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0 Introduction
We consider weak solutions to the quasilinear elliptic system
0.1) Ax = 2H(x)x, A X, ,
i.e. mappings xe W' %(Q, R3) satisfying
0.2) [ (VO Vx + & 2H(x)x, A x,)dudv = 0
Q
forall e W4 (Q, R?*) n L™. Here Q is a domain in R2, H is a realvalued function

in R3, and A denotes the vector product in IR3. x can also be considered as
a critical point of the functional

(0.3) E(x) = [ (IVx]* + A(X)* (X, A X,))dudv ,
2

where div 4(x) = 4H (x). On the coefficient H(x) we impose the following conditions:

(0.4) H(x) = H,(x) + H,(x) ,

(0.5) Su]Ea(IHl(x)I + (1 + |x])[VH{(x)]) < o0 ,

and

(0.6) sup (|Hz(x)| + |[VH,(x)|) < o, sup |[x Hy(x)| < 1.
xeR3 x| 2K

As our principal result (Theorem 3.3) we show that xe C**(Q, R?) holds for
all ue(0,1). In the case where H,(x) =0 this theorem reduces to a result of
Heinz [8], whereas for H,(x) = 0 the statement is contained in a more general
result of Tomi [16].
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Moreover, for ze W'2(Q, R3) we consider weak solutions to the Dirichlet
problem

Ax = 2H in Q
07 DP{ X ()%, A X, in

X=2Z on 09 ,

i.e. mappings x e W'-2(Q, R?) satisfying (0.2) and x — ze W3 2(2, R?®). Under the
additional assumptions ze L*(R) and ze C°(Q) we prove that x belongs to L*(Q2)
and C°(Q), respectively. In the case where H = const this follows from a result of
Brezis and Coron (see [1, A1]). Moreover, if the boundary function z belongs to
a higher regularity class, corresponding results of the boundary behavior of the
solution x can be inferred from the papers [S, 11, 18, 19].

The Eq. (0.1) arises in connection with surfaces of prescribed mean curvature (see
[9] and [10] for a more detailed discussion of this topic and related results).

The essential point in the proofs is to show that the solution x is locally
bounded. The main tool in this paper, which is a shortened version of the author’s
doctoral thesis [12], are estimates of Dirichlet integrals over level sets. This idea
has been used previously by Hildebrandt and Widman [11] for treating quasilinear
elliptic partial differential equations and systems. Using the special structure of the
underlying system (0.1), the Courant-Lebesgue Lemma, and a special version of the
isoperimetric inequality, we first prove a result concerning partial interior regularity
(Theorem 3.1), namely continuity of a weak solution x to (0.1) in all points wo e Q2
where

1
(0.8) lim (|— [ xds* [ |Vx]? dw) =0.
10 \ 27T 58 (wo) Br(wo)

Continuity in all of Q (Theorem 3.2) is then deduced from the facts
1

0.9) — xds = o(log?r~'), rlO0,
2nr aB,!wm
(Lemma 1.3) and
(0.10) [ log|w — wol ™! |Vx(w)|*dw < o0
B,(wo)

(Theorem 3.2). We note that the proof of (0.10) makes use of some ideas taken from
Heinz [8] (see below).

Boundary regularity (Theorem 4.1) is finally obtained by controlling
(2nr)~1 Iaa,mo)XdS by the boundary data in a small neighborhood of 0Q2. We use
the interior estimates to establish the stated results.

1 Preliminaries

In this paper we use the following notations: Q denotes a domain in R", B,(w,) the
open ball in IR" with center w, and radius r. We have n = 2 and write w = (4, v) or
w = re', if weR2. Only in Lemmas 2.1 and 2.2 n > 2 is admitted.

In usual manner C*(Q, R™)(C**(Q, R™)) denotes the space of functions with
(Holder) continuous partial derivatives of order k. A subscript ¢ is added to refer to
functions with compact support in €.
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For norms of the Banach spaces L?(Q, R™) we use || * | na,and by W2(Q R™)
we mean the well known Sobolev space consisting of the square integrable
functions in Q with square integrable distributional derivatives. Moreover,
W4 *(2, R™) denotes the completion of C&(Q, R™) in W 2(Q, R™). sup often
means ess sup.

