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Introduction

For a semisimple complex Lie algebra g, let G be the simply connected Chevalley
group of the same type over a field k of characteristic p>0. Each admissible
lattice M in a finite-dimensional irreducible g-module V(1) gives rise to a rational
G-module M through reduction modulo p. In this paper we will define a natural
filtration for the G-module M. Using this filtration, we give a description of
the module graph of M for the groups of type 4,.

For a finite group, it is well known from Brauer’s theory that the modular
characters of those modular representations arising from different invariant lat-
tices in an irreducible ordinary representation are the same. However, due to
a result of Feit in 1967 (cf. [10, p. 70]), the module structure of these modular
representations could be quite wild if the integral domain in the modular system
has a large ramification index over Z,. 1t is not clear whether these modular
representations are indecomposable if one considers only lattices over the inte-
gral domain Z,. The same question can be stated for the modular representations
of Chevalley groups arising from admissible lattices. There are many interesting
modules for a Chevalley group arising in this way such as the cohomology
modules of line bundles over the flag varieties in the generic situation.

This paper is organized as follows: In contrast to the result of Feit for
finite groups, we will prove, in Sect. 1, that the module M is indecomposable
if all weight spaces of V(1) are 1-dimensional. The proof is based on the result
for the groups of type A, proved in [15]. In Sect. 2, we construct a filtration
for each module M generalizing the Jantzen filtration for a Weyl module [13]
and the Andersen filtration for a cohomology module [2] in the generic situation.
It turns out the filtration layers are self-dual under the transpose dual. In particu-
lar they are semisimple if the corresponding Weyl module is multiplicity free.

We consider only the groups of type 4, in the last two sections. The submo-
dule structure of Weyl modules has been described by Carter and Cline [4]
(also see [8, 6]). By calculating the filtrations explicitly, we study some properties
of the module graph of the induced module H?(i) in Sect. 3. The graph of
M is studied in Sect. 4. It turns out that the nondirected graph associated to
the module graph of M is independent of the admissible lattice M. An important
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fact we use in the proof is the structure theorem for Weyl modules in terms
of extensions between simple G-modules by Cline in [6]. All the possible graphs
for M can be characterized from the module graph of H{(4) in a purely combina-
torial manner. The last theorem deals with the Loewy length of M. All the
modules M with maximal Loewy length, which is the Loewy length of H? (%),
are classified.

1 Indecomposability

1.1 Let R be the root system of g and SSR™ the set of simple roots in the
set of positive roots. By X we denote the integral weight lattice and X" the
set of dominant weights. For 4, ue X, we say A= if \—uelNR™.

Choose a Chevalley basis {x,, h;|aeR, 1<i<n} for g. Here n is the rank
of g. The Kostant Z-form Ug(g) is the subring of the enveloping algebra U(g)
generated by {x&=x}/s!|aeR, s=0}. For JeX ™, V() is the finite-dimensional
irreducible g-module of highest weight A. The Z-span M of a basis of V(4)
is called a lattice in V(4). M is called admissible if Uz(g M =M. We denote
by M, (or V(4),) the p-weight space of M (or V(4)). It is known that M,
=MnV(4),and M is a direct sum of its weight spaces (cf. [11, 27.1]).

Let G be the group over Z defined by Kostant in [14]. Then G is obtained
from G through base change. Since Ugz(g) is the distribution algebra of Gz,
M=M®k is a rational G-module for each admissible lattice M in V(4) (cf.
[12, I11.12, 1.20]). Throughout this paper, the tensor products will be taken
over Z unless otherwise indicated. Furthermore, we denote by L(u), for each
peX*, the irreducible G-module of highest weight p.

1.2 Theorem. If M < V(1) is an admissible lattice and all the weight spaces of
V(1) are 1-dimensional, then M is an indecomposable G-module.

Proof. Suppose M=E@®F is a decomposition of M into a direct sum of two
nonzero submodules such that 2 is a weight of E. Let u be a maximal weight
of F. So A=y and p+a is a weight of V(4) for a simple root «. Let [, be
the subalgebra g generated by {x,, x_,} and the Cartan subalgebra b. Let L,
be the Levi factor of the minimal parabolic subgroup P, of G [12, II 1.7-1.8].
Then L, is split over Z and the distribution algebra of (L,)z is the subalgebra
Uy(l)=Uz(g) n U (L) of Ug(g) [12, I11.12].

V() is completely reducible when restricted to I,. Thus V(4)=@YV,. Here
each V,;=@YV,,z, for a weight v of V(1) is simple as [,-module since all the
weight spaces of V(1) are 1-dimensional. Then for each i, M;=M NV, is an
admissible lattice in V; as an |-module with respect to the Z-form Uz (1) (cf.
the proof of [7, (23.7)]). By considering the restriction of ¥, (or M) to a subalge-
bra of 1, isomorphic to sl,, we can apply the result for sl, proved in [15]
to conclude that M, is indecomposable as L,-module. Therefore M=®M, is
a decomposition of M into a direct sum of indecomposable L,-modules. By
the definition of each ¥}, i cannot be a maximal weight for any M;.

