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1 Introduction

Let p: X — A be a locally trivial bundle where X is a locally compact metric space
and A is compact. Consider a (local) flow ¢ on X that respects the fibres, i.e.,
X, =p~!(4) is flow invariant for any Ae A. Suppose we are given an isolated
invariant set S = X of ¢. In this situation two versions of the Conley index have
been defined. One is the usual Conley index of S with respect to ¢. It is the
homotopy type of the based space N/M, where (N, M) is an index pair of S.
The second version, the global Conley index of S, introduced by Salamon [S]
consists of the family N, /M;, A€ A, together with certain maps N;/M; - N,/M,.
Here N, = Nn X, etc. Of course, N;/M; is the Conley index of S, for the
flow ;.

In this paper we shall develop a third (intermediate) point of view which seems
to be the most natural. The Conley index of S over A, €(S, A), is defined as [N/~ ]
where x ~ yif x, ye M, for some 1€ A. N/~ is a space over A with base points (1)
in each fibre N;/M;. [ — ] denotes based fibre homotopy type. Thus we retain the
“over A” structure inherent to the situation as well as the topology on N. Under
mild assumptions on A (connected and locally contractible) N/~ is locally fibre
homotopy trivial (preserving the base points of the fibres). This implies — in fact it
is equivalent to — that N/~ is a weak fibration, i.e., it satisfies the weak covering
homotopy property WCHP in the sense of Dold ([D, Definition 5.17]). This notion
does not even make sense for the other two versions of the Conley index mentioned
in the beginning.

Given a path win A from A to ¢ we get a map f,: N;/M; - N,/M, determined
by w up to homotopy. If w’ is homotopic to w relative to the end points then
fw 2 f,,-. These are the maps constructed by Salamon. Their existence is inherent to
the WCHP. This property (in a version with base points) also suffices to yield the
long exact homotopy sequence (and the spectral sequences in homology or
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cohomology) usually associated to fibrations. In fact, the sequence
Ny/M;— N/~ "5 4

of based spaces is exact, where we choose Ae A and B(A)e N;/M, c N/~ as base
points. This concept is dual to that of a coexact sequence which one obtains from
an attractor-repeller pair as in [S].

Some easy consequences of the above results are the following. If 4 is a con-
tractible then %(S, A) is fibre homotopy trivial. This answers a question posed by
Salamon. An immediate corollary of this observation is the following. Suppose A is
contractible and S is an isolated invariant set over a subset K of A,
S < Xy =p~(K). If €(S, K) is not fibre homotopy trivial then there cannot exist
an isolated invariant set 7 of X such that Tn Xx = S. In other words, if S, is the
only compact invariant set of ¢, for all Ae K then S cannot be “separated from
infinity”. We illustrate our results by showing how the Conley index over A can be
used in bifurcation theory.

In the following we assume the reader to be familiar with the basic notions of
Conley index theory as developed in [C] or [S].

2 The Conley index over A

Consider a locally trivial bundle p: X — A of the locally compact, metric space
X over the compact, connected space A. Let ¢ be a local flow over A as in the
introduction and § < X an isolated invariant set (which includes compactness). In
order to define the Conley index of S over A we recall the notion of fibre homotopy
equivalence. Two spaces m: E — A, n": E' - A over A are fibre homotopy equivalent
if there exist maps f: E—E’, f': E'—E over A, ie., n'f=mn, nf' =n', and
homotopies H: Ex[0,1]->E,H": E'x[0,1]—E over A such that
Hy=H(—,0)=idg, H; =f'°f, Hy = idg., H{ = fof’. If in addition there exist
sections f: A — E, f': A — E’ of base points f(A)en ~*(1) = E, etc., and all maps
respect the base points then E and E’ are called based fibre homotopy equivalent.

2.1 Definition. An index pair of S over A is a pair (N, M) of compact sets
M c N c Xsuchthat M; = M np~'(4) + ¢ forall ie 4 and (N, M) s an index
pair in the usual sense, i.e.,

(i) N — M is an isolating neighborhood of S,
(i) M is positively invariant with respect to N,
(i) M is an exit set for N.