The scalar product in R™ is denoted by a - b, the vector productin R3by ¢ A d,
and the triple scalar product by (a, b,c) = a*(b A ¢) =a-b A c. The following type
of isoperimetric inequality will be essentially needed in our proofs.

Lemma 1.1 Let ge W"?(B,(w,), R*) " L* and he W 2(B,(w,), R3).
Then,

(1.1) [ (9s hur hy) dudy

Br(wo)

12
gco( | lVgIZdudu) [ |Vh|*dudv

Br(wo) Br(wo)
holds with an absolute constant c,.

For proofs see e.g. [1, 6, 17].
We shall use the following version of the well known Courant-Lebesgue Lemma.

Lemma 1.2 Let xe W 2(B,(w,), R™).
Then, there exists a set M, < (}p, p) with meas M, > 1p satisfying the following two
conditions for all re M,

L. XjaB,(wo) is absolutely continuous

1/2
2. SUPw e omong [ XOW) — XW) S (g [ |Vx|?dudv) .
’ 10 3Bp{w0)

The proof (see [12]) is quite similar to those given in [3, 7] and can be omitted.
Some remarks on a decomposition for W“(B,,(wo), R™) functions will finish
our preparations. We set

(1.2) x(w) = &(lw — wol) + y(w)

with circleline meanvalue

I 2% .
(1.3) E(r) =& () = 5 [ x(wo + re®)do
0

and oscillation part

(14) PW) = Yuo(W) = X(w) — Euo(|w — wo]) .

Since x has a trace in L*(3B,(w,), IR™) for all re (0, p] (see [14]), & = &(r) is well
defined in (0, p] and y = y(wo + re®) ae. in (0, 27) for all re(0, p]. Moreover, we
have

2n

(1.5) | y(wo + re*)dp =0
0
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and

2n 2n
(1.6) [ 1x(wo + re)[>dp = 2n|E@)* + | |y(wo + re®?)[*dg
0 0

for all r€(0, p). Then, approximation and (1.5) yield

(1.7)
e i 2 7] 2 = i 2 |yw(WO + rei¢)|2
g |Vx(wo + re®®)|*do = 2n|E'(r)|° + (J] |Yr(wo + re®)|* + =——73——— |dg

I 2® .
=0 £ ly(wo + re®)|* do

a.e. in (0, p), from which we also obtain that ¢ is absolutely continuous in (0, p].
The following lemma concerning circleline meanvalues can be proved in an
elementary way.

Lemma 1.3 xe W ?(B,(w,), R™) implies
2
1EwoMI” _ 0

=1

(1.8) lim
rlo0 logr

Proof. It suffices to consider the case m = 1. Assume that (1.8) is false. Then there
exists a sequence {r, }xen < (0, p) such that r, | 0, k > o0, and

|§wo(rh+1) = éwo(rk)|2

1.9
(19) logrety — logrg?

=2¢e>0, keN.

Using (1.7) and the Schwarz inequality, we infer

[} |Vx|?dudv 2 | &, (r)rdr>e, keN,

(1.10) —
2n B, (wo)\B,,, ,(Wo) Tk+1
thus
(1.11) | |Vx|? dudv = 2nne, nelN,

B, (Wo)\B,,. (o)

which contradicts xe W''2(B,(w)).

2 Estimates for Dirichlet integrals over level sets

In this section we deduce estimates for (weighted) Dirichlet integrals of mappings
xe Wh2(Q, R™) satisfying the Poisson equation Ax = h, where he L'(Q, R™),
Q < R" Instead of x we consider ¥, (|x — a|?) with a cut-off function ¥,, and
acR™, which allows to use a technique well known from proofs of maximum
principles (see [11, 4, 13]). The following lemma is fundamental in our
argumentation.
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Lemma 2.1 Let Q = R",fe W"*(Q,R),ye L*(Q,R),y = 0in Q, and ge L(Q, R).
Furthermore, let f be a weak solution to V- (yVf) =g in ©, i.e.

2.1 | (Vo yVf + pg)dw =0.
93

for all pe W3 (2, R)n L™,
Then,

(2.2) [} gw)ydw <0

{we 2: f(w)> fo}

Jor all foe R such that max{ f— fo, 0} e W§2(Q, R).
If suppy €, (2.2) holds for all fyeR.

