

Werk

Titel: On interior and boundary regularity of weak solutions to a certain quasilinear el...

Autor: Jakobowsky, Norbert

Jahr: 1992

PURL: https://resolver.sub.uni-goettingen.de/purl?266833020_0209|log7

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

© Springer-Verlag 1992

On interior and boundary regularity of weak solutions to a certain quasilinear elliptic system

Norbert Jakobowsky

Institut für Mathematik, RWTH Aachen, Templergraben 55, W-5100 Aachen, Federal Republic of Germany

Received March 23, 1990; in final form November 30, 1990

0 Introduction

We consider weak solutions to the quasilinear elliptic system

$$(0.1) \Delta x = 2H(x)x_u \wedge x_v,$$

i.e. mappings $x \in W^{1,2}(\Omega, \mathbb{R}^3)$ satisfying

(0.2)
$$\int_{\Omega} (\nabla \Phi \cdot \nabla x + \Phi \cdot 2H(x)x_u \wedge x_v) du dv = 0$$

for all $\Phi \in W_0^{1,2}(\Omega, \mathbb{R}^3) \cap L^{\infty}$. Here Ω is a domain in \mathbb{R}^2 , H is a realvalued function in \mathbb{R}^3 , and \wedge denotes the vector product in \mathbb{R}^3 . x can also be considered as a critical point of the functional

$$(0.3) E(x) = \int\limits_{\Omega} (|\nabla x|^2 + A(x) \cdot (x_u \wedge x_v)) \, du \, dv \;,$$

where $\operatorname{div} A(x) = 4H(x)$. On the coefficient H(x) we impose the following conditions:

(0.4)
$$H(x) = H_1(x) + H_2(x),$$

(0.5)
$$\sup_{x \in \mathbb{R}^3} (|H_1(x)| + (1+|x|)|\nabla H_1(x)|) < \infty ,$$

and

(0.6)
$$\sup_{x \in \mathbb{R}^3} (|H_2(x)| + |\nabla H_2(x)|) < \infty, \qquad \sup_{|x| \ge K} |x H_2(x)| < 1.$$

As our principal result (Theorem 3.3) we show that $x \in C^{2,\mu}(\Omega, \mathbb{R}^3)$ holds for all $\mu \in (0, 1)$. In the case where $H_2(x) \equiv 0$ this theorem reduces to a result of Heinz [8], whereas for $H_1(x) \equiv 0$ the statement is contained in a more general result of Tomi [16].

Moreover, for $z \in W^{1,2}(\Omega, \mathbb{R}^3)$ we consider weak solutions to the *Dirichlet* problem

(0.7)
$$DP \begin{cases} \Delta x = 2H(x)x_u \wedge x_v & \text{in } \Omega \\ x = z & \text{on } \partial\Omega \end{cases}$$

i.e. mappings $x \in W^{1,2}(\Omega, \mathbb{R}^3)$ satisfying (0.2) and $x - z \in W_0^{1,2}(\Omega, \mathbb{R}^3)$. Under the additional assumptions $z \in L^{\infty}(\Omega)$ and $z \in C^0(\overline{\Omega})$ we prove that x belongs to $L^{\infty}(\Omega)$ and $C^0(\overline{\Omega})$, respectively. In the case where $H \equiv \text{const}$ this follows from a result of Brezis and Coron (see [1, A1]). Moreover, if the boundary function z belongs to a higher regularity class, corresponding results of the boundary behavior of the solution x can be inferred from the papers [5, 11, 18, 19].

The Eq. (0.1) arises in connection with surfaces of prescribed mean curvature (see [9] and [10] for a more detailed discussion of this topic and related results).

The essential point in the proofs is to show that the solution x is locally bounded. The main tool in this paper, which is a shortened version of the author's doctoral thesis [12], are estimates of Dirichlet integrals over level sets. This idea has been used previously by Hildebrandt and Widman [11] for treating quasilinear elliptic partial differential equations and systems. Using the special structure of the underlying system (0.1), the Courant-Lebesgue Lemma, and a special version of the isoperimetric inequality, we first prove a result concerning partial interior regularity (Theorem 3.1), namely continuity of a weak solution x to (0.1) in all points $w_0 \in \Omega$ where

(0.8)
$$\lim_{r \downarrow 0} \left(\left| \frac{1}{2\pi r} \int_{\partial B_r(w_0)} x \, ds \right|^2 \int_{B_r(w_0)} |\nabla x|^2 \, dw \right) = 0 \; .$$

Continuity in all of Ω (Theorem 3.2) is then deduced from the facts

$$(0.9) \qquad \frac{1}{2\pi r} \int_{\partial B_r(w_0)} x \, ds = o(\log^{\frac{1}{2}} r^{-1}), \quad r \downarrow 0 ,$$

(Lemma 1.3) and

(0.10)
$$\int_{B_{\rho}(w_0)} \log |w - w_0|^{-1} |\nabla x(w)|^2 dw < \infty$$

(Theorem 3.2). We note that the proof of (0.10) makes use of some ideas taken from Heinz [8] (see below).

Boundary regularity (Theorem 4.1) is finally obtained by controlling $(2\pi r)^{-1} \int_{\partial B_r(w_0)} x \, ds$ by the boundary data in a small neighborhood of $\partial \Omega$. We use the interior estimates to establish the stated results.

1 Preliminaries

In this paper we use the following notations: Ω denotes a domain in \mathbb{R}^n , $B_r(w_0)$ the open ball in \mathbb{R}^n with center w_0 and radius r. We have n=2 and write w=(u,v) or $w=re^{i\varphi}$, if $w\in\mathbb{R}^2$. Only in Lemmas 2.1 and 2.2 $n\geq 2$ is admitted.

In usual manner $C^k(\Omega, \mathbb{R}^m)(C^{k,\mu}(\Omega, \mathbb{R}^m))$ denotes the space of functions with (Hölder) continuous partial derivatives of order k. A subscript $_0$ is added to refer to functions with compact support in Ω .

For norms of the Banach spaces $L^p(\Omega, \mathbb{R}^m)$ we use $\|\cdot\|_{p;\Omega}$, and by $W^{1,2}(\Omega, \mathbb{R}^m)$ we mean the well known Sobolev space consisting of the square integrable functions in Ω with square integrable distributional derivatives. Moreover, $W_0^{1,2}(\Omega,\mathbb{R}^m)$ denotes the completion of $C_0^1(\Omega,\mathbb{R}^m)$ in $W^{1,2}(\Omega,\mathbb{R}^m)$, sup often means ess sup.

The scalar product in \mathbb{R}^m is denoted by $a \cdot b$, the vector product in \mathbb{R}^3 by $c \wedge d$, and the triple scalar product by $(a, b, c) = a \cdot (b \wedge c) = a \cdot b \wedge c$. The following type of isoperimetric inequality will be essentially needed in our proofs.