2.2 Lemma. For any isolated invariant set S X there exists an index pair over A.

Proof. Let (N’, M') be an index pair for S in the usual sense. Since S =+ X it follows
that S; + X, for any 4. So we may assume that N} = X, for all ..

Now let C be any compact subset of X — N’ with p(C) = A. M:=M' u C and
N:=N'u C will then be an index pair for S over A. |

Given an index pair (N, M) for S over A we may form the quotient space
E = N/~ of N where we identify each subset M to a point f(4). E is a space over
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A, n: E - A, and we have a canonical section f: 4 — E. The continuity of f is an
easy consequence of the compactness of M. We chose the non-standard definition
of exit pair in order to avoid discussions on the definition and the topology of E in
the case where some of the exit sets M, are empty and others may be not empty.

2.3 Lemma. Let (N, M) and (N', M') be two index pairs for S over A. Then the
associated quotient spaces E:=N/~ and E' = N'/~' are based fibre homotopy
equivalent.

Proof. Salamon shows that there exists a 7 >0 such that the map
fT:N/M > N'/M’

T o(x,3T) if ¢(x,[0,2T])cN-M, ¢(x,[T,3T]))cN'—M’
ff=1% .
B'(p(x)) otherwise
is well defined and continuous (cf. [S], Lemma 4.7]). This map obviously induces
a continuous map g":E — E’. Similarly, if 7 is big enough we get a map
g'T:E' > E. It is easy to see that g7 is a based fibre homotopy equivalence with
inverse g'T (cf. [S, Lemma 4.8]). O

2.4. Definition. Let S be an isolated invariant set in X. The Conley index of S over
A, € (S, A), is the based fibre homotopy type of the space n: E = N/~ — A over 4,
where (N, M) is an index pair for S over A.

This is well defined because of Lemma 2.3.

2.5. Remarks

(@) If =: E - A is the Conley index of S over A and f:4 — E is the base point
section then E/f(A) is the usual Conley index of S. Here and in the sequel we do
not distinguish between E and its based fibre homotopy type €(S, A).

(b) Suppose p: X - A is a vector bundle over A with zero section s: A — X.
Consider a flow ¢ on X over A such that s(4) is a hyperbolic stationary
solution for p; = @ | X, A€ A. Then the tangent spaces V; < X, of the unstable
manifolds of s(4) form a vector bundle ¥ — A which should be called the Morse
index of § = s(A) over A. The Conley index of S over A is the fiberwise one
point compactification S¥ of V. §¥ — A is a sphere bundle over A with the
points at infinity as base points. If we identify the points at infinity we obtain
the Thom space TV of V. TV is homeomorphic to the one point compactifica-
tion of ¥ or to the quotient space DV/SV where DV is the disc bundle and SV
the sphere bundle of V. Thus the usual Conley index of S = s(A) is the Thom
space TV. In this hyperbolic situation the Morse index of S over A induces an

element of Ir(\'O(A) and the Conley index of S over A induces an element of

~—

JO(A) which is by definition the set of fibre homotopy classes of sphere
bundles over A (cf. [H, §§15.4, 15.5]). Thus the passage from the Morse index
over ¢ A to the Conley index over A corresponds to the J-homomorphism
J:KO(A)-> fa(/l) in algebraic topology.

(c) We assumed A to be compact only for simplicity. If A is locally compact the
whole theory works without major changes. Instead of S being compact one
has to assume that p|S:S — A is proper. This means that Snp~!(K) is
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compact for any compact subset K of A. Probably one can even rewrite the
paper for paracompact A and locally compact fibres. But in this case Salamon’s
paper does not apply and has to be rewritten, too. Of course, one can also look
at the more general situation where the fibres are not locally compact using the
ideas of Rybakowski [R].