On the other hand, as an L,-module, each indecomposable component of
F is an indecomposable component of M and, therefore, must be isomorphic
to an M, for which u is not a maximal weight. However, since u is a maximal
weight of F, there must be an L,-indecomposable component of F with p as
a maximal weight. This contradiction shows that M is indecomposable. []
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Remark. If g is of type A4,, then the symmetric powers of the natural g-module
and their dual modules are irreducible g-modules and their weight spaces are
1-dimensional. Thus the above proposition applies to these modules.

2 Filtrations

2.1 Throughout this section, we will fix a dominant weight Ae X * and a highest
weight vector v™ in V(4). Let {, »: V(4)x V(4) — C be the bilinear contravariant
form (see [17, (1B)]) such that <{v*,v*> =1. For each admissible lattice M in
V(4), we define M'={veV(1)|<{v, M) <Z}. One can easily check that M’ is also
an admissible lattice and (M') =M. M;=Zv"* if and only if M},=Zv". It is
proved in [15] that (M)""= M". Here for a G-modules E, E"” denotes the transpose
dual of E, which has the vector space E* and the G-module structure given
by g f(x)=f(tr(g)x) for all feE* xeE and geG. tr: GG is the composite
of the inverse map g—>g~' (for all geG) and the involutory automorphism
¢ in [17, 2H)].

Let Z, be the localization of Z at the prime p. Since M ® k=MQ®Z, ®gz, k.
we only consider the admissible lattices over Z, in ¥(4) with respect to the
Z,form Uy(g) ®Z, in this paper. Note that all admissible lattices over Z, are
of the form M®Z, (cf. [7, (23.13)]). Without loss of generality, we will consider
only admissible lattices M with M 2=Z,v", although other admissible lattices
will be occasionally involved in some proofs (this should not contradict the
assumption here).

2.2 Let M be an admissible lattice over Z, such that M, =7Z,v*. There exists
a minimal integer e such that M<p ¢M’ in V(A). It is easily seen from the
A-weight space that e has to be nonnegative. Set M/=M ~p/~¢M’, then M’
is also an admissible lattice in V(1) for each j=0, 1, .... The inclusion of M’
into M gives a homomorphism ¢;; M/®k — M. Set M/=Im(¢,), which is a
G-submodule of M. Following the inclusion M7*'< M/, we get a filtration of
G-modules M=M°2M'>...2M'20. It is immediate from the definition that
M°+ M.

Lemma. M’={meM|{m, My<=p'~°Z,).

Proof. In fact M’ is the Z -dual of M by the nondegeneracy of the contravariant
form ¢, >. Then the lemma follows from a standard argument. [J

Remark. Using the set-up in the lemma, one can define the filtration via the
bilinear form (, >,,=p°<, ) in a similar way as Jantzen defines the filtration
for a Weyl module [13]. In particular, if we take M to be the minimal admissible
lattice Ug(g)v™, the filtration we defined here is the Jantzen filtration for the
Weyl module, denoted by V(4), since e=0 in this case.

2.3 Let W be the Weyl group. For each root «eR*, s, denotes the associated
reflection in W. Z(w) is the length of w for we W and Wo is the unique element
of W with maximal length. Let M =H{™(w-2) be the Z,free quotient of
H’™(w.J), which is defined via the derived functor of the induction functor
for the group schemes Gz, over Z, (see Andersen [2, (4.2)] for detailed informa-
tion). Then M can be regarded as an admissible lattice in V(4) with M;=Z ,v"*
Via a natural embedding H{™ (w-2) —» H°(4) (cf. [15]). H°(4) is always Z ,-free.
Using the Serre duality derived by Andersen in [2, 2.10], one gets
M’ = H{™oW (wow- ).
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For each xe$ such that #(s,w)=7£(w)+ 1, there exist maps T, : H7**" (s, w-4)
- H{™(w-4)and T, : H{"™(w-7) > HY="(s,w-A). T;, T, and T, T;, are the scalar
multiplications by p™ (up to units in Z ).

By induction on 7 (w), one can show that there exist maps

HY™ (w-4)—2 HO () —= HY™ (w-7)

such that T, T, is the multiplication by p™*"), Here T, is the natural embedding
of H™(w-J) into H°(4). Thus p™*™ H°()< H{™(w-4). In particular, for M
=H{"(w-1) we have McHO(A)cp~™*»o" M'. If we denote by ¢ the embed-
ding M = p~m*%o®) M, then T, =p™*™" ¢p: H{™ (w-1) - H{™o" (wow- 1) is the
map defined by Andersen in [2, (2.10)]. The integer m(7, w) can be calculated
through the p-adic expressions of (4, a") for aeR™ with w(x)eR™. By the
definition of e, we have e<m(dwow). If e<m(i wow), then
T, (H{™(w- ) S pH{™"(wow-1)  and  the induced map T, ®]1:
H{™ (w-2) @k — H™* (wow- ) ®Kk is 0. In the generic situation (see [3, 2.1]
for precise conditions), T,,®1+0 and its image is the simple socle of
H4"o" (wow-2) ® k. Thus we have proved

Proposition. For M =H/™(w-2), the filtration defined in 2.2 is a shift of the
filtration defined by Andersen in [2, 4.5] such that M/M*' #0. In particular, for
generic A, the filtration defined here for H;™ (w-2) is the Andersen filtration.