Lemma 1.1 Let $g \in W^{1,2}(B_r(w_0), \mathbb{R}^3) \cap L^{\infty}$ and $h \in W_0^{1,2}(B_r(w_0), \mathbb{R}^3)$.

$$(1.1) \qquad \left| \int_{B_r(w_0)} (g, h_u, h_v) \, du \, dv \right| \leq c_0 \left(\int_{B_r(w_0)} |\nabla g|^2 \, du \, dv \right)^{1/2} \int_{B_r(w_0)} |\nabla h|^2 \, du \, dv$$

holds with an absolute constant c_0 .

For proofs see e.g. [1, 6, 17].

We shall use the following version of the well known Courant-Lebesgue Lemma.

Lemma 1.2 Let $x \in W^{1,2}(B_{\rho}(w_0), \mathbb{R}^m)$.

Then, there exists a set $M_x \subset (\frac{1}{2}\rho, \rho)$ with meas $M_x \ge \frac{1}{4}\rho$ satisfying the following two conditions for all $r \in M_x$

1. $x_{|\partial B_r(w_0)}$ is absolutely continuous

1.
$$x_{|\partial B_r(w_0)}$$
 is absolutely continuous
2. $\sup_{w', w'' \in \partial B_r(w_0)} |x(w') - x(w'')| \le \left(\frac{\pi}{\log \frac{4}{3}} \int_{B_\rho(w_0)} |\nabla x|^2 du dv\right)^{1/2}$.

The proof (see [12]) is quite similar to those given in [3, 7] and can be omitted. Some remarks on a decomposition for $W^{1,2}(B_a(w_0), \mathbb{R}^m)$ functions will finish our preparations. We set

(1.2)
$$x(w) = \xi(|w - w_0|) + v(w)$$

with circleline meanvalue

(1.3)
$$\xi(r) = \xi_{w_0}(r) = \frac{1}{2\pi} \int_{0}^{2\pi} x(w_0 + re^{i\varphi}) d\varphi$$

and oscillation part

$$(1.4) y(w) = y_{w_0}(w) = x(w) - \xi_{w_0}(|w - w_0|).$$

Since x has a trace in $L^2(\partial B_r(w_0), \mathbb{R}^m)$ for all $r \in (0, \rho]$ (see [14]), $\xi = \xi(r)$ is well defined in $(0, \rho]$ and $y = y(w_0 + re^{i\varphi})$ a.e. in $(0, 2\pi)$ for all $r \in (0, \rho]$. Moreover, we have

(1.5)
$$\int_{0}^{2\pi} y(w_0 + re^{i\varphi}) d\varphi = 0$$

and

(1.6)
$$\int_{0}^{2\pi} |x(w_0 + re^{i\varphi})|^2 d\varphi = 2\pi |\xi(r)|^2 + \int_{0}^{2\pi} |y(w_0 + re^{i\varphi})|^2 d\varphi$$

for all $r \in (0, \rho)$. Then, approximation and (1.5) yield

$$\int_{0}^{2\pi} |\nabla x(w_{0} + re^{i\varphi})|^{2} d\varphi = 2\pi |\xi'(r)|^{2} + \int_{0}^{2\pi} \left(|y_{r}(w_{0} + re^{i\varphi})|^{2} + \frac{|y_{\varphi}(w_{0} + re^{i\varphi})|^{2}}{r^{2}} \right) d\varphi$$

$$\geq \frac{1}{r^{2}} \int_{0}^{2\pi} |y(w_{0} + re^{i\varphi})|^{2} d\varphi$$

a.e. in $(0, \rho)$, from which we also obtain that ξ is absolutely continuous in $(0, \rho]$. The following lemma concerning circleline meanvalues can be proved in an elementary way.

Lemma 1.3 $x \in W^{1,2}(B_{\rho}(w_0), \mathbb{R}^m)$ implies

(1.8)
$$\lim_{r \downarrow 0} \frac{|\xi_{w_0}(r)|^2}{\log r^{-1}} = 0.$$

Proof. It suffices to consider the case m=1. Assume that (1.8) is false. Then there exists a sequence $\{r_k\}_{k\in\mathbb{N}}\subset (0,\rho)$ such that $r_k\downarrow 0$, $k\to\infty$, and

(1.9)
$$\frac{|\xi_{w_0}(r_{k+1}) - \xi_{w_0}(r_k)|^2}{\log r_{k+1}^{-1} - \log r_k^{-1}} \ge \varepsilon > 0, \quad k \in \mathbb{N}.$$

Using (1.7) and the Schwarz inequality, we infer

(1.10)
$$\frac{1}{2\pi} \int_{B_{r_{*}}(w_{0})\setminus B_{r_{*+1}}(w_{0})} |\nabla x|^{2} du dv \ge \int_{r_{k+1}}^{r_{k}} \xi'_{w_{0}}(r)^{2} r dr \ge \varepsilon, \quad k \in \mathbb{N} ,$$

thus

(1.11)
$$\int_{B_{r_1}(w_0)\setminus B_{r_{n+1}}(w_0)} |\nabla x|^2 du dv \ge 2\pi n\varepsilon, \quad n\in\mathbb{N} ,$$

which contradicts $x \in W^{1,2}(B_a(w_0))$.

2 Estimates for Dirichlet integrals over level sets

In this section we deduce estimates for (weighted) Dirichlet integrals of mappings $x \in W^{1,2}(\Omega, \mathbb{R}^m)$ satisfying the Poisson equation $\Delta x = h$, where $h \in L^1(\Omega, \mathbb{R}^m)$, $\Omega \subset \mathbb{R}^n$. Instead of x we consider $\Psi_M(|x-a|^2)$ with a cut-off function Ψ_M and $a \in \mathbb{R}^m$, which allows to use a technique well known from proofs of maximum principles (see [11, 4, 13]). The following lemma is fundamental in our argumentation.

Lemma 2.1 Let $\Omega \subset \mathbb{R}^n$, $f \in W^{1,2}(\Omega, \mathbb{R})$, $\gamma \in L^{\infty}(\Omega, \mathbb{R})$, $\gamma \geq 0$ in Ω , and $g \in L^1(\Omega, \mathbb{R})$. Furthermore, let f be a weak solution to $\nabla \cdot (\gamma \nabla f) = g$ in Ω , i.e.

(2.1)
$$\int_{\Omega} (\nabla \varphi \cdot \gamma \nabla f + \varphi g) \, dw = 0.$$

for all $\varphi \in W_0^{1,2}(\Omega, \mathbb{R}) \cap L^{\infty}$. Then,

(2.2)
$$\int_{\{w \in \Omega: f(w) > f_0\}} g(w) dw \leq 0$$

for all $f_0 \in \mathbb{R}$ such that $\max\{f - f_0, 0\} \in W_0^{1, 2}(\Omega, \mathbb{R})$. If $\sup \gamma \in \Omega$, (2.2) holds for all $f_0 \in \mathbb{R}$.