Proof. Assume ¢>0 and §,eC'(R,R) satisfies ¥y, =0, Velze, ) = 1,
0<y.,<1, and 0<y;. We set & =1, or, if Q3suppy (> suppg), choose
P e C5(2, R) such that Disuppy = 1. Noting @(w)y(f(w) — fo)e Wi (R, R) N L*®
and (2.1), we obtain

(2.3) 02 — [ 2WYL(f (W) — fo)y(W)| Vf (w) | dw
= — [ VIOW)Yo(f (W) — fo)17(W) VS (w) dw
Q2
= [ PWY.(f(W) — fo)g(w)aw .
Q2

Letting ¢ — 0, the assertion follows.

We define the following cut-off functions ¥,,e C*'(Rg, R), M > 0,

t fostsM
(24) Yult)=<tR+logM/t)— M if M<t<eM
(e— 1M ifeM<t.

They fulfil the relations 0 < ¥, <1, Py (t) =0 if t > eM, Wi(t)= — ¢! if
M <t < eM, and P} (t) = 0 elsewhere.

Lemma 2.2 Let he L' (B,(w,), R™), and let xe W'-2(B,(w,), R™) be a weak solution
10 4x = h in B,(wy) = R", i.e.

(2.5) _). (V@:Vx + @-h)dw =0
Br(wo)
Jor all ®e W3 (B, (wo), R™)n L™.
Moreover, let ye C%'(B,(wo)), y 2 0 in B,(wo), ac R™, and 1 > 0 such that

(2.6) sup |x(w)—a] << .

wedBy(wo)
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Then,
@.7 ) 7|Vx|*dw
{(weB(wo):|x(w)—al >n}
% — limsup | YZic(lx — al?)(x — ) hdw
M—-w {weBr(wo):|x(w)—al|>n}
1
=5 | Vy:V[|x—a*]dw.

{weBr(wo):|x(w)—a| >n}

If supp y € B,(wy), (2.7) holds for all nelR.

Proof. Using (2.5), we obtain by a simple calculation that
1
28 3 [ Vo yV[¥u(lx — al*)]dw
By(wo)

=— | o{y¥ul(x —a?)x —a) h+ yPullx — a’)|Vx]?
By(wo)

+29¥i(x — aP)(|(x — @) x> + |(x — @) x,[?)
+ Ph(lx — al?)(ulx — @) xu + 7,(x — @) x,) } dw

holds for all ¢ € W4 %(B,(wo), R)n L* and M > 0.
Lemma 2.1 with f= ¥Yy(|x — al?), fo =n> g =2{...}eL'(B,(wo), R) now
yields

2.9) I PPl x — a|?) | Vx|* dw

{weBy(wo): | x(w)—a| >n}

= f (— yPu(lx — a?)(x — a)+h

{weBr(wo): | x(w)—a| >n)
— 29¥x(1x — a?)(I(x — @) x> + |(x — a)* x,[?)
—3Pu(lx — a?)Vy-V[|x —a]*])dw

for all M > n2. Recalling the properties of ¥y, we obtain the assertion after letting
M - 0.

3 Interior regularity

Our main result in this section concerns interior continuity of weak solutions to
(3.1) Ax = 2H(x)x, A X,
in Q « R?, where H satisfies, for some K > 0,

(32)  H(x) = Hy(x) + H(x), sup (|H;(x)| + (1 + |x])|[VH:(x)]) <0,

xeR?

(3.3) sup (|H2(x)| + |VH,(x)]) < o, sup |[x Hy(x)| < 1.

xeR? Ix|2K
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This result will be obtained in two steps by first proving partial interior regularity,
i.e. continuity a.e. in £, and then excluding points where continuity could be false.
This procedure was used by Heinz [7, 8], who proved interior regularity if
H(x) = H;(x). After locally re-constructing a solution to (3.1) and thus demonstrat-
ing its regularity a.e. he showed that the condition which allowed this construction
in fact holds throughout . We note that Griiter [3] also gave a proof for partial
interior regularity, if H(x) = H,(x), avoiding existence methods.
Our result of partial interior regularity reads

Theorem 3.1 Let Q < R% Hy, H,e C*'(R3, R), and let xe W' 2(Q, R3) be a weak
solution to (3.1) in Q where H satisfies (3.2), (3.3) for some K > 0.
Then, x is continuous in all points

(34) WoERQy:= {we!):lim(lﬁw(r)]2 | 1Vx|?dw) = O}
rlo Br(w)
where £,,(r) denotes the circleline meanvalue defined in (1.3).