2.4 Let | be the minimal number such that M'*'=0. Then the length of the
filtration for M is I+1. We denote by ¢ the minimal number such that
M'cp M.

Lemma. [=e¢+¢€'.

Proof. Since M'*'=0, we have M'*'=Mnp'"'"*M'cspM. For each
mep' Tl M/, there exists =0 such that p'm'eM. Since
p'm'eM np't1 = M'cpM, we have p'~' m'e M and, therefore, m'e M by repeat-
ing the above argument. Hence p'*'"*M'cM and pitieM
=Mnp'*t' eM' cpM. Thus M'cp '**M and ¢ </—e. However, if e <l—e,
M'cp ®Mcp* "' M and p'~*M’'<=pM. This shows that M'< p M, which con-
tradicts M'+0. [

Corollary. The filtrations for M and M’ have the same length.

2.5 Let .# be an Abelian category and D: .# — .4 an exact contravariant func-
tor. If M is an object in .# and M=M°2>M'=2...2M'=20 is a filtration for
M in #. Then D(M)y=D(M/M'*'~J) defines a filtration for D(M). We call
the filtration {D (M)} the D-dual filtration of the filtration {M’}. In particular,
D(M?/Mi*Y)xD (MY ~/D(M)+1 4.

We will take D=tr, the transpose dual functor on the category of rational
G-modules. For an admissible lattice M, there are two filtrations for M'. The
first one is the filtration we defined in 2.2 for M’ and the other one is the
dual filtration of {M’} since (M) =M’ (cf. [15]).

Proposition. The two filtrations for M’ are the same.

Proof. Following Corollary 2.4, the two filtrations on M’ have the same length,
say, [+ 1. It suffices to prove (M/Miyr~M"**"J for each j.
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Let ¢: M/> M be the embedding and ¢*: M' - (M’y the dual map over
Z,. Set.(,b@l: M ®k—-M®k, and P*®1: M'®k —(MJY ® k. Since both M
and M’ are free Z,-modules, a dual basis argument will show that (¢ ® 1)*
=¢p*®1 under the identifications M ®z, k=(M ®z_k)* and
(MY ®z,k=(M’®z k)* via the bilinear form ¢, 5. By definition, A2’
=Im(¢ ® 1). Thus we have (M/M’)"=ker(¢* ® 1). We will show ker(¢* ® 1)
— ML

Using the nondegeneracy of the bilinear form <, > on V(4), one can verify
that (M+NY=M'n N’ and (M nN)=M'+ N’ for any two lattices M and N
in V(). Consider the map ¢*: M’'— (M’ =M’ +(p’~¢ M'Y = M’ + p° ¥ M, which
is the natural embedding.

Lemma. If M, and M, are two Z -lattices in a finite dimensional Q-vector space

V, then the natural embeddings M, npM, —2> M, ¥, M+ M, induce an exact
sequence

(M, npM,)®F,—2L M,  F, 2L, (M, + M,) R F,.

Proof. Let me M such that y(m)ep(M,+M,). Then m=pm, +pm, for some
myeM, and myeM,. Thusm—pm, =pm,e M, npM, and m—pm, =m (mod p).
This shows Im(0 ® 1)2Ker(y ® 1). However, Im@®1)=Ker(Yy ®1) is obvi-
ous. []

To continue the proof of the proposition, we take M,=p* I M=p'~i~¢M
and M,=M’" in the lemma. We have M, npM,=(M'}*'~J. Thus Im(f ® 1)
=M""'"J and the proposition follows from the lemma above since ¥ =ao*
in this case. []

Set M;=M’/M’*", which is called the jth filtration layer of M.
Corollary. For each admissible lattice M and j>0, (MPY"~M'/M""*'~7 and
(My)yr=M;j_;.
2.6 Proposition. For each admissible lattice M in V(1), M j Is selfdual, ie.,
M} =M,
Proof. Using Corollary 2.5, we only need to show M;=M;_;. Note that
M;=(Mnp~ M) (pMnp M +Mnpi—c*! M) @k, k.