Proof. Assume $\varepsilon > 0$ and $\psi_{\varepsilon} \in C^1(\mathbb{R}, \mathbb{R})$ satisfies $\psi_{\varepsilon|(-\infty, \varepsilon)} \equiv 0$, $\psi_{\varepsilon|(2\varepsilon, \infty)} \equiv 1$, $0 \le \psi_{\varepsilon} \le 1$, and $0 \le \psi'_{\varepsilon}$. We set $\Phi \equiv 1$, or, if $\Omega \ni \operatorname{supp} \gamma$ ($\supset \operatorname{supp} g$), choose $\Phi \in C^1_0(\Omega, \mathbb{R})$ such that $\Phi_{|\operatorname{supp} \gamma} \equiv 1$. Noting $\Phi(w)\psi_{\varepsilon}(f(w) - f_0) \in W^{1,2}_0(\Omega, \mathbb{R}) \cap L^{\infty}$ and (2.1), we obtain

$$(2.3) 0 \ge -\int_{\Omega} \Phi(w) \psi_{\varepsilon}'(f(w) - f_{0}) \gamma(w) |\nabla f(w)|^{2} dw$$

$$= -\int_{\Omega} \nabla [\Phi(w) \psi_{\varepsilon}(f(w) - f_{0})] \cdot \gamma(w) \nabla f(w) dw$$

$$= \int_{\Omega} \Phi(w) \psi_{\varepsilon}(f(w) - f_{0}) g(w) dw.$$

Letting $\varepsilon \to 0$, the assertion follows.

We define the following cut-off functions $\Psi_M \in C^{1,1}(\mathbb{R}_0^+, \mathbb{R}), M > 0$,

(2.4)
$$\Psi_M(t) = \begin{cases} t & \text{if } 0 \le t \le M \\ t(2 + \log M/t) - M & \text{if } M \le t \le eM \\ (e - 1)M & \text{if } eM \le t \end{cases}.$$

They fulfil the relations $0 \le \Psi_M' \le 1$, $\Psi_M'(t) = 0$ if t > eM, $\Psi_M''(t) = -t^{-1}$ if M < t < eM, and $\Psi_M''(t) = 0$ elsewhere.

Lemma 2.2 Let $h \in L^1(B_r(w_0), \mathbb{R}^m)$, and let $x \in W^{1,2}(B_r(w_0), \mathbb{R}^m)$ be a weak solution to $\Delta x = h$ in $B_r(w_0) \subset \mathbb{R}^n$, i.e.

(2.5)
$$\int_{B_r(w_0)} (\nabla \Phi \cdot \nabla x + \Phi \cdot h) \, dw = 0$$

for all $\Phi \in W_0^{1,2}(B_r(w_0), \mathbb{R}^m) \cap L^{\infty}$.

Moreover, let $\gamma \in C^{0,1}(\overline{B_r(w_0)}), \gamma \geq 0$ in $\overline{B_r(w_0)}, a \in \mathbb{R}^m$, and $\eta > 0$ such that

(2.6)
$$\sup_{w \in \partial B_r(w_0)} |x(w) - a| \le \eta < \infty.$$

Then,

$$(2.7) \int_{\{w \in B_{r}(w_{0}): |x(w)-a| > \eta\}} \gamma |\nabla x|^{2} dw$$

$$\leq -\lim \sup_{M \to \infty} \int_{\{w \in B_{r}(w_{0}): |x(w)-a| > \eta\}} \gamma \Psi'_{M}(|x-a|^{2})(x-a) \cdot h dw$$

$$-\frac{1}{2} \int_{\{w \in B_{r}(w_{0}): |x(w)-a| > \eta\}} \nabla \gamma \cdot \nabla [|x-a|^{2}] dw.$$

If supp $\gamma \in B_r(w_0)$, (2.7) holds for all $\eta \in \mathbb{R}$.

Proof. Using (2.5), we obtain by a simple calculation that

(2.8)
$$\frac{1}{2} \int_{B_{r}(w_{0})} \nabla \varphi \cdot \gamma \nabla \left[\Psi_{M}(|x-a|^{2}) \right] dw$$

$$= - \int_{B_{r}(w_{0})} \varphi \left\{ \gamma \Psi'_{M}(|x-a|^{2})(x-a) \cdot h + \gamma \Psi'_{M}(|x-a|^{2}) |\nabla x|^{2} + 2\gamma \Psi''_{M}(|x-a|^{2})(|(x-a) \cdot x_{u}|^{2} + |(x-a) \cdot x_{v}|^{2}) + \Psi'_{M}(|x-a|^{2})(\gamma_{u}(x-a) \cdot x_{u} + \gamma_{v}(x-a) \cdot x_{v}) \right\} dw$$

holds for all $\varphi \in W_0^{1,2}(B_r(w_0), \mathbb{R}) \cap L^{\infty}$ and M > 0.

Lemma 2.1 with $f = \Psi_M(|x-a|^2)$, $f_0 = \eta^2$, $g = 2\{...\} \in L^1(B_r(w_0), \mathbb{R})$ now yields

(2.9)
$$\int_{\{w \in B_{r}(w_{0}): |x(w)-a| > \eta\}} \gamma \Psi'_{M}(|x-a|^{2}) |\nabla x|^{2} dw$$

$$\leq \int_{\{w \in B_{r}(w_{0}): |x(w)-a| > \eta\}} (-\gamma \Psi'_{M}(|x-a|^{2})(x-a) \cdot h$$

$$-2\gamma \Psi''_{M}(|x-a|^{2})(|(x-a) \cdot x_{u}|^{2} + |(x-a) \cdot x_{v}|^{2})$$

$$-\frac{1}{2} \Psi'_{M}(|x-a|^{2}) \nabla \gamma \cdot \nabla [|x-a|^{2}] dw$$

for all $M > \eta^2$. Recalling the properties of Ψ_M , we obtain the assertion after letting $M \to \infty$.

