
uniform on D and every summand is t—t-continuous. By (3.5) the operator
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B(a,a) also is t—t-continuous. The spectral radius of B(a,a)—id is bounded
by |la|*<1. Therefore also B(a,a)'/? is t—t-continuous as a norm-convergent
power series in B(a,a)—id. This shows that g, is t—t-continuous for every
aeD nConty(E). Finally g, '=g_, gives Aig,eAut,(D) for every aeD n Cont,(E)
and Ae Aut,(E).

For the proof of the opposite inclusion, choose an arbitrary ge Aut,(D) and
put a:=g(0). Then h:=g~ ! satisfies h(—b)=0 for b:= —a. First and second deriv-
atives of h at the origin are t—t-continuous as a locally uniform limit of t—t-
continuous mappings. This implies by 3.3 that g, is t—t-continuous and hence
that aeCont,(E). By the first part of this proof, this implies that A

=g, 'geAut(E). [

(3.7) Corollary. Suppose t is an admissible topology on E with Aut,(E)= Aut(E)
— for instance, if t=w is the weak topology or — in case of a JBW*-triple —
if t is one of the topologies s*, t*, w*. Then for every biholomorphic automorphism
g of D, the following conditions are equivalent :

(1) g is t—t-continuous on D,
(2) g(0)eCont,(E).

Proof. Suppose (1) holds. Then g=g,4 with ae D n Cont,(E) and A linear. Then
2(0)=a shows (2). The other implication also follows easily. []

As an application of 2.12 and 2.10 we get finally

(3.8) Corollary. Let E be a spin factor of infinite dimension. Then the only w
— w-continuous biholomorphic automorphisms of the open unit ball of E are the
surjective linear isometries.

(3.9) Corollary. Let H be a complex Hilbert space and E:="(H) the space
of all compact operators on H. Then every biholomorphic automorphism of the
open unit ball of E is w— w-continuous.
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