There is also a similar form for M,_; The multiplication by p®~/ gives an
isomorphism of admissible lattices M’ — M’ ~p®~/ M =(M’)'"J, which sends
PMAp ™ M'+Mnp' ="' M onto p* /*' MAM’'+p*~i M~ pM'. The propo-
sition follows by tensoring k to the induced isomorphism over E. O

Corollary. If all composition factors of the Weyl module V(%) have multiplicities
at most 1, then M is semisimple for all j.
3 Structure graphs of Weyl modules for SL, (k)

3.1 In the rest of this paper we will consider only g=sl, and G=SL,(k). Let
{X, H, Y} be the standard Chevalley basis for g. We fix a dominant integral
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weight 4, which is a nonnegative integer. Write A+1=a,p"+...+4a, p" with
0<a,<p—1 for r=t=r,20 and q,>0, a, >0. For 20, let p,: N —>Z be the
reflection such that p,(n)=n—2k whenever n=mp°+k with 0<k=p°—1. p,
is called n-admissible if m=0(mod p), which is equivalent to p.(n)=+p. ().
Carter and Cline [4] proved that L(u) is a composition factor of V(4) if and
only if u+1=p,_p,,_, .- Pe,(A+1) for a sequence e; >e;> ... >e,>r, such that
Pe, IS Pe,_, -+ Pe,(A+1)-admissible for t=1, ...,s. Denote by ¥°(4) the set of
all such p.

Consider the set (r,r,]={r—1,...,r;}<N. For e, felN with rze>f2ry,
we call the subset (e,/]={e—1, ...,f} of (r,r,] an interval for Z if a,>0 and
either f=r, or a,<p— 1. For each interval (e, f ], we define a measure

e—1 I :
i((e’f])____{ae—lpe_1+"'+(af'+f'1)p %f fi"l,
A p°" " +...+asp if f=ry.
Let (/) be the subset of the power set of (r, r,] consisting of unions of intervals.
Then each Ie ¥ (J) is a disjoint union of maximal intervals, which will be called
components of I. The measure i can be extended naturally to a measure defined
on #(4). For a given finite set E, by | E| we denote the cardinality of E.

Lemma. If I, I,€5(A), then
(i) i(Hh=i(l,)if and only if I=1;
(i) pe? (%) if and only if A—pu=2i(I) for some Ie&(A);

ol

Proof. (i) follows from the uniqueness of the p-adic expression of i(I). To show
(i), one sees that ue¥ (4) if and only if u+1=p, ... Pe,(A+1) with r=e; > ...
>e,>r, such that a,, >0 for odd t and a, <p—1 for even ¢ with e,>r,. Corre-
sponding to pue? (1), we set I(p)=(e;, e2]U... Ules—y, €] if s is even, or I(y)
=(e,, e;]u ... U(es, rq] if s is odd. Thus I(w)e ¥ (4) and this defines a bijection
¥ (A)—L(J). A direct calculation will show p, p.(A+1)=A+1-2i((e, f]) for
each interval (e, f ]. Now (ii) follows from the induction on the number of compo-
nents of I(p).

To show (iii), we recall some facts. For a pair of nonnegative integers m=n,

write n=Y b,p' and m=Y ¢,p' in p-adic forms. For e>f20, we call the set
t

t
(e,f1={e—1, ..., f} a component for the pair (m, n) if it is a maximal set with
the property: b,<c, for te(e, f] and by<c,. It is proved in [15, (3.4)] that

v, ((n)) is the sum of cardinalities of all components for the pair (m, n). In
m

our case we can write I as a disjoint union of intervals and each component
of I corresponds to a component for the pair (i(l), ). (Compare the p-adic
expressions of A+ 1 and 1.) Thus (iii) follows. [

3.2 In [1], Alperin defines a module space to be a finite topological space
such that every point is relatively closed. For each finite poset X, there is a
natural way to make X into a module space by defining the open sets to be
the ideals of X. In our case, #(4) is a poset under the inclusion order. Therefore
& (%) is a module space in a natural way. We will denote by I5(4) the module
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graph associated to the module space #(4), which has vertex set #(1). I —J
is a directed edge in I4(A) if I2J and there is no I,€%(4) with 121,2J.
For our convenience, we denote by S(I) the irreducible G-module L(A—i(ea)
for each Ie.# ().

Theorem. I4(2) is the structure graph of the G-module HY(2) under the correspon-
dence I— S(I).

Proof. The proof can be found in [8] by Deriziotis keeping in mind that i(I)=
(A—w/2. O

3.3 Lemma. For I, I,e¥(A), I, 1, is an edge in Ty() if and only if 1,21,
and |I,|=|1,|+1.

Proof. It is clear that the condition given here is sufficient for I, -1 , to be
anedge. Suppose I, 21, and |I,|>|I,|+ 1. We will show that there exists Ie& (1)
with I, 2121, such that either |I|=|I,|—1 or |I|=|I,|+ 1. Since I,21,, each
component of I, is contained in a component of I,. Let (e, f] be a component
of I, but not a component of I,. At least one of the following three cases
will occur.

Case 1 (e, f] contains a component (¢, f’] of I, such that e>e¢’. Then take
I=I,u(e+1, flifa, ., #0or I=I\{e'} ifa, ., =0.

Case 2 (e, f] contains a component (¢, /'] of I, such that f’ >f. Then take
I=hu(e, f'—1]ifa; _ <p—lorI=I\{f' —1}ifa,_,=p—1.