3 Interior regularity

Our main result in this section concerns interior continuity of weak solutions to

$$\Delta x = 2H(x)x_u \wedge x_v$$

in $\Omega \subset \mathbb{R}^2$, where H satisfies, for some K > 0,

(3.2)
$$H(x) = H_1(x) + H_2(x)$$
, $\sup_{x \in \mathbb{R}^3} (|H_1(x)| + (1 + |x|)|\nabla H_1(x)|) < \infty$,

(3.3)
$$\sup_{x \in \mathbb{R}^3} (|H_2(x)| + |\nabla H_2(x)|) < \infty, \quad \sup_{|x| \ge K} |x H_2(x)| < 1.$$

This result will be obtained in two steps by first proving partial interior regularity, i.e. continuity a.e. in Ω , and then excluding points where continuity could be false. This procedure was used by Heinz [7, 8], who proved interior regularity if $H(x) = H_1(x)$. After locally re-constructing a solution to (3.1) and thus demonstrating its regularity a.e. he showed that the condition which allowed this construction in fact holds throughout Ω . We note that Grüter [3] also gave a proof for partial interior regularity, if $H(x) = H_1(x)$, avoiding existence methods.

Our result of partial interior regularity reads

Theorem 3.1 Let $\Omega \subset \mathbb{R}^2$, H_1 , $H_2 \in C^{0,1}(\mathbb{R}^3, \mathbb{R})$, and let $x \in W^{1,2}(\Omega, \mathbb{R}^3)$ be a weak solution to (3.1) in Ω where H satisfies (3.2), (3.3) for some K > 0.

Then, x is continuous in all points

(3.4)
$$w_0 \in \Omega_0 := \left\{ w \in \Omega : \lim_{r \downarrow 0} (|\xi_w(r)|^2 \int_{B_r(w)} |\nabla x|^2 dw) = 0 \right\}$$

where $\xi_w(r)$ denotes the circleline meanvalue defined in (1.3).

Proof. Let $w_0 \in \Omega_0$ and assume w. l. o. g. that $\sup_{x \in \mathbb{R}^3} |x| H_2(x)| \le 1 - 4\delta$ for some $\delta \in (0, \frac{1}{4})$. We define

(3.5)
$$\alpha_i := \sup_{x \in \mathbb{R}^3} (1 + |H_i(x)| + |\nabla H_i(x)|) < \infty \quad (i = 1, 2),$$

(3.6)
$$\beta_1 := \sup_{x \in \mathbb{R}^3} |x| |\nabla H_1(x)| < \infty$$

and choose some $s \in (0, 1)$ with $(1 - 4\delta)(1 + 3s)^2 \le 1 - 3\delta$. We pick a $\mu \in (0, (\alpha_1 + \alpha_2)^{-1}\delta)$. Using Lemma 1.2 and $w_0 \in \Omega_0$, we find some $\rho > 0$ satisfying $B_{\rho} := B_{\rho}(w_0) \subset \Omega$,

(3.7)
$$\omega_{\rho} := \sup_{w \in \partial B_{\rho}} |x(w) - \xi_{w_0}(\rho)| \leq 2^{-(s^{-1})} \mu,$$

and

(3.8)
$$32c_0(\alpha_1 + \beta_1 + (\alpha_1 + \alpha_2)|\xi_{w_0}(\rho)|) \left(\int_{B_\rho} |\nabla x|^2 dw \right)^{1/2} \leq \delta,$$

where c_0 denotes the constant of Lemma 1.1.

The main tool is Lemma 2.2. Setting $r = \rho$, $h = 2H(x)x_u \wedge x_v$, $\gamma \equiv 1$, $a = \xi_{w_0}(\rho) = : \xi_{\rho}$, $\eta = \omega_{\rho}$, we obtain

$$(3.9) \int_{\{w \in B_{\rho}: |x(w) - \xi_{\rho}| > \omega_{\rho}\}} |\nabla x|^{2} dw$$

$$\leq -\lim \sup_{M \to \infty} \int_{\{w \in B_{\rho}: |x(w) - \xi_{\rho}| > \omega_{\rho}\}} \Psi'_{M}(|x - \xi_{\rho}|^{2})(x - \xi_{\rho}) \cdot (2H(x)x_{u} \wedge x_{v}) dw.$$

Let $\Phi \in C^1(\mathbb{R}, \mathbb{R})$ satisfy $\Phi_{|(-\infty, \omega_\rho^s)} \equiv 0$, $\Phi_{|(\mu^s, \infty)} \equiv 1$, $0 \le \Phi \le 1$, and $|\Phi'| \le 3\mu^{-s}$, then we have $1 - \Phi(|x(w) - \xi_\rho|^s)^2 = 0$ for all $w \in B_\rho$ with $|x(w) - \xi_\rho| > \mu$. Making

use of $1 = (1 - \Phi(|x(w) - \xi_{\rho}|^s)^2) + \Phi(|x(w) - \xi_{\rho}|^s)^2$ and the special structure of the triple scalar product, we estimate the r.h.s. of (3.9) for $M > \mu^2$:

$$(3.10) \qquad -\int_{\{w \in B_{\rho}: |x(w) - \xi_{\rho}| > \omega_{\rho}\}} 2H(x) \Psi'_{M}(|x - \xi_{\rho}|^{2})(x - \xi_{\rho}, x_{u}, x_{v}) dw$$

$$\leq \int_{\{w \in B_{\rho}: \omega_{\rho} < |x(w) - \xi_{\rho}| < \mu\}} \mu \|H\|_{\infty} |\nabla x|^{2} dw$$

$$-\int_{B_{\rho}} 2H(x) \Psi'_{M}(|x - \xi_{\rho}|^{2})(x - \xi_{\rho}) \cdot$$

$$\cdot \frac{\partial}{\partial u} \left[\Phi(|x - \xi_{\rho}|^{s})(x - \xi_{\rho})\right] \wedge \frac{\partial}{\partial v} \left[\Phi(|x - \xi_{\rho}|^{s})(x - \xi_{\rho})\right] dw.$$

In this way we obtain from (3.9), (3.10), (3.5)

(3.11)
$$\int_{\{w \in B_{\rho}: |x(w) - \xi_{\rho}| > \omega_{\rho}\}} (1 - \mu(\alpha_1 + \alpha_2)) |\nabla x|^2 dw \le F_1 + F_2$$

where (i = 1, 2)

$$(3.12) F_{i} = \limsup_{M \to \infty} \left| \int_{B_{\rho}} 2H_{i}(x) \Psi'_{M}(|x - \xi_{\rho}|^{2})(x - \xi_{\rho}) \cdot \frac{\partial}{\partial v} \left[\Phi(|x - \xi_{\rho}|^{s})(x - \xi_{\rho}) \right] \wedge \frac{\partial}{\partial v} \left[\Phi(|x - \xi_{\rho}|^{s})(x - \xi_{\rho}) \right] dw \right|.$$

 F_1 and F_2 are now estimated by Lemma 1.1 and in an elementary way: Recalling the properties of H_1 , H_2 , and Ψ_M , we obtain

$$(3.13) F_{1} \leq 2c_{0} \lim \sup_{M \to \infty} \left(\int_{B_{\rho}} |\nabla [H_{1}(x) \Psi'_{M}(|x - \xi_{\rho}|^{2})(x - \xi_{\rho})]|^{2} dw \right)^{1/2}$$

$$\int_{\{w \in B_{\rho}: |x(w) - \xi_{\rho}| > \omega_{\rho}\}} |\nabla [\Phi(|x - \xi_{\rho}|^{s})(x - \xi_{\rho})]|^{2} dw$$

$$\leq 2c_{0}(\alpha_{1} + \beta_{1} + \alpha_{1}|\xi_{\rho}|) \left(\int_{B_{\rho}} |\nabla x|^{2} dw \right)^{1/2}$$

$$\int_{\{w \in B_{\rho}: |x(w) - \xi_{\rho}| > \omega_{\rho}\}} \left(1 + \sup_{\mathbb{R}} |\Phi'| s\mu^{s} \right)^{2} |\nabla x|^{2} dw$$

$$\leq 32c_{0}(\alpha_{1} + \beta_{1} + \alpha_{1}|\xi_{\rho}|) \left(\int_{B_{\rho}} |\nabla x|^{2} dw \right)^{1/2} \int_{\{w \in B_{\rho}: |x(w) - \xi_{\rho}| > \omega_{\rho}\}} |\nabla x|^{2} dw$$

and

$$\begin{split} F_2 & \leq \limsup_{M \to \infty} \left| \int_{B_{\rho}} 2H_2(x) \Psi_M'(|x - \xi_{\rho}|^2) x \cdot \frac{\partial}{\partial v} \left[\Phi(|x - \xi_{\rho}|^s)(x - \xi_{\rho}) \right] \wedge \frac{\partial}{\partial v} \left[\Phi(|x - \xi_{\rho}|^s)(x - \xi_{\rho}) \right] dw \right| \\ & + \limsup_{M \to \infty} \left| \int_{B_{\rho}} 2H_2(x) \Psi_M'(|x - \xi_{\rho}|^2) \xi_{\rho} \cdot \frac{\partial}{\partial v} \left[\Phi(|x - \xi_{\rho}|^s)(x - \xi_{\rho}) \right] \wedge \frac{\partial}{\partial v} \left[\Phi(|x - \xi_{\rho}|^s)(x - \xi_{\rho}) \right] dw \right| \\ & \leq \left((1 - 4\delta) + 2c_0 \limsup_{M \to \infty} \left(\int_{B_{\rho}} |\nabla [H_2(x) \Psi_M'(|x - \xi_{\rho}|^2) \xi_{\rho}]|^2 dw \right)^{1/2} \right) \\ & \leq \left((1 - 3\delta) + 32c_0 \alpha_2 |\xi_{\rho}| \left(\int_{B_{\rho}} |\nabla x|^2 dw \right)^{1/2} \right) \int_{\{w \in B_{\rho}: |x(w) - \xi_{\rho}| > \omega_{\rho}\}} |\nabla x|^2 dw . \end{split}$$

Combining (3.11), (3.13), (3.14), (3.8), we deduce

(3.15)
$$\int_{\{w \in B_{\rho}: |x(w) - \xi_{\rho}| > \omega_{\rho}\}} |\nabla x|^{2} dw \leq 0.$$

Therefore, we finally have

(3.16)
$$\sup_{w \in B_{\rho}} |x(w) - \xi_{w_0}(\rho)| \le \omega_{\rho} \le 2^{-(s^{-1})} \mu \le \frac{\mu}{2}$$

and

$$\operatorname{osc}_{B_{n}} x \leq \mu.$$

In fact, the condition which guarantees continuity (see (3.4)) holds at least a.e. in Ω . This can be seen from $|\xi_{w_0}(r)| \le c_1(r^{-1} ||x||_{2; B_r(w_0)} + ||\nabla x||_{2; B_r(w_0)})$ (see [7, 12]), by applying a classical theorem of Lebesgue. Therefore it seems appropriate to speak of partial interior regularity.

To prove that condition (3.4) holds for all $w_0 \in \Omega$, we take the result of Lemma 1.3 into account. Since $\xi_w(r) = o(\log^{\frac{1}{2}} r^{-1})$, $r \downarrow 0$, it can be seen easily that the boundedness of the weighted Dirichlet integral which will be established in the following theorem ensures continuity of weak solutions to (3.1), provided H satisfies the stated assumptions.

Theorem 3.2 Under the assumptions of Theorem 3.1

(3.18)
$$\int_{B_{\rho}(w_0)} \log |w - w_0|^{-1} |\nabla x(w)|^2 dw < \infty$$

holds for all $B_{\rho}(w_0) \subset \Omega$.

Hence, $\Omega_0 = \Omega$ and $x \in C^0(\Omega, \mathbb{R}^3)$ (see Theorem 3.1).

Combining this with a general theorem of Tomi [15], we obtain the final statement of interior regularity of solutions to (3.1), namely

Theorem 3.3 Under the assumptions of Theorem 3.1 $x \in C^{2,\mu}(\Omega, \mathbb{R}^3)$ holds for all $\mu \in (0, 1)$.

Proof of Theorem 3.2 By Lemma 1.3 and Theorem 3.1, we only have to establish (3.18). W. 1. o. g. we set $w_0 = 0$ and $\rho \le \frac{1}{2}$. Let r = |w| and $B_\rho = B_\rho(0)$. From the proof of Theorem 3.1 we take over the quantities δ , α_1 , α_2 , β_1 . We define

(3.19)
$$\log_t s = \begin{cases} \log s & \text{if } 0 < s < t \\ \log t & \text{if } t \le s \end{cases}$$

for t > 4 and choose some $\Phi_{\rho} \in C_0^1((-\rho, \rho))$ satisfying $\Phi_{\rho|(0, \frac{\rho}{2})} \equiv 1$. Finally we set

(3.20)
$$p = p_t = p_t(r) = p_t(|w|) = \Phi_{\rho}(|w|)^2 \log_t |w|^{-1}$$
$$q = q_t = q_t(r) = q_t(|w|) = \Phi_{\rho}(|w|) \log_t^{\frac{1}{2}} |w|^{-1}.$$

Lemma 2.2 with $h = 2H(x)x_u \wedge x_v$, $\gamma = p(|\cdot|) \in C_0^{0,1}(B_\rho)$, a = 0, $\eta = -1$ yields

(3.21)
$$\int_{B_{\rho}} p |\nabla x|^{2} dw \leq -\lim_{M \to \infty} \sup_{B_{\rho}} 2p(H_{1}(x) + H_{2}(x)) \Psi'_{M}(|x|^{2})(x, x_{u}, x_{v}) dw$$
$$-\frac{1}{2} \int_{B_{\rho}} \nabla p \cdot \nabla [|x|^{2}] dw .$$

For brevity's sake we use

$$R_{\rho} := \int_{B_{\rho} \setminus B_{\rho/2}} (|p'(r)| + |q'(r)|^2) (|\nabla x|^2 + 2|x|^2) dw + \int_{B_{\rho/2}} |\nabla x|^2 dw + \frac{1}{\rho} \int_{\partial B_{\rho/2}} |x|^2 ds .$$

Combining (3.21), $\sup_{x \in \mathbb{R}^3} |x H_2(x)| \le 1 - 4\delta$,

$$(3.23) -\frac{1}{2} \int_{B_{\rho/2}} \nabla p \cdot \nabla [|x|^2] dw \leq \frac{1}{\rho} \int_{\partial B_{\rho/2}} |x|^2 ds ,$$

and (3.22), we deduce

(3.24)
$$4\delta \int_{B_{\rho}} p |\nabla x|^2 dw \leq - \limsup_{M \to \infty} \int_{B_{\rho}} 2p H_1(x) \Psi'_M(|x|^2)(x, x_u, x_v) dw + R_{\rho} .$$

We have to estimate the first term on the r.h.s. of (3.24), which can be done using the following definitions and transformations taken from Heinz [8]:

(3.25)
$$\eta = \eta(|w|) = -\int_{|w|}^{\rho} q(\tau)\xi'(\tau)d\tau$$
$$h = h(w) = \eta + qy$$

where $\xi = \xi_{w_0}$, $y = y_{w_0}$, and $q = q_t$ denote the quantities already defined in (1.3), (1.4), and (3.20). A.e. in B_{ρ} we have

$$(3.26) p(r)(x, x_u, x_v) = \frac{p(r)}{r}(x, x_r, x_\varphi) = \frac{1}{r}(x, qx_r, qx_\varphi)$$

$$= \frac{1}{r}(x, q\xi_r + qy_r, qy_\varphi) = \frac{1}{r}(x, \eta_r + qy_r, qy_\varphi)$$

$$= \frac{1}{r}(x, h_r - q_r y, h_\varphi)$$

$$= \frac{1}{r}(x, h_r, h_\varphi) - \frac{p'(r)}{2r}(x, y, y_\varphi)$$

$$= (x, h_u, h_v) - \frac{p'(r)}{2r}(\xi, y, y_\varphi),$$

and thus

$$(3.27) - \limsup_{M \to \infty} \int_{B_a} 2p \, H_1(x) \Psi'_M(|x|^2)(x, x_u, x_v) \, dw \le G_1 + G_2$$

where

(3.28)
$$G_1 = \limsup_{M \to \infty} \left| \int_{B_o} 2H_1(x) \Psi'_M(|x|^2)(x, h_u, h_v) dw \right|$$

and

(3.29)
$$G_2 = \limsup_{M \to \infty} \left| \int_{B_\rho} \frac{p'(r)}{r} H_1(x) \Psi_M'(|x|^2) (\xi, y, y_\varphi) dw \right|.$$

The estimate of G_1 is the same as in [8] but will be recalled for the reader's convenience. First, we consider $|\nabla h|$ and find, noting $h_r = qx_r + q_ry$ and $h_{\varphi} = qy_{\varphi}$,

$$(3.30) |\nabla h|^2 = |qx_r + q_r y|^2 + \frac{q(r)^2}{r^2} |y_{\varphi}|^2 = q^2 |\nabla x|^2 + p' x_r \cdot y + q'^2 |y|^2.$$

Then, using $|p'(r)| \le r^{-1}$ and $|q'(r)| = (2r \log_t^{\frac{1}{2}} r^{-1})^{-1} \le (2r)^{-1}$ if $0 < r \le \frac{1}{2} \rho \le \frac{1}{4}$, and (1.5), (1.7), we obtain

$$(3.31) \qquad \int_{B_{\rho}} |\nabla h|^{2} dw = \int_{0}^{\rho} \int_{0}^{2\pi} (p(r)|\nabla x|^{2} + p'(r)y_{r} \cdot y + q'(r)^{2}|y|^{2}) d\varphi \, r \, dr$$

$$\leq \int_{0}^{\rho} \int_{0}^{2\pi} p(r)|\nabla x|^{2} d\varphi \, r \, dr + \int_{0}^{\rho/2} \int_{0}^{2\pi} \left(|y_{r}|^{2} + \frac{|y|^{2}}{2r^{2}}\right) d\varphi \, r \, dr$$

$$+ \int_{\rho/2}^{\rho} (|p'(r)| + |q'(r)|^{2}) \int_{0}^{2\pi} (|y_{r}||y| + |y|^{2}) d\varphi \, r \, dr$$

$$\leq \int_{B_{\rho}} p(r)|\nabla x|^{2} \, dw + R_{\rho} \, .$$

Hence, by Lemma 1.1 and the properties of H_1 and Ψ_M , we have

(3.32)
$$G_{1} \leq \limsup_{M \to \infty} 2c_{0} \left(\int_{B_{\rho}} |\nabla [H_{1}(x)\Psi'_{M}(|x|^{2})x]|^{2} dw \right)^{1/2} \int_{B_{\rho}} |\nabla h|^{2} dw$$
$$\leq 2c_{0}(\alpha_{1} + \beta_{1}) \left(\int_{B_{\rho}} |\nabla x|^{2} dw \right)^{1/2} \left(\int_{B} p(r) |\nabla x|^{2} dw + R_{\rho} \right).$$

Next, treating G_2 we use Lemma 1.3 and obtain

(3.33)
$$\alpha_1 |\xi(r)| \leq \delta \log^{\frac{1}{2}} r^{-1} \leq \frac{1}{r}$$

for $0 < r \le r_0$ with some $r_0 \le \frac{1}{2}$. Therefore, if $0 < r < \frac{1}{2}\rho \le \frac{1}{2}r_0$, we have

(3.34)
$$\alpha_1 |p'(r)\xi(r)| \leq \delta \frac{p(r)^{1/2}}{r} ,$$

and from (3.29), (3.33), (3.34), and (1.7) we deduce

(3.35)
$$G_{2} \leq \delta \int_{0}^{\rho/2} \int_{0}^{2\pi} \frac{|y|}{r} \frac{p^{1/2}(r)|y_{\varphi}|}{r} d\varphi r dr + \int_{\rho/2}^{\rho} \int_{0}^{2\pi} |p'(r)| \frac{|y|}{r} \frac{|y_{\varphi}|}{r} d\varphi r dr$$
$$\leq \delta \int_{B_{r/2}} p(r) |\nabla x|^{2} dw + R_{\rho}.$$

Now, we choose $\rho_0 \in (0, r_0)$ such that

$$(3.36) c_0(\alpha_1 + \beta_1) \left(\int_{\beta_{n-1}} |\nabla x|^2 dw \right)^{1/2} \leq \delta$$

where again c_0 denotes the constant of Lemma 1.1. We combine (3.24), (3.27), (3.32), (3.35), (3.36) and deduce

(3.37)
$$\int_{B_{\rho_0}} p(|w|) |\nabla x(w)|^2 dw \le 3R_{\rho_0} \delta^{-1}$$

where

(3.38)
$$p(|w|) = p_t(|w|) = \Phi_{\rho_0}(|w|)^2 \log_t |w|^{-1}.$$

Finally, letting $t \to \infty$ Fatou's Lemma yields the desired assertion.

4 Boundary regularity

In the last section of this paper we consider weak solutions to the Dirichlet problem

(4.1)
$$DP \begin{cases} \Delta x = 2H(x)x_u \wedge x_v & \text{in } \Omega \\ x = z & \text{on } \partial\Omega \end{cases}$$

where $z \in W^{1,2}(\Omega, \mathbb{R}^3)$.

For H satisfying (0.5), Heinz's result [7] concerning partial interior regularity can easily be transferred to the boundary problem, if $\csc z < \|H\|_{\infty}^{-1}$ locally holds near $\partial\Omega$ (cf. [17, Theorem 5.3]). In case of higher regularity for z, i.e. $z \in C^{0,\mu}$, $C^{1,\mu}$,

and C^2 , $C^{2,\mu}$, results of Widman [18, 19] and Heinz [5] (in connection with Schauder estimates) then ensure corresponding regularity for x.

Here, we shall give a proof for continuity or boundedness of solutions x to (4.1) under the corresponding assumption on z, and those on H formulated in Theorem 3.1. According to an idea of Courant [2, Sec. I.5.4], we shall control the circleline meanvalue $(2\pi r)^{-1} \int_{\partial B_r(w_0)} x \, ds$ using an arc crossing $\partial B_r(w_0)$ and $\partial \Omega$, if w_0 is near $\partial \Omega$. In this way we do not need any information about the oscillation of z. Our result on boundary regularity is formulated as follows:

Theorem 4.1 Let $\Omega \subset \mathbb{R}^2$, $z \in W^{1,2}(\Omega, \mathbb{R}^3)$, and let $x \in W^{1,2}(\Omega, \mathbb{R}^3)$ be a weak solution to the Dirichlet problem (4.1)/(0.7) where H satisfies

$$(4.2) H(x) = H_1(x) + H_2(x), \sup_{x \in \mathbb{R}^3} (|H_1(x)| + (1+|x|)|\nabla H_1(x)|) < \infty ,$$

(4.3)
$$\sup_{x \in \mathbb{R}^3} |H_2(x)| + |\nabla H_2(x)| < \infty, \quad \sup_{|x| \ge K} |x| H_2(x)| < 1$$

for some H_1 , $H_2 \in C^{0,1}(\mathbb{R}^3, \mathbb{R})$, K > 0. Moreover, let $w_a \in \partial \Omega$, $z_a \in \mathbb{R}^3$, and r_a , $\sigma_a > 0$ such that

$$(4.4) ||z - z_a||_{\infty; B_{r,}(w_a) \cap \Omega} \leq \sigma_a$$

and $\partial\Omega\cap\partial B_{r_b}(w_b)\neq\emptyset$ holds for all $w_b\in\partial\Omega\cap B_{r_a}(w_a)$ and all $r_b\in(0,r_a)$. Then, for all $\varepsilon>0$ there exists some $r_\varepsilon>0$ such that

In particular, if Ω is bounded by a finite number of Jordan curves, $x \in L^{\infty}(\Omega, \mathbb{R}^3)$ follows from $z \in W^{1,2}(\Omega, \mathbb{R}^3) \cap L^{\infty}$, and $x \in C^0(\overline{\Omega}, \mathbb{R}^3)$ with $x_{|\partial\Omega} = z_{|\partial\Omega}$ is guaranteed by $z \in W^{1,2}(\Omega, \mathbb{R}^3) \cap C^0(\overline{\Omega})$.

Proof. From the proof of Theorem 3.1 we take over the quantities δ , α_1 , α_2 , β_1 , β_1 , β_2 , and assume $\varepsilon \in (0, (\alpha_1 + \alpha_2)^{-1}\delta)$. We choose some $r_{\varepsilon} \in (0, \frac{1}{2}r_a)$ such that

(4.6)
$$\frac{\pi}{\log \frac{4}{3}} \int_{B_{2r_{\epsilon}}(w_{a}) \cap \Omega} (|\nabla x|^{2} + |\nabla (x - z)|^{2}) dw \leq \left(\frac{\varepsilon}{4}\right)^{2}$$

and

$$(4.7) \quad 32c_0(\alpha_1 + \beta_1 + (\alpha_1 + \alpha_2)(|z_a| + \sigma_a + \varepsilon)) \left(\int_{B_{2r}(w_a) \cap \Omega} |\nabla x|^2 dw \right)^{1/2} \leq \delta.$$

Let $\{(x-z)_n\}_{n\in\mathbb{N}}\subset C^1_0(\Omega,\mathbb{R}^3)$ be a sequence of functions converging to x-z in $W_0^{1,2}(\Omega,\mathbb{R}^3)$. We define $(x-z)_n$, $n\in\mathbb{N}$, and x-z as vanishing in $\mathbb{R}^2\setminus\Omega$.

For any $w_2 \in B_r$ (w_a) $\cap \Omega$ we choose $w_1 \in B_{2r}$ (w_a) $\cap \partial \Omega$ such that $\operatorname{dist}(w_2, \partial \Omega) = |w_2 - w_1^r|$. Using Lemma 1.2 and (4.6), we find some $n_0 \in \mathbb{N}$ and, for all $n \in \mathbb{N}$, $n > n_0$, some set $M_{x-z}^n \subset (\frac{1}{2}|w_2 - w_1|, |w_2 - w_1|)$ such that $\max M_{x-z}^n \geq \frac{1}{4}|w_2 - w_1|$ and

$$\sup_{w',w''\in\partial B_{\Gamma}(w_1)}|(x-z)_n(w')-(x-z)_n(w'')|\leq \frac{3\varepsilon}{8}$$

for all $r \in M_{x-z}^n$. In $(\frac{1}{2}|w_2 - w_1|, |w_2 - w_1|)$, we again find some set M_x' such that meas $M_x' \ge \frac{1}{4}|w_2 - w_1|$ and

(4.9)
$$\sup_{w', w'' \in \partial B_{r'}(w_2)} |x(w') - x(w'')| \le \frac{\varepsilon}{4}$$

for all $r' \in M'_x$.

Since we have convergence a.e. in Ω for some subsequence of $\{(x-z)_n\}_{n\in\mathbb{N}}$, there exist $n'\in\mathbb{N}$, $n'>n_0$, $\rho_1\in M_{x-z}^{n'}$, $\rho_2\in M_x'$ such that $|(x-z)_{n'}(w_3)-(x-z)(w_3)|\leq \frac{1}{8}\varepsilon$ holds for some $w_3\in\partial B_{\rho_1}(w_1)\cap\partial B_{\rho_2}(w_2)$ and x, z are absolutely continuous on $\partial B_{\rho_2}(w_2)$. Hence, we obtain (4.10)

$$\begin{aligned} |\xi_{w_2}(\rho_2) - z_a| &\leq \sup_{w \in \partial B_{\rho_2}(w_2)} |x(w) - x(w_3)| + |(x - z)(w_3) - (x - z)_{n'}(w_3)| \\ &+ |(x - z)_{n'}(w_3) - (x - z)_{n'}(w_4)| + |(x - z)_{n'}(w_4)| + |z(w_3) - z_a| \\ &\leq \frac{\varepsilon}{4} + \frac{\varepsilon}{8} + \frac{3\varepsilon}{8} + 0 + \sigma_a \end{aligned}$$

with some $w_4 \in \partial \Omega \cap \partial B_{\rho_1}(w_1)$, especially,

$$|\xi_{w_2}(\rho_2)| < |z_a| + \sigma_a + \varepsilon.$$

In contrast to the proofs of interior regularity, we obviously succeed in deriving an estimate of the circleline meanvalue $\xi_{w_2}(\rho_2)$.

What follows now is routine. In the proof of Theorem 3.1 we substitute w_0 , ρ , μ by w_2 , ρ_2 , $\frac{1}{2}\varepsilon$, resp., moreover (3.7) by

(4.12)
$$\omega_{\rho_2} := \sup_{w \in \partial B_{\rho_2}(w_2)} |x(w) - \xi_{w_2}(\rho_2)| \le 2^{-(s^{-1})} \frac{\varepsilon}{2}$$

and (3.8) by (4.7). The result is taken from (3.16), namely

(4.13)
$$\sup_{w \in B_{\rho_2}(w_2)} |x(w) - \xi_{w_2}(\rho_2)| \leq \frac{\varepsilon}{4}.$$

Finally, combining (4.10), (4.13), we obtain

(4.14)
$$\sup_{w \in B_{-}(w)} |x(w) - z_a| \le \sigma_a + \varepsilon,$$

which completes the proof, since $w_2 \in B_r(w_a) \cap \Omega$ has been chosen arbitrarilly.

Remarks. It remains an open question whether weaker assumptions on H guarantee the same regularity proved in this paper, of course without more informations about a given solution. Moreover, under the stated assumptions on H it is not known whether there is a maximum estimate for solutions to (0.7) depending on their $W^{1,2}$ norms and boundary data, similar to that given by Brezis and Coron [1.A1] in the case of $H \equiv \text{const.}$

Acknowledgment. I wish to thank my teacher Professor Dr. E. Heinz for proposing these problems, moreover that I could learn so much from him. Thanks go also to Professor Dr. G. Hellwig for his support.

References

- 1. Brezis, H., Coron, J.-M.: Multiple solutions of H-systems and Rellich's conjecture. Commun. Pure Appl. Math. 37, 149-187 (1984)
- Courant, R.: Dirichlet's principle, conformal mappings, and minimal surfaces. New York: Wiley Interscience 1950
- 3. Grüter, M.: Über die Regularität schwacher Lösungen des Systems $\Delta x = 2H(x)x_u \wedge x_v$. Doctoral thesis, Düsseldorf 1979
- Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. 2nd edn. Berlin Heidelberg New York Tokyo: Springer 1983
- 5. Heinz, E.: Existence theorems for one-to-one mappings associated with elliptic systems of second order I. J. Anal. Math. 15, 325-352 (1965)
- Heinz, E.: Elementare Bemerkung zur isoperimetrischen Ungleichung im ℝ³. Math. Z. 132, 319-322 (1973)
- Heinz, E.: Ein Regularitätssatz für schwache Lösungen nichtlinearer elliptischer Systeme. (Nachr. Akad. Wiss. Gött, II. Math. -Phys. Kl., Jahrgang 1975, Nr. 1, pp. 1-13) Göttingen: Vandenhoeck & Ruprecht: 1975
- Heinz, E.: Über die Regularität schwacher Lösungen nichtlinearer elliptischer Systeme. (Nachr. Akad. Wiss. Gött., II. Math.-Phys. Kl., Jahrgang 1986, Nr. 1, pp. 1-15) Göttingen: Vandenhoeck & Ruprecht: 1986
- Hildebrandt, S.: Nonlinear elliptic systems and harmonic mappings. In: Cherm, S.S., Wen Tsün Wu (eds.) Differential geometry and differential equations. Proceedings 1980, Beijing Symposium, vol. 1, pp. 481-615. New York: Gordon and Breach Science Publishers 1982
- Hildebrandt, S.: Quasilinear elliptic systems in diagonal form. In: Mac Leod Ball, J. (ed.) Proc. NATO Adv. Study Inst., Oxford/U.K. 1982. (NATO ASI Ser., Ser. C 111, pp. 173-217) Dordrecht Boston, vol. Lancaster: D. Reidel Publishing Company 1983
- Hildebrandt, S., Widman, K.-O.: Some regularity results for quasilinear elliptic systems of second order. Math. Z. 142, 67-86 (1975)
- 12. Jakobowsky, N.: Regularitätsaussagen für schwache Lösungen des Systems $\Delta x = 2H(x)x_u \wedge x_v$. Doctoral thesis, Göttingen 1989
- Ladyzenskaya, O.A., Ural'ceva, N.N.: Linear and quasilinear elliptic equations. New York London: Academic Press 1968
- Morrey, C.B.: Multiple integrals in the calculus of variations. Berlin Heidelberg New York: Springer 1966
- 15. Tomi, F.: Ein einfacher Beweis eines Regularitätssatzes für schwache Lösungen gewisser elliptischer Systeme. Math. Z. 112, 214-218 (1969)
- Tomi, F.: Bemerkungen zum Regularitätsproblem der Gleichung vorgeschriebener mittlerer Krümmung. Math. Z. 132, 323-326 (1973)
- Wente, H.C.: An existence theorem for surfaces of constant mean curvature. J. Math. Anal. Appl. 26, 318-344 (1969)
- 18. Widman, K.-O.: Inequalities for the Green function and boundary continuity of the gradient of solutions of elliptic differential equations. Math. Scand. 21, 17-37 (1967)
- Widman, K.-O.: Hölder continuity of solutions of elliptic systems. Manuscr. Math. 5, 299–308 (1971)