(d) One can also introduce connected simple systems over A. These consist of
a family of spaces over A with base point sections f and a family of fibre
homotopy classes of maps over A between these having properties analogous
to those for A = {pt}; see [S, Definition 2.6]. We leave this straightforward
generalization to the reader.

3 Statement of results

As above we consider a local flow ¢ on the total space X of the locally trivial
bundle p: X — A4 such that the fibres are flow invariant. 4 is compact and connec-
ted and X is locally compact and metric. Let S be an isolated invariant set.

3.1 Theorem. If A is locally contractible then the Conley index of S over A,
€(S,A) = [n:E— A], is locally fibre homotopy trivial. This means that any le A
has a neighborhood K = K (1) such that the bundle n | K is fibre homotopy equivalent
to a trivial bundle K x F. Moreover, if f: A — E denotes the base point section of
7 then all maps and homotopies can be chosen to respect the base points.

According to Dold ([D, Theorem 6.4]) a space n: E — A over A is locally fibre
homotopy trivial if and only if n satisfies the weak covering homotopy property
WCHP. This means that for any map f: Z — E and any homotopy H: Z xI —» A
with meof(z) = H(z,0) there exists a homotopy H:ZxI—E covering
H(ie. m°H = H) and such that H(—, 0): Z — E is fibre homotopic to f(cf. Dold
[D, Definition 5.1 and Proposition 5.13]). So we obtain the following corollary.

3.2 Corollary. If A is locally contractible then the Conley index €(S, A)=
[n:E— A] of S over A has the WCHP. Moreover, fixing base points Lo€ A and
B(Ao)em ™ (o) then m has the based WCHP, i.e., if f and H as above fix the base
points then so does the covering homotopy H.

An immediate consequence of the based WCHP is that the sequence
F=n"'lo)—nE—" 14

is exact. This means that for every based space Z the sequence

Tox

[Z,F]1—[Z E]-=,[Z, A]

of based homotopy classes of maps has the property image (i,) = n, ' (const)
where const is the homotopy class of the constant map Zaz+>AoeA. It is an
elementary fact of homotopy theory (cf. [W], for example) that an exact sequence
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FLEZS Ainduces a long exact sequence of homotopy groups

e o> T (F) s i (E)—s (M) — Ty y (F)—s « - -

Observe that F is the Conley index %(S;,) of the isolated invariant set
S;0 < X2, =P~ '(40). So the homotopy groups of €(S;,), €(S, A)and A are related
by a long exact sequence. Also the homology and cohomology groups of %(S;,),
(S, A) and A are related. But this involves spectral sequences as in the case of the
(co)homology of fibrations.

To formulate the next result we need the notion of pull back. Given a space
n:E— A over A and a map f: K — A then the pull back f*=n:f*E — K is defined
as follows.

f*E:={(x,e)eKxE:n(e) =f(x)}, f*n(x,e)=x.

If = has the WCHP then so does f*n. And if n':E’— A is fibre homotopy
equivalent to = then f*n’ and f*x are fibre homotopy equivalent. If K is a subset
of A, i: K A, then i*x is simply the restriction of n to the part over K. We write
%(S, K) for i*%(S, A).

3.3 Theorem. If K is a deformation retract of A, r:A — K the retraction, then
6(S, A)=r*%4(S, K). In particular, if A is contractible then %(S, A) is fibre
homotopy trivial: €(S, A) = A X E(S3,)-

As a consequence, the original Conley index of S, which is given by
(S, A)/B(A) = (A X E(S53,))/(A % B(40))

is homotopy equivalent to €(S;,) is A4 is contractible. This answers a question
posed by Salamon (cf. [S, p. 36]).

3.4 Theorem. Let K be a subset of A that can be deformed inside A to a point.
Consider an isolated invariant set S of Xx = p~'(K). Suppose €(S, K) is not fibre
homotopy trivial. Then there cannot exist an isolated invariant set T of X such that
TnXg=S.