Case 3 (e, f] contains no component of I,. In this case we will find I such
that I<(e, f] and |I|=e—f—1. We can take I=(e, fI\{f} if either e=f+1
or ag<p—1, or I'=(e, f]\{e—1} if a,_,>0. Otherwise, there exists f, such
that e>f, >f with a; <p—1 and a,, _, >0. Take I=(e fi]U(fi—1, f] in this
case. []

Corollary. For I, I,e % (2), if Ext&(S(I,), S(I,)) %0, then |1,|=|1,|+ 1 and either
I,cl,orl,=I,.

Proof. This follows from the above lemma and the structure theorem of Cline
[6]. O

3.4 Let I be a directed graph. We denote by I' the nondirected graph associated

to I’ With fixed 4, the maximal value v, ((z(AI))) forle #(A)isr—r, by Lemma 3.1.
Since HY(4) (the induced G-module) is indecomposable, the graph I;,(4) is path
connected. For I, Je ¥ (1), we denote by d(I, J) the distance between I and
J, which is the minimal number of edges in paths connecting I and J in I} (A).

Lemma. Let I, 1,5 (2) such that |1,|=|1,|. Then d(Iy, I,)=|1,|—|1,|. Further-
more, d(I,, I,)=|I,|—|1,|if and only if I, 21,.

Proof. Suppose t=d(I,, I,). Let I,=J,, Jj, ..., J;=1, be a path in Iy(4), ie.,
(Ji-,, J) are edges in Iy (Z) for s=1, ..., . By Lemma 3.3, ||J,_;|—|J||=1 and

t t
t= D 1J—sl=1%11Z X (=1l =KD =11, 1= 1,].
=1

s s=1
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This proves the first statement. If d(Iy, I,)=|I,|—|I,|, we must have |J,_,|
—|Jl=1foralls=1,...,t and J,_, 2J, by Lemma 3.3. Thus I, =I,.

On the other hand, if I,21,, we use induction on |I;|—]|I,| to show
d(I,, 1,)=|I,|—|I,|. This is clear if |I,|—|I,|<1. If |I,|—[I;|=2 and I, 215,
the proof of Lemma 3.3 has shown that there exists €% (1) such that I, 2121,
and |I| is either |I,|—1 or |I,|+ 1. Now the assertion follows from induction
hypothesis. []

3.5 Recall that #(4) is closed under union. One can verify that it is also closed
under intersection. For I, I,e¥(A), I,Ul, is the unique least upper bound
of I, and I,, and I, 1, the unique largest lower bound of I, and I, in the
poset #(4). Thus #(4) is a lattice. The simple formula, [T, I+ 1, ul,|
=|I,|+|1,|, will be used many times in the sequel.

Proposition. For I, [,e ¥ (4), d(I, I,)=|1,VI,|—|I,n15].

Proof. Using Lemma 3.4, it is easy to see

d(,, I)<d(,, 1, uly)+d(,, I, ul,)
=211, vl |—(I |+ 1 )=1, VI, —|I;n]1y].

To show d(I,,1,)=|1,ul,|—|I;nI,|, we use induction on d(Iy, I,). If
d(I,, I,)=1, then, say, I, - I, is an edge in [5(4). Thus I, vI,=1, and I, N1,
=1,. The assertion follows from Lemma 3.3. Assume d(I, I,)=t=22. Let I, =Jos
Ji, ..., J,=1I, be a shortest path in I;(4). Then

a(I,, 12)=d(11,J1)+d(J1,12)=|I1 UJ1|_|J1mIl|+|JL|+|12|—2|J1mIZ|-

If JycI,, we have d(I,,1,)=|I,|+|I;|=-2|J;nL|Z|I,Vl,|—|I,n],|.
Otherwise we have I, =J; and therefore

d(Iy, I)=|h | =1 | +| L +|J | =21, n ]
=|11U12|*|11012|+2(|J1|‘|I1|+|IlﬁIz|—|Jlnlz|)
=1, UL | =1, n | +2(3\]1 | =\ )N 1))
z|Lvl|-|Iinl|. O

3.6 The following lemma will be used in the next section.

i(1

Lemma. Let I, J € (3) such that i(I)>i(J). Then |J|—|InJ|<v, ((:E J))))

Proof. Let K=1nJ. Using Proposition 3.4 of [15], we only need to show that
each geJ\K is contained in a component for the pair (i(J), i(I) (cf. the proof
of 3.1). There exists a component (j,, ;] of J such that ge(j,, J1iJ\K. There
exists s=0 maximal such that g—te(j, j1]\K for t=0, ..., s. Thus g—t¢I and
the coefficient of p~* in the p-adic expansion of i(I) is 0 for t=0, 1, ..., s.