Proof. Let woe £, and assume w. 1. 0. g. that sup,.g:|x H,(x)| £ 1 — 46 for some
5€(0,4). We define

(3.5) o;:= sup (1 + |H;(x)| + |[VHi(x)]) <0 (i=1,2),
xeR?
(3.6) Bi:= SU£3|XI|VH1(X)I <

and choose some se(0,1) with (1 —46)(1+3s)*<1-—35. We pick a
u€(0,(a; + o)~ '6). Using Lemma 1.2 and wo € Q,, we find some p > 0 satisfying
B,:= B,(wy) < Q,

(3.7 @pi= sup |x(w) = &uo(p)l £27¢ O,
weéB,
and
1/2
(3.8) 32¢o(oy + By + (o1 + 22)[Ewo(0)) ( | IVXIde> =4,
BP

where ¢, denotes the constant of Lemma 1.1.
The main tool is Lemma 22. Setting r=p, h=2HX)x, A X,, Y =1,
a=2¢,,(p)=:¢,, n=w,, we obtain

39 [} |Vx|? dw

{weB,:|x(w) — &1 > w,}

< — limsup ] Pallx — &%) (x — €,)* QH(x)x, A x,)dw .
M- {weB,:|x(w) — | > w,}
Let deC(R, R) satisfy D—0,0) =0, P, )= 1,0 @ =< 1, and |P'| < 3u7°,
then we have 1 — @(|x(w) — &,|°)> = 0 for all we B, with [x(w) — &,| > p. Making
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use of 1 = (1 — @&(|x(w) — £,F)?) + D(|x(w) — &,I°)? and the special structure of
the triple scalar product, we estimate the r.h.s. of (3.9) for M > p*:

G100 - | 2H(X) P (1x — &,11)(x — &, Xus X,) dw

{weB,:|x(w) — &| > w,}

IA

B H | o Vx| dw

N {weB,: w, <|x(w) — &,| < u}

_g 2H(x) P (lx — &1 (x — &))"

/3

a s d s
" L P(|x— &) (e = o) T A = [P(1x — &) x — &) dw .

In this way we obtain from (3.9), (3.10), (3.5)

(3.11) | (1 — u(ey +a3))|Vx|?dw < F; + F,

{weB,:|x(w) — &,| > w,}

where (i = 1, 2)

(3.12) F;=limsup | [ 2Hi(x) ¥u(lx — &,1*)(x — &))"

M-© B,

0
- [0(1x &)~ )] A 5= [P(1x = &, P)x é,,)]dWl .
u v

F, and F, are now estimated by Lemma 1.1 and in an elementary way:
Recalling the properties of Hy, H,, and ¥, we obtain

(3.13)
1/2
Fis ZColimSUP( J IVIH1(x) Pa(lx = &P (x — ép)]|2dW> /
B

M- o

IVI®(Ix — &) (x — &,)]1* dw

{weB,: |x(w) — &,| > w,}

1/2
< 2c0(0q + 1 + Ohlépl)(f |Vx|2dw>
BP

2
(1 + sup|d>’|su’) |Vx|? dw
R

{weB,: [x(W) — &, > w,}

1/2
< 32¢0(2y + B1 +a1|€pl)<§ IVXlde> ) |Vx|? dw
{weB,:|x(w) — &,| > w,}

BP
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and
(3.14)
Fy Slimsup | [ 2H,(x) Par(lx — &,[?)x -
M-« |B,
0 G,
" [D(Ix — &I )(x — &)I A = [B(Ix — &) (x — €,)]dw
u ov
+ limsup | [ 2H,(x) ¥ (|x — o
M-x B,

ai [D(1x — &) (x — &,)] A 4 [P(lx — &) (x — &,)]aw
u ov

1/2
= ((1 — 49) + 2¢o limsup <f IVLH (x) ¥h(|x — éplz)ép]lde> )

M-x B,
(1 + sup |®'|sp®)? |Vx|? dw
{weB,: |x(w) — &,| > w,} R
1/2
< ((1 — 30) + 32¢coa; |, (I |Vx|? dw) ) _" |Vx|2dw .
B, {weB,:|x(w) — &, > w,}

Combining (3.11), (3.13), (3.14), (3.8), we deduce
(3.15) [} |Vx|?dw £ 0.