We conclude this section with a result about attractor-repeller pairs. Suppose
we are given two isolated invariant sets S and A of X such that 4 = S is an
attractor in S. Let A* = S be the complementary repeller.

3.5 Theorem. There exists a coexact sequence

(A, A) - €(S,A) > €(A*, A)
of spaces over A.

The proof is similar to the corresponding one in the case A = {pt};cf. [S, §5.2].
It requires no new ideas and will therefore be omitted.
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4 An application to bifurcation theory

Let F: R x R" - R be C? and such that 0 € R" is a critical point of F; = F(4, +) for
every 1e R*. We are interested in other critical points bifurcating from R* x {0}.
Assume that there exists R > 0 such that 0 is a non-degenerate critical point of F if
|[A] = R. Let m(4) be the Morse index of O for |4] = R. In the case k = 1 it is well
known that critical points of F, bifurcate from (—R, R) x {0} if m( + R) + m(—R).
This is due to the homotopy invariance of the Conley index. We shall generalize
this result to the case k>2. Then m=m(l) is independent of 1 since
§*~1 = {AeR*:|A| = R} is connected and m(1)e Z depends continuously on 4.
Instead of looking at the Morse indices m(1) we consider the map

S*~ 134> A;:==D?F,(0)e GL(n) n Sym(n) = GLS(n)

where Sym(n) denotes the set of all symmetric n x n-matrices. Fixing a base point
Ao in S*~! this map induces an element By of 7, _, (GLS(n); A;,)- Let GLS(n, m)
denote the component of A,, in GLS(n). This depends only on the number of
negative eigenvalues of 4;, which is just the Morse index of 0 for F,,. We assume
for simplicity that the Morse index satisfies the inequality k < m < n — k. This is no
restriction since we may suspend F, i.e. we replace R"” by R” x R¥**! x R¥*! and
F by the map

RExR"x R¥* 1 x R¥* ' 3(4, X, y, 2) > F(Ax) + 3y [ - 3 [z|? e R.

This does not change the critical points of F but only their index. We now compute
- 1(GLS(n); Az,) = mie— 1 (GLS(n, m)).

4.1 Proposition. If k> 1 and k <m <n — k then

y/A if k=1 or 5 mod 8 ;
k-1 (GLS(n,m)) =<Z/2 if k=2 or 3 mod 8 ;
0 otherwise .

In order to state our bifurcation result we need to introduce certain integers.
For each integer n and prime p let v,(n) be the largest integer v such that p* divides
n. Then we define natural numbers b, for I > 1 as follows:

v2(b):=3 +v,()

and for p > 2
1 +v,2l) if p—1 does not divide 2I ;

valbi):= { 0 otherwise .

Observe that b, is always divisible by 8. b, is closely related to the Bernoulli
numbers (cf. [MK]).

4.2 Theorem. Nontrivial critical points of F bifurcate from R¥ x {0} if either
(i) Br*+0for k=2 or 3 mod 8 or
(1) Br #£ 0 mod b, for k = 41 + 1.
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Theorem 4.2 is a consequence of Theorem 3.4. Set A:={AieR*:|A| < R} and
K :=0/4. We consider the flow ¢ on A x R" induced by the ordinary differential
equation x=—VF;(x). S = K x {0} is an isolated invariant set of K x R" and we
shall show that (S, K) is not fibre homotopy trivial. Then Theorem 3.4 tells us
that A x {0} cannot be an isolated invariant set. Since ¢ is a gradient flow there
must exist stationary orbits of ¢ bifurcating from A x {0} which proves Theorem
4.2.

In order to compute %(S, K) we first compute the Morse index of S over K. Let
G! denote the Grassmannian manifold of m-dimensional linear subspaces of IR".

43 Lemma. The map GLS(n,m)— GJ,, L—V ~ (L), which associates to each
LeGLS(n, m) the generalized eigenspace V ~ (L) belonging to the negative part of
the spectrum of L, is a strong deformation retraction.