(A) If g —s=j,, the coefficient of p*~* in the p-adic expansion of j(J)is a;, +1>0
or a,, >0 if jy =ry (cf. 3.1).
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(B) If g—s>jj, then g—s—1e(k,, k;] for a component (ky, ky] of K. Thus
ky=g—s and the coefficient of p~* in the p-adic expansion of i(J) is a,,>0.
In the both cases we discussed above, g is in a component of the pair

(W, i0). 0O

4 Modules for SL, (k) arising from admissible lattices

4.1 We still assume that g=s/, and G=SL,(k) in this section. Let A=>0 be
a fixed dominant integral weight for g and {vo, vy, ..., v;} a basis for H°(})
with v;€ V(4);.;, in as in [15] (Sect. 3). H°(4) is the maximal admissible lattice
in V(4) (with respect to the fixed weight vector v* =uy,) (cf. [15]). Let M be
a lattice in V() with a Z-basis {z,, z,, ..., z,} such that z;=x;, v; for some x;eZ.
Then

X; i X; A—i
X®z=——|. ziy Y9z=—2 ; Zits-
X i—s Xips A—i—5

i—s

M is admissible if and only if % (;) and % (j —jz) are in Z whenever 1>i>j>0.
j i \ A=

We can further assume that x,=1 and x;>0 for i=1, ..., L Though we are
considering the admissible lattices over Z,, each admissible lattice M can be
represented by a sequence {x,, ..., x,} satisfying the above conditions. For i> Js

X (A=J\\_
(xi (}*—i))—o and
Xi

z;® 1 is in the submodule of M generated by z;® 1 if v, (— C)):O. In particular,
xl

z;®1 is in the submodule of M generated by z;®1 if v

p

A7I=mifxi=(?) fori=0, ..., A

4.2 The following facts can be verified easily by using the filtrations for Weyl
modules and the above basis.

(A) If L(4) is a simple G-module and v,, v, are non-zero weight vectors in
L(2) of weights A and p respectively such that A—pu=sa, then Y® v, 40, X v,
#+0, and X© Y® vl=(i) v,.

(B) If 0> L(A)—>E— L(u)—0 is a nonsplit extension of two different simple
G-modules, then all weight spaces of E are 1-dimensional. If v, is a non-zero
weight vector in E of weight , then Y® v, 40 if u—A=s« with s>0 and X* v,
+0if A—u=sa with s>0.

Lemma. Let I, Je#(3) and i=i(I)>j=i(J). If ExtL(S(I), S(J)) %0, then

() either v, ((;)) =0oru, ((j :Jz)) =0
(i) either v, (;‘— (;)) ~0ora, (? (j :j,:))= 0.

Proof. To prove (i), we consider the module H{(%). By the structure theorem
of Cline [6], there is a subquotient of HP (%) which is an extension of S)
and S(J). (i) follows from the actions of X and Y® on the basis elements
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of HY(4) and (B). (i) is a consequence of (i) and the facts: |[I |—1J||=1 and

()()=C) G2y i imot () -o(; )21 v 3000

43 Let M’ be the dual lattice of M. If M’ is represented by {yo, ..., y;} as

in 4.1, then one can easily verify from the contravariant form that x;y;= ;
for i=0, 1, ..., 2. Let e be the minimal integer such that MSp~*M’ as in 2.2,
Then e=max {v,(y;)—v,(x;)} =max {vp ((?))—2vp(xi)}. Let {zg,...;2;) be a
basis for M as in 4.1. Then z;e MP=M np’~¢ M’ if and only if v,(x) 2 v,(' " )
=j—e+v,(y). Equivalently, ze M’ if and only if 2v,(x)—v, ((/3))+e_2_j. For

any module E of finite length and any simple module L, by [E : L] we denote
the multiplicity of Lin a composition series of E. Thus we have proved

Lemma. [M;: S(I)]=+0 for ¥ () if and only if 2v,(x)—|I|+e=j.

4.4 Now we are ready to prove the structure theorem of M for g=s1,.
Theorem. Let I, Je.% (/) and Ext}(S(I), S(J))*0. Then, for any admissible lattice
M,

(i) S(I) and S(J) appear in the adjacent layers of the filtration for M;
(ii) there is a subquotient of M which is an extension of S(I) and S(J);

(iii) if I'(M) denotes the module graph of M, then ' (M)=1Iy(1).

Proof. (i) Set i=i(I) and j=i(J). We may assume i>j. By Lemma 4.2, there
are four possible situations:

(A) v, (C)):o and v, (i—J C)) —0; |

® o ot (1) -
© o () -0 na ey (2, :],)) _o;
(D) v, ((j :’l))=0 and v, (% C)) =0

We have v,(x;)=v,(x;) in cases (A) and (B). In (C) and (D),

st () ()0 )+

by Corollary 3.3. If [M,: S(I)]#0 and [M,: S(J)]+0, by Lemma 4.3,

R o ) A S
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(i) We may assume s=t—1 in the proof of (i). Consider the submodule U
of M generated by z;. Then U has simple head S(I). By Lemma 4.2, S(J) has
to be a composition factor of U. Since all the filtration layers are semisimple,
Rad U = M*. Then the assertion follows.

(i) It follows from (ii) that either I —J or J —1I is an edge in I'(M). Conversely,
if I-J is an edge of I'(M), then Ext;(S(I), S(J))=%0. Thus all edges of I'(M)

have to be edges of I(1). [

Corollary. If M/Rad M (or Soc M) is simple, then the filtration for M is the
radical (or socle) filtration.

Proof. We prove the corollary only for the radical filtration. By Corollary 2.6,
we have Rad' M =M for all i20. To show the equality, we use induction on
i. For i=1, this follows from the assumption. Suppose that Rad’ M = M'. If
[MY/Rad""' M:S(J)]+0 for Je (1), there exists J,e#(4) such that
[, ,:5(J)]#0 and Ext}(S(J,), S(/))%0. By (i) of the theorem, [M,: S(J)]+0.
Therefore M"/Rad’*' M and M‘/M'*! have the same composition factors and
Radi+1]\7[=i\71i+1. D

4.5 We still use {xg, ..., x;} to represent the admissible lattice M as in 4.1.
Let A—ix and 1—ja be weights of the same composition factor of H?(4). Using

the filtrations for V(1) and M defined in 2.2, we can show v, ((}f»:vp ((l))
and v,(x;) =v,(x)). J !
Define a function e: #(1)—» N by e(l)=uv,(x;y) for all Ie#(4). One can
see that M is an admissible lattice over Z,, if and only if e(l)+v, ((;gi»geu)
and e(J)+v, ((i:;g))))ge(l) whenever I, Je# () with i(I)>i(J). Conversely,
for any given function e: #(1)—Z satisfying e(J)—e()=v, ((:8)))) and
e()—e(J)<v, ((ﬁ:’lg)))) for all I, JeS(4) with i(I)>i(J), there is a unique
admissible lattice M over Z, such that v,(Xip)=e(I)—e(0) for all Ie #(J).

Theorem. Let I' be a graph with ['=Ty(2). Then I'=T'(M) for some admissible
lattice M if and only if there exists a function e: & (4) = @ such that for any
edge I —J in I one has

M e(N+1 if J—>1Iisan edge in I(A).

(J)_{e(l) if 1-J isan edge in I;(1),

Proof. If ' =TI" (M), we set e(I)= vp(xin)- Let I = J be an edge in I'(M). Following

Theorem 4.4(ii) and Lemma 4.3, we have (2e(J)— [J)—(2e(I)—|I|)=1, or equi-

valently e(J)=e(I)+4(|J|—|I|+1). Now Eq. (1) follows from Lemma 3.3.
Suppose e is a function satisfying the Eq. (1). By considering the function

I'—e(I)—e(P) we may assume that e(2)=0 and e(I)eZ. One can see that Eq. (1)

is equivalent to the following: For any edge I - J in I (1),

) e(l)= e(J) ?f I—»J%s an edge ?n r,

e(J)+1 if JoIisanedgeinT.
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By induction, we have 0<e(l)—e(J)<|I|—|J| whenever 12J. In particular,
0<e()<|I| and e(I)=e(J) for all I, Je ¥ () with I =2J. For any pair I, Je#(4)
with i=i(I)>i(J)=j, set K=InJ. Following Lemma 3.6 we have |J|—|K]|

<v, ((:)) Thus e(J)—e(I)Se(J)—e(K)=v, ((;)) This shows that e(J)—e([)

A

<v, ((:E.II;)) when i(I)>i(J) for any graph I' as in the theorem with a function
e satisfying Eq. (1).

Let I" be the dual graph of I' (i.e., the graph obtained by reversing the
directions on all edges of I'). Define ¢': ¥ (1) —Z by e (I)=|I|—e(I). One can
verify that ¢’ satisfies Eq. (1) for the graph I'" (use Lemma 3.3). By what we

have proved above, we have e'(J)—e'(I)=v, ((:8;)) whenever i(I)>i(J). There-
fore

- (1) ()

Thus we have shown that the function e (with e(§)=0) satisfies the conditions
for an admissible lattice as we discussed before the theorem. [

Remark. (1) Let & be the set of edges of Ij(4). Each graph I' with r'=Iy(A)
is uniquely determined by a function f: & — {0, 1} such that for each edge I - J
in I (), f (I » J)=0 or 1 according to I > J or J — I is an edge in I" Equation (1)
is equivalent to the fact that the sum of f along any directed path in I(4)
depends only on the starting and ending vertices. This provides an easy criterion
to test if I'=I"(M) for some admissible lattice M.

(2) The filtration for Hj(/) divides the set & of edges into many layers.
The jth layer of edges are those edges connecting the composition factors in
the (j— 1)th filtration layer to those in the jth filtration layer for HY(4). As
an easy consequence of the above criterion, one can show that for each n with
2<n<r—r,+1 there is an admissible lattice M such that M has Loewy length
n. The graph of such an M can be constructed by setting f to be constant
on each layer of & Any function f which takes a constant value on each layer
satisfies the above criterion since any two directed paths in I5(4) connecting
I and J have the same length and each of such paths has one and only one
edge in each layer between I and J (cf. 3.3 and 4.3).

4.6 Let I,=(r, r,], which is the unique maximal element in (/). For each
Ie# (), let I'=I,\I, which may not be in ¥ (4). To state the last theorem
we need one more notation. For a module E, we denote by ¢/ (E) the Loewy
length of E.

Theorem. (i) For each admissible lattice M in V(2), £ £ (M) < ¢ ¢ (HP (W) =r—r, + 1.
(i) For each I (A), there is an admissible lattice M such that the filtration
defined in 2.2 for M is the socle filtration and S(J) is a composition factor of
Soc"M if and only if d(I, J)<n. In particular, S(I)=Soc M. Furthermore, every
M with a simple socle is of this form.

(iii) The following are equivalent for an admissible lattice M. In each case, M
is rigid.
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(a) M is constructed as in (i) for some 1€ .5 (1) with I'e % (1);
(b) £(M)=r—r +1; B
(c) Both Soc M and M/Rad M are simple.

Proof. (i) Consider the filtration for M. Each filtration layer is semisimple by
Corollary 2.6. Let I, Je#(4) such that [M,:S(I)]+0 and [M,:S(J)]+0. We
may assume t=s. Using induction on d(I, J) and Theorem 4.4, one can show
that t —s <d(I, J). The conclusion of (i) follows from Proposition 3.5.

(ii) For a fixed I€.%(/), we define a graph I' with I'=T;,(/) as follows: If (I, I,)
1s an edge in I5(4), then I, -1, is an edge in I if d(I, 1,)>d(I, I,). Note that
Io(4) is a bipartite graph with the partition %(l)=AuUB given by
A={Je#()||J| is even} and B={JeF(1)]||J| is odd}. One can see that
d(l, I,)*d(1, I,) for each edge (I, I,) in I (4). Otherwise there will be a circuit
with odd number of edges in I5(4) (see [5, Theorem 1, p. 10]). Thus the graph
I' is well defined with ' =T (7).

Define the function e: ¥ (1)>@ by e(J)=1(J|—|I|—d(I,J)) for each
Je#(4). For each edge I, — 1, in I, one must have d(I, I,)=d(I, I,)+ 1. Thus
e(ly)—e(I)=4%(1,]1—|I;|+1), which is 0 if I, -1, is an edge in I;(4) and 1
if I, > 1, is an edge in I5(4). By Theorem 4.5, I'=I"(M) for some admissible
lattice M.

By Lemma 4.3, two composition factors S(I,) and S(I,) occur in the same
filtration layer of M if and only if d(I, I,)=d(I, I,). The filtration is the socle
filtration follows from the fact that for each I,e% (1) with d(I 1, [)=1, there
exists 1,€.%(4) such that (I, I,) is an edge in Ty (4) and d(I, I,)=d(,1,)—1.

Conversely, let M be an admissible lattice such that Soc M = S(I) is simple.
By Corollary 4.4, the filtration for M is the socle filtration. Using Theorem 4.4(i)
and an induction on i one can show that, for each Je (1), [Soc' M: S (J)]1=*0
if and only if d(I, J) <i. Thus the graph I'(M) is the one constructed above.

(iii) (a) = (b) and (c). Suppose I'=I,\T€% (). Then we have d(I, I''=|1,| by
Proposition 3.5. Following the construction in (ii), M has the maximal Loewy
length |I,|+ 1. Using Proposition 3.5, a simple calculation shows

3) d(J, 1) +d(J, )=|I,| forall JeF(A).

By the definition of the graph I'(M) in the proof of (ii), Eq. (3) shows that
there is a directed path from I’ to each Je% (). Therefore, M/Rad M = S(I')
and (c) follows.

(b) = (a). Since 7 #(M)=|I,|+ 1, then M, ;+0. Let S(I) be a composition factor
of M\,,. If S(J) is a composition factor of M/M*, by the proof in (i), we have
llo|<d(I, J)<|I,| and J=1I'. Thus I'e #(4) since M/M" is not zero by the defini-
tion of the filtration. Let S(J) be a composition factor of M. By the proof
of (i) once again, we have [I,|—s<d(J,]) and s<d(J, I'). Following Eq. (3),
we have d(I, J)=|I,|—s. Thus the graph I'(M) is the one constructed in (i1)
for I and (a) follows.

(¢) = (b). Suppose S(I,)=SocM and S(I,)=M/Rad M. Let [ be the smallest
number such that Rad'*' M=0. Similar to the last paragraph in the proof
of (ii), we have

[Soc!M:S(J)]+0 ifand onlyif d(I,, J)<i—1;
[Rad'M: S(J)]+0 ifand only if d(I,, J)<i.
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Since RadiM <=Soc'*! ' M, we have d(I,,J)+d(I,, J)ZI<|Iy| by (i) for all
Je&#(4). Taking J =@, I, we have
d@,1)+d®, I,)<I<|Iol;
d(Io, I)+d(Io, 1) SIS (1o

However, by Eq. (3), d(0, I)+d(I,, I)=|1,| for i=1, 2. Adding the above two
inequalities together we get I=|I,|. Thus /£ (M)=|I,|+ 1 and (b) follows.

Finally, the rigidity of M follows from the conditions of (c) and Corol-
lary 44. O

Remark. There exists 1 and an admissible lattice M in V() such that the filtration
we constructed for M is neither the radical nor the socle filtration.
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