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1 Introduction

Let {T(t) : t = 0} be a bounded, strongly continuous, one-parameter semigroup
of operators on a Banach space X, and let A be its generator. If ¢(4) NiR
is countable and Po(A*) NiR is empty, then |T(t)x|| — 0 as t — oo, for
each x in X. In the norm-continuous case, this was proved in [20]. In the
strongly continuous case, two very different proofs were given, independently
and simultaneously, in [2] and [14], and a third proof has subsequently been
given in [8]. Various extensions of this result have appeared in [4,5, 15, 16].

Now suppose that T is a bounded representation on X of a suitable
locally compact abelian semigroup S. For example, S might be R"_, so that
T(ty, ..., t,) = Ty(ty) ... T,(t,), where {T; : j =1, ..., n} are commuting
bounded C,-semigroups. Even in the norm-continuous case, there are several
possible notions of the (joint) spectrum Sp(T) of T. However, the stability
theorem described above involves only the unitary (purely imaginary) part of
the spectrum, where there is little ambiguity (see Propos. 2.2). In [16], it was
shown that if T is norm-continuous, the unitary part of Sp(T) is countable,
and the unitary part of Po(T") is empty, then || T(t)x|| — 0 as t — oo through
the semigroup S.

In this paper, we extend this result to strongly continuous representations.
We assume that S is embedded in a locally compact abelian group G, and we
take as spectrum an analogue of the spectrum of an isometric representation
of G, which can be identified with the Gelfand spectrum of a commutative
Banach algebra. We use the method of [14, 16] to construct an isometric
representation U of S on a different space E (Propos. 3.1). Then we use a
Banach algebra construction of Arens to obtain an isometric representation
V of G on another space Y (Propos. 3.2). Knowing that Sp(V) is non-empty,

* Part of this work was carried out while the authors were visiting the University of Franche-

Comte, Besangon, and Hokkaido University, Sapporo, respectively
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we can deduce that Sp(U) is non-empty. For § = R"_, this shows that a finite
number of commuting Cj-semigroups of isometries have a common sequence of
approximate eigenvectors, a fact which may be of independent interest. Using
some facts about Silov boundaries, we also show that, if Sp(U) is countable,
then U has an eigenspace which is complemented in E. This in turn leads to
our main result (Theor. 4.2) and a more general almost periodicity theorem
(Theor. 5.1).

The same constructions enable us to show (Theor. 4.3) that, if f in L(S)
is of spectral synthesis for the unitary part of Sp(T) (which may now be

uncountable), then | T ()f(T)|| — 0 as ¢ — oo. This fact was first proved in [9]
for § = N, and then in [8, 18] (independently) for S = R _, and in [18] when
T is norm-continuous.

In its original form, this article contained Section 2 and some incomplete
versions of Proposition 4.1 and Theorems 4.2 and 5.1. At that time, we were
unable to prove Corollary 3.3. The idea of using the Arens construction was
introduced later by the second author to establish Theorem 4.3 for norm-
continuous representations. He is publishing this in a separate article [18]. The
first author saw how the same idea could be used to obtain both Corollary
3.3 (and hence Theor. 4.2 and 5.1 in their full generality) and Theorem 4.3 for
strongly continuous representations. In a complicated situation, it was decided
to rewrite the present paper jointly, while allowing [18] to go forward for
publication elsewhere.

2 The Spectrum

Let S be a subsemigroup of a locally compact, abelian, group G. Let S* be
the space of continuous, bounded, characters of §; thus S* consists of the
non-zero, continuous, bounded, homomorphisms of § into the multiplicative
semigroup C. Let

S, ={xeS" :lx(s))=1 forallsinS}.

We assume that S is measurable with non-empty interior S° in G, and we
consider S with the restriction of Haar measure on G. For f in L!(S), y in S*,
let

oo = / fOx@de
N

We assume that the functions f (f € L!(S)) separate the points of S* from each
other and from 0. For example, this is satisfied if S° is dense in S. Without loss
of generality, we assume that G = S — S. Then each y in S extends uniquely

to a character in the dual group G, so we may identify S with a subset of G.
Note that § satisfies Folner’s condition: there is a net (Q,) of compact

subsets of S such that l(—Q“—H:—lé‘—zﬁ—' — 0 uniformly for ¢ in compact subsets of S,

where |Q| is the Haar measure of Q. The locally compact, abelian, semigroup
S° satisfies the condition [17, pp. 131, 145], and it follows easily that S satisfies
it. Moreover if S is g-compact, then the net may be chosen to be a sequence.
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In view of the results of [16], we shall not primarily be interested in the
case when S is discrete. Indeed, the basic example which we have in mind is
S = R", = [0, c0)". Note, however, that we do not assume that 0 € S, so our
results also cover examples such as § = (0, o0)" or § = [1, c0)". In each of
these cases, we shall identify S* with C" , where C_ = {4 € C : Re4 < 0}.

Here a character y in S” is identified with z = (z, ..., z,), where
Xy ooy ) =x() =€ =exp(tyzy + - +¢,2,) -
Thus S, =iR".

Let T : S — #(X) be a representation of S on a Banach space X. Thus T
is a strongly continuous homomorphism of S into the Banach algebra #(X)
of bounded linear operators on X. We shall always assume that T is bounded,
so that there is a constant M such that | T(¢t)|| < M for all ¢t in S. We shall
also consider the adjoint operators T*(t) = T(t)* on X", but we note that T"
may not be a representation of S, as strong continuity may fail.