{weB,:[x(w) — &,| > w,}

Therefore, we finally have

(3.16) Sup |x(W) — &wo(p)| S @, <276 Uy < g
weB,

and

(3.17) osCg x S pt .

In fact, the condition which guarantees continuity (see (3.4)) holds at least a.e. in
€. This can be seen from |&,,,(r)| < ¢, (r ™" [ x|2; Byowoy + | VX |12: 5,0wey) (s€€ [7, 12]),
by applying a classical theorem of Lebesgue. Therefore it seems appropriate to
speak of partial interior regularity.

To prove that condition (3.4) holds for all wy e Q, we take the result of Lemma
1.3 into account. Since &,(r) = o(logr~1), r | 0, it can be seen easily that the
boundedness of the weighted Dirichlet integral which will be established in the
following theorem ensures continuity of weak solutions to (3.1), provided H satis-
fies the stated assumptions.

Theorem 3.2 Under the assumptions of Theorem 3.1
(3.18) [ loglw — wo| ! |Vx(w)|?dw < o0
B,(wo)

holds for all B,(w,) = Q.
Hence, Qo = Q and xe C°(Q, R3) (see Theorem 3.1).
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Combining this with a general theorem of Tomi [15], we obtain the final statement
of interior regularity of solutions to (3.1), namely

Theorem 3.3 Under the assumptions of Theorem 3.1 xe C**(Q, R®) holds for all
ue(0,1).

Proof of Theorem 3.2 By Lemma 1.3 and Theorem 3.1, we only have to establish
(3.18). W.1. 0. g. we set wo = 0 and p < }. Let r = |w| and B, = B,(0). From the
proof of Theorem 3.1 we take over the quantities , a4, a5, f;. We define

logs if0<s<t

(3.19) log,s = {logt s

for t > 4 and choose some ®,e C§((— p, p)) satisfying ;0,2 = 1. Finally we set
(3:20) P =p:=p(r) = plw]) = @,(Iw|)* log,[w|~*

q=q.=q(r) = q(lw|) = @,(Iw|)logf |w|~* .
Lemma 2.2 with h = 2H(x)x, A x,, ¥ = p(|*|)e C$*(B,), a = 0,1 = —1 yields

(321) [ pIVx|*dw = —limsup [ 2p(H;(x) + Hy(x)) Pe(|x[?)(x, Xy, X,) dw
B M->x B,

1
—= [ Vp-V[|x|*]dw.
2 B,

For brevity’s sake we use

(3.22)
Ry:= [ (IPMI+1d®PUVx* + 2[x[*)dw + | |Vx|2(/1w+l [ Ix|*ds .

14
BF\BPIZ Bp/l 53912

Combining (3.21), supyxer?|x Hy(x)| £ 1 — 46,
1 1

(3.23) —= [ Vp-V[Ix]*1ldw=— [ |x|?ds,
2 By 0B,

and (3.22), we deduce
(3.29) 45 [ p|Vx|*dw < — limsup | 2pH, (x) Pa(Ix|?)(x, X,, X,)dw + R, .
B

A M-x B,

We have to estimate the first term on the r.h.s. of (3.24), which can be done using
the following definitions and transformations taken from Heinz [8]:

(3.25) n=n(lwl) = — Ifl @) @) de

h=hw)=n+qy
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where £ = ¢, ¥ = y,,, and q = ¢, denote the quantities already defined in (1.3),
(1.4), and (3.20). A.e. in B, we have

1
(326) p(r)(x’ Xus xv) = @ (X, Xrs xnp) = ';(x’ ax,, qxcp)

1 1
= ;(x, qé, + Yy, qy,) = ;(x, N + qYrs qVy)

1
= ;(xa hr —4), hw)

p'(r)

1
= ;(x’ hra hw) - 2 (X, Y, yw)
_ _r0
_(x’ hw hv) 2r (é’ Vs yw) ’
and thus
(3.27) — limsup | 2p H,(x) ¥ (|x|*)(x, X,, X,)dw < G, + G,
M-« B,
where
(3.28) Gy =limsup | [ 2H(x) Yp(|x[*)(x, hy, hp) dw
M- s
and
s p'(r) —
(3:29) G, = limsup ITHl(x)?’M(le )&y, yo)dw| .
M- |B,

The estimate of G, is the same as in [8] but will be recalled for the reader’s
convenience. First, we consider |Vh| and find, noting h, = gx, + q.y and h, = qy,,

(r)? , ’
(3.30)  |Vh|]* =|gx, + q.y|* + 2;2_ 1Vol* = ¢*|Vx|® + p'x,*y + q'2|y|?.

Then, using |p'(r)| < r~! and |q'(r)] = Q2rlogir ) ' <@ 'if0<r<dp<i,
and (1.5), (1.7), we obtain

p2r
(331) [ |VAI2dw = [ (p()IVX[* + p'(")y, "y + ¢()?|yI*)dordr
B, 00

p2n ) pl2 2= Iylz
<[ [ o0IVxdorar+ ] j<|y,|2+ )d(prdr
oo

s 2r?

p 2x
+ ,fz(lp'(r)l +1a@OP) [ Uyllyl + 1y1*)derdr
ol 0

< [ pIVx|?dw + R, .
B’
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Hence, by Lemma 1.1 and the properties of H,; and ¥,,, we have

M-

1/2
(332) G, élimsup2co< | IV[Hx(x)Y’,’w(lez)x]Izdw) [ IVh|*dw
5, B,

1/2
< 2¢o(a; + ﬁl)( f |Vx|2dw) ( [ p0) V] dw + R,.) .
B, B,

Next, treating G, we use Lemma 1.3 and obtain

(333 0 |E0)| < Sloghr 1 <
for 0 < r < ro with some ro < 4. Therefore, if 0 < r < 4p < 4r,, we have
("2
(3.34) ay [p'(Né)| <6 —
and from (3.29), (3.33), (3.34), and (1.7) we deduce
pl2 2n 1/2 p 2=x
335 Gyxof [ Ol g gt § T 1y 2 el g
20" r 2 0 ror
<6 | p(r)|Vx|*dw + R, .
Now, we choose p (0, ro) such that
1/2
(3.36) coloy + By) (I |Vx|2dw> <6
Bﬂo

where again ¢, denotes the constant of Lemma 1.1. We combine (3.24), (3.27), (3.32),
(3.35), (3.36) and deduce

(3.37) _[ p(Iw])|Vx(w)|?dw £ 3R,,0 !
Bﬂo
where
(3.38) p(Iw)) = pIw]) = By W) loge W]~ .

Finally, letting t - oo Fatou’s Lemma yields the desired assertion.

4 Boundary regularity

In the last section of this paper we consider weak solutions to the Dirichlet problem

Ax = 2H(x)x, A X, in Q
X =12 on 0Q

4.1) DP {

where ze Wh2(Q, R3).

For H satisfying (0.5), Heinz’s result [7] concerning partial interior regularity
can easily be transferred to the boundary problem, if oscz < | H || ;' locally holds
near 09 (cf. [17, Theorem 5.3]). In case of higher regularity for z, i.e. ze C%#, C!*,
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and C?%, C?* results of Widman [18,19] and Heinz [5] (in connection with
Schauder estimates) then ensure corresponding regularity for x.

Here, we shall give a proof for continuity or boundedness of solutions x to (4.1)
under the corresponding assumption on z, and those on H formulated in Theorem
3.1. According to an idea of Courant [2, Sec. 1.5.4], we shall control the circleline
meanvalue (27r) ™! [, X ds using an arc crossing 3B,(w,) and 9%, if w, is near
0Q. In this way we do not need any information about the oscillation of z. Qur
result on boundary regularity is formulated as follows:

Theorem 4.1 Let Q < R?, ze W"2(Q,R3), and let xe W' 2(Q, R?) be a weak
solution to the Dirichlet problem (4.1)/(0.7) where H satisfies

(42)  H(x) = Hi(x) + Hy(x), sup (|H;(x)| + (1 +[x])|[VH(x)]) < o ,

xeR?

4.3) sup [H;(x)| + |VH,(x)| < o0, sup |x H,(x)| < 1

xeR? Ix|=K

for some Hy, He C>'(R3, R), K > 0.
Moreover, let w,e 0%, z,eR3, and r,, o, > 0 such that

(44) "Z — Za H 0; B, (w,) N 2 é 2P

and 0Q n 0B,,(wy) + @ holds for all w,€0Q N B, (w,) and all r,€(0, r,). Then, for all
¢ > 0 there exists some r, > 0 such that

(45) " X — Z, ” oc;B,!(w,)r\Q é o, +¢.

In particular, if Q is bounded by a finite number of Jordan curves, xe L® (2, R?)
follows from ze W' 2(Q, R*) n L*, and x e C°(Q, R®) with xjaq = 2,sq is guaranteed
by ze Wh2(Q,R3) n C°(Q).

Proof. From the proof of Theorem 3.1 we take over the quantities 8, ay, a3, f;,
s and assume ¢€(0, (x; + «,)”'d). We choose some r,€(0, 4,) such that

T

“o [ (VxP +|V(x = 2))dw < G)

log3 5, (v)n 0

and

1/2
(4.7) 32co(ay + By + (21 + #2)(|za] + 0, + s))( } le|2dw) <94.
BZr,(Wa)“Q

Let {(x — z),}nen = C$(2, R*) be a sequence of functions converging to x — z
in W§2(Q, IR?). We define (x — z),, neN, and x — z as vanishing in R2\.

For any w,eB, (w,)nQ we choose w,eB, (w,)ndQ such that
dist(w,, 0Q) = |w, — wi|. Using Lemma 1.2 and (4.6), we find some noeN
and, for all neN, n > ny, some set M?_, < (5|w, — wy|, [w, — w,|) such that

measM}_, = lw, — w,| and
3
“8) Sp[(x = 2),(W) — (x = W) S T

w', w'' €dBr(w1)
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for all re M}_,. In (3|w; — wy|, [w, — wy|), we again find some set M/, such that
meas M, = |w, — w,| and

4.9) sup  |x(w') — x(w")| =

w’, w'edB, (w2)

Bl ®»

for all r'e M.

Since we have convergence ae. in Q for some subsequence of
{(x — 2)s}nen, there exist WeN, ' >n,, p,eM’ ,, p,eM. such that
[(x — 2),(w3) — (x — z)(w3)| < 4e holds for some w3€0B, (W )N 0B, (w,;) and Xx,
z are absolutely continuous on dB,,(w,). Hence, we obtain

(4.10)
[Ew(p2) —zal £ sup  [x(W) — x(w3)| + |[(x — 2)(W3) — (x — 2w (w3)|
weodB, (w;)
T 1(x = 2w(w3) — (x — 2w Wa)| + |(x — 2w (wa)| + [2(w3) — 2z,
e pae Ty
=2787 % %
with some w, €02 N dB,, (w,), especially,
(4.11) 1€w,(p2)| <|za|l + 0, + €.

In contrast to the proofs of interior regularity, we obviously succeed in deriving an
estimate of the circleline meanvalue &,,(p,).

What follows now is routine. In the proof of Theorem 3.1 we substitute w, p,
u by wa, p,, 3¢, resp., moreover (3.7) by
gty B
(4.12) @pi= sup [x(W) = &u(pa) S 270705

wedB,,(wa)

and (3.8) by (4.7). The result is taken from (3.16), namely

(4.13) sup  [x(w) — &, (p2)l =

we B, (w;)

L]

Finally, combining (4.10), (4.13), we obtain
(4.14) sup |x(wW)—z,|Zo0,+¢,

we B, (w;)

which completes the proof, since w, € B, (w,) N 2 has been chosen arbitrarilly.

Remarks. It remains an open question whether weaker assumptions on H
guarantee the same regularity proved in this paper, of course without more
informations about a given solution. Moreover, under the stated assumptions on
H it is not known whether there is a maximum estimate for solutions to (0.7)
depending on their W' 2 norms and boundary data, similar to that given by Brezis
and Coron [1.A1] in the case of H = const.
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Dr. G. Hellwig for his support.
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