Proof. We consider G as a subspace of GLS(n,m) via the inclusion
Vi L, defined by L, | V= —id and L, |V*= +id. Obviously the composition
Vs Ly— V ~(Ly) is the identity. Given any LeGLS(n, m) consider the path
Ist—L,eGLS(n,m) defined by L, |V (L)=—t'id+(1—t¢t)°L and
LV (L)*=+t*id +(1 —t)-L. These maps define a deformation
GLS(n, m)x I - GLS(n, m), (L, t)— L,, of GLS(n, m) to Gy, O

We can now prove Proposition 4.1. The inclusion R¥gR¥*! induces an
inclusion G GN*! and we write GZ for the union of all GY with the direct limit
topology. If k < n — m then 7, _ { (GJ) = m,—(G,). This can be proved inductively
using the long exact sequence of homotopy groups associated to a fibration.
(Remember that GY =~ O(N)/(O(m) x O(N — m)).) Similarly there is an inclusion
G 5 G+ q. As usual we write BO for the union of the G;;. If k < m then as above
it follows that m,_(G?) = m,— 1(BO). Finally, 7, (BO) = 7, —,(0), where O de-
notes the union of all orthogonal groups O(N). These groups have been computed
by Bott, they are periodic in k with period 8. We refer the reader to [H, 15.2.3],for
a list of these groups which gives precisely Proposition 4.1. O

Next remember that m,_,;(BO) = KO(S*"!). The element ure KO(S*™!)
which corresponds to frem,—;(GLS(n,m)) is given by the m-dimensional vector
bundle which we called the Morse index of S = K x {0} over K = S§*~'. And the
Conley index %(S, K) is given by the associated sphere bundle with fibre $™ over
K; see Remark 2.5(b). Therefore €(S, K) is ﬁbl;& homotopy trivial iff u lies in the
kernel of the J-homomorphism J: I?()(K )= JO(K). This kernel has been com-
puted by Adams et al; cf. [H, §15.14]. If K = $*~! with k E’\2_’or 3 mod 8 then
I'(\(j(K) =~ Z/2 and J is injective. And if k = 1 or S mod 8 then KO(K) = Z and the
kernel of J consists of the multiples of b, where k =4l + 1. This proves
Theorem 4.2. O

It is interesting to compare this approach with the multiparameter bifurcation
results of [A] or [B]. There one was interested in the zeroes of a map
F:R*¥x R" - IR" which was not assumed to be a gradient map. Therefore the map
4> D f;(0) induces only an element y; of n;— ; (GL(n)) and not of m, _; (GLS(n)). If
f(4, x)=—VF,(x) then our bifurcation invariant fy is mapped to y, via the
inclusion GLS(n)s GL(n). Now for k < n the group =, 1 (GL(n)) = m—;(0(n))is
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isomorphic to m;—(0) = m(BO) =~ I?é(S"). Bifurcation of zeroes of f occurs if
J(yy) is not zero in .’Ib'(S"). This has been proved in [A] in the situation where
K = $*~'is the boundary of a small ball around 0 in R* and D f1(0)e GL(n) for all
A% 0 small. In [B] one can find a proof in a more general situation. The
bifurcation index BI(f) constructed in [B] is precisely J(y,). There are two
important differences between %(S, K) = J( Br) and BI(f) = J(y,). First of all they
lie in different groups: € (S, K)e JO(K) = JO(5*1) and BI(f)eJO(S*). Since
Br =0 implies y, =0 but not vice versa the Conley index can detect more
bifurcation than the bifurcation index. In the trivial case k=1 one has
KO(S°) = Z, KO(S') = Z/2 and J is injective in both cases. Here 7y is the mod
2 reduction of fr. On the other hand, y s can be defined also if f is not a gradient
map. In addition, BI(f)+ 0 yields a global connected branch of zeroes of
Jf bifurcating from IR* x {0}. This need not be true if €(S, K) + 0 but BI(f) =0.1In
fact it is very well possible that the critical points of F (the zeroes of f= —VF)
remain in an arbitrarily small neighborhood of a bifurcation point (4o, 0), say. In
this case Theorem 3.4 implies only that there must exist an unbounded family of
orbits of the flow associated to Xx= —VF,(x) connecting the small stationary
solutions near (4o, 0). Such examples can be constructed for k = 1 using the
methods of [P].

5 Proof of Theorem 3.1

Let n: E — A represent the Conley index of S over A4 and f: A4 — E be the canonical
base point section. We have to show the following. For any Age A there exists
a neighborhood K = K(4,) and maps f:Ex = n~1(K)— K x F, g:KxF — Eg,
where F=E,;. These maps have to preserve the base points, ie.,
F(B(A)) = (4, B(Ao)) and g(4, B(4o)) = B(A) for any A€ K. Moreover, there exist
homotopies H: Ex x I - Ex and H:K x F x I - K x F such that

— H(B(A)) = H(B(A)t) = B(A) VieK,tel
— Ho=idg, Hy=g°f

— H,(%, B(Ao)) = (4 B(A0)) V€K, tel

— Ho=idgxr, H,=foy.

Since this is a local statement we may assume that the space p: X — A over A is
aproduct X = A x Y with ¥ locally compact. We identify each fibre X, with ¥ and
write @; for the flow on ¥ coming from X ;. Similarly, if (N, M) is an index pair for
S over A we consider the sets S;, N; and M, as subsets of ¥, We fix (N, M) and take
E = N/~ as in Defintion 2.4. We need the following lemma due to Salamon.

S.1 Lemma. There exists a compact, contractible neighborhood K of Ay in A and
times Ty > 2T, > 0 such that the following statements hold for the sets

O=int () (N;—M,)cY and P=c |J(N;-M,;)c Y.
AekK iekK

(@) Kx 0 and K x 2 are neighborhoods of Sy = SN K x Y and K x P is isolating.
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(b) Forall yeY, A, keK and T = T, the following holds.
@) If i(y,[ — Ty, To]) = P then yeO.

(ll) [f QD;(y, [07 T]) < CI(NK - Mx) and (P/'l(y) [TO’ T])q:@ then ‘px((p}.(y’ T)n
[0, T M.+ &.

A proof can be found in [S, Lemma 6.6]. ]

Now take K and T = T, as in Lemma 5.1.
For 4, ke K and ye E; we say that y satisfies A(4, x) if

— @iy, [0,2T]) = N; — M; and
— @,(y,[T,3T]) = N, — M, and
- ¢K(¢l(y’3T)a [05 T]) = NK - Mx'

Then we define f: Ex > KX F and g: K x F - Ey as follows
f( ),_{(l, (PAO(CDA(.Va 3T)’ T)) lf yEEi. SatiSﬁes A(A, '10)

(4, B(40)) otherwise
(4 y)i= ©i(92,(y,3T), T) 1if y satisfies A(4o,4)
gk pi= B(4) otherwise .

We have to verify the continuity of f and g. Since 4(4, 4¢) is an open condition f is
continuous in y€ E; if y satisfies A(/, 4¢). For the same reason f is continuous in
yeE; if

— @(», [0,2T])&cl(N; — M;) or
T (p;(y,[T,3T])¢cl(N,10—M,10) or
- (p).o((pi(y’ 3T)3 [0’ T])¢C1(Nlo - Mﬂo) .

Therefore it suffices to show that if yeE, does not satisfy any of these
conditions nor A(4, 4o) then @;,(@.(y, 3T), T)e M;,. Remember that M,  corres-
ponds to f(4o)EN,,/M;,. We have to consider three cases.

1. case: (Pl(y, [03 2T])¢N). - M).a
2. case: ¢3(y, [T,3T])EN,, — M, ,
3. case: (plo(q)).(y’3T)9 [O’ T])¢N10_MJ.0 C

In the third case we get immediately @;,(@4(y,3T),T)eM,, .
Since ¢,,(@i(y, 3T), [0, T]) = cl(N,, — M;,) = N,, it suffices to show in the
first two cases that

(plo(q)l(y, 3T)’ [O» T]) nMRo * g .

According to Lemma 5.1(b) this is the case if
(PA((P;.(}’, 2T)’ [O, T:]) = ‘Pa(y, [27; 3T]) < Cl(Nlo - M/lo)

@A((Pl(y’ 2T)9 [T03 T]) = QDA(,V, [2T+ TO’ 3T]¢(9 .

Since ¢, (y, [T, 3T]) = cl(N,, — M,,) the first condition holds. In the first case we
get @;(y,2T)eM;, hence ¢;(y,3T)¢ N, — M,. Thus we are done because
Oc N,— M,;. In the second case we get immediately ¢,(y,3T)eM,,, thus
©(y,3T)¢ 0. This proves the continuity of f.

and
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The continuity of g is proved similarly.
Finally, we have to show that gof and fo g are homotopic to the identities on
Ex and K x F, respectively. For yeE; = Eg

g of(y) = (pl((plo((Plo((pl(ys 3T)9 T)’ 3T)’ T)

= 0u(@io(@a(y, 3T),4T), T)

if this lies in N, — M and g°f(y) = B(A) otherwise. Since K is contractible there
exists a deformation h: K x I - K with h(k,0) = A, and h(x, 1) = k. We set for
yeE,

H(y, s):=0u(@na,s (@i, 3T), 4T), T)

if this lies in N; — M; and H(y, s) = B(4) otherwise. Obviously, H(y,0) = g°f(y)
and H(y, 1) = ¢,(y, 8T) which is homotopic to the identity. The proof that H is
continuous and that f, g respect the basepoints is left to the reader as well as the
proof that fo g is fibre homotopic to the identity. In fact, using some results of Dold
it is not necessary to prove that fo g ~ id. One can argue as follows. Since g°f ~ id
the space Ex —» K over K is dominated by the trivial space K x F — K over
K([D, 1.3]). This implies that Ex — K has the WCHP ([ D, Corollary 5.3]). And
since K is contractible it follows that Ex — K is fibre homotopy equivalent to the
trivial space K x F ([D, Theorem 6.4]). O

The maps f, g and H are modifications of maps constructed by Salamon. We
refer the reader in particular to Theorem 6.7 and Corollary 6.8 of [S].

6 Proof of the Theorems 3.3 and 3.4

The very short and nearly formal proofs of this section indicate the suitability of
our definitions. We start with the following result.

6.1 Proposition. Let n:E — A have the (based) WCHP and let f,g: K - A be
homotopic. Then f*E and g* E are (based) fibre homotopy equivalent.

Proof. Choose a homotopy h: K x I - A between hy = fand h, = g. Then f*E is
isomorphic to the part of h*E over K x {0} and g*E is isomorphic to the part of
h*E over K x {1}. Furthermore, h*E — K x I has the WCHP since this property is
preserved by pull backs. Now we can apply Corollary 6.6 of [D] which says that
h*E|K x {0} and h*E|Kx {1} are fibre homotopy equivalent. The fibre
homotopy equivalences defined in [D] preserve the base points if 7 has the based
WCHP. O

To prove Theorem 3.3 let i K A denote the inclusion and r: 4 — K the
retraction. Since i r is homotopic to the identity we can apply Proposition 6.1 and
get

E(S, A) = (ior)*€(S, A) =r*i*¥€(S,A)=r*%(S,K) . |

To prove Theorem 3.4 suppose there exists a compact isolated invariant set T of
X such that Tn Xg = S. Then 4(T, K) = 4(S, K) is not fibre homotopy trivial.
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On the other hand, 4(T, K) = i*%(T, A) is fibre homotopy trivial according to

Proposition 6.1 since i: Kg A is homotopic to the constant map. O
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