A character y in S” is said to be an eigenvalue of T if there exists a non-zero
vector x in X such that T(t)x = y(t)x for all t in S; an eigenvalue of T" if
there exists a non-zero functional ¢ in X" such that T*(t)¢p = x(t)¢ for all t;
an approximate eigenvalue of T if there exists a net (x,) in X with [|x,[| =1
such that |T(t)x, — x(t)x,|| — O uniformly for ¢ in each compact subset of
S; an w-approximate eigenvalue of T if there exists a sequence (x,) in X with
Ix, =1 such that | T(t)x, — x(t)x, | — O for each ¢t in S. We shall denote by
Pa(T), Po(T"), As(T) and A,0(T) the sets of eigenvalues of T, eigenvalues
of T", approximate eigenvalues of T, and w-approximate eigenvalues of T,
respectively. For a single operator U (bounded or unbounded) on X, we shall
denote the spectrum, point spectrum, and approximate point spectrum of U
by o(U), Pa(U), and Aa(U), respectively.

For f in L1(S), let
— / FOT @) dt
S

(The integral exists as a strongly convergent Bochner integral.) The map

f > F(T) is a homomorphism between the Banach algebras L!(S) and #(X).
The spectrum of T is defined to be

Sp(T) = {x 5" f)l < IF(T)| forall f in L‘(S>} .

Note that, if S = G, then Sp(T) is the finite L-spectrum of T [12] or the
Arveson spectrum of T [6].

We shall be primarily interested in the unitary part of the spectrum. Thus
we let Sp,(T) = Sp(T) N S;, Po,(T) = Pa(T)NS,, etc. If T is bounded,
x € Pa,(T), x € X\ (0) with T(t)x = (t)x (t € S), ¢ € X~ with ¢(x) =1, and
¢, =1Q,/7! f 1()T* (t)p dt, where (Q,) is a Folner net, then any limit point

p of (¢,) satlsﬁes T*()y = x(t)y and w(x) = 1. Thus Pa,(T) < Po,(T").
To understand the notion of spectrum, it is helpful first to consider the
example of multipliers.
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Example 2.1 Let S = R", , X = L?(Q, p) for some measure space (Q, u) and
some 1 < p < oo, and let b : Q — C"_ be a measurable function. Define

(T@g)) =" g) (geX,0e0).
For f in L'(R7,),
f(T)g = f(—hyg,
where f is the Laplace transform of f:

fz) = /e-"Zf(t)dt zeC).

R,

Thus

> ]

IF(T)) = esssup |7 (= h(w))

and, for z in C"_,

z€Sp(T) < |f(—z)| Sesssup|f(—h(w)| forall fin L'(R").
weQ

Since f is holomorphic in C"_, it follows from the Maximum Modulus Principle
that Sp(T) contains any compact subset of C*. whose boundary is contained
in the essential range of k.

When n =1, T is a Cy-semigroup whose generator A4 is given by Ag = hg,
whenever hg € X. The spectrum ¢ (A4) of A is the essential range of h. Thus
a(A) < Sp(T), but the inclusion may be strict.

For general n,

Sp,(T) = {iy € iR" :iy is in the essential range of h},
Po(T)=Po(T")={z € C : py{w : h(w) =z} > 0}.

It follows that if Sp,(T') is countable and P, (T) (or Pou(T")) is empty, then,
for almost all w, Reh j(w) <0 for some j. Hence T is stable, in the sense that

Jim [T@gll=0 (g €X).
=X

Thus for fixed t in (0, c0)", the one-parameter semigroup T, (1) = T (zt) (t = 0)
is stable.
Now, take n = 2,

Q= {(x; +iy;, % +iy) € CL :xyx,(L+y)L +y3) 2 1},
u = four-dimensional Lebesgue measure,
h(zy, 23) = (2, 7).

Then Sp(T) = Q, Sp,(T) is empty, T is stable, but, for each one-parameter
subgroup T, (t € R2+), the spectrum of the generator is C_. So the stability
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theorem for Cj-semigroups [2, 14] is not applicable. In this example, the one-
parameter semigroups 7 — T(t,0), T — T(0, 7) are both stable, but if we
take Q' = QU (iR x {—1})U({ —1} x iR), u’ to coincide with u on Q and
with one-dimensional Lebesgue measure on iR x { —1} and on { —1} x iR,
and h to be the identity function, then the same properties hold without the
subsemigroups T'(z, 0), T (0, 7) being stable.

Proposition 2.2 Let T be a bounded representation of S. Then A,0(T), Ao (T)
and Po(T") are all contained in Sp(T). Moreover, Ac,(T) = Sp,(T), and, if S
is o-compact, then A,o,(T) = Sp,(T).

Proof. Suppose first that y € 4,0,(T), so there is a sequence (x,) in X with
Ix, | = 1 such that | T(f)x, — x(t)x,| — 0. Then, for f in L!(S),

-0

7Y%, — F x| = H [rox,—xoxpsoar
S

by the Dominated Convergence Theorem. Thus
7 > lim [ = lim |f =f
IF (M2 lim [f(T)x,| = lm (x| = If (0! -

Next, suppose that y € Ag(T), and consider f in L!(S) with compact
support K. There is a net of unit vectors (x,) such that || T(f)x, — x(t)x,Il = 0

uniformly on K, so |[f(T)x, — f()x; — 0. Hence [F(T)|l = [f(x)|. Since
the functions of compact support are dense in L'(S) and |f(x)| = Ifly,

I7(T)| M| f|, it follows that y € Sp(T).
Next, suppose that y € Pa(T"), so there exists ¢ in X* with ||¢|| = 1 and
T*(t)¢p = x(t)¢ for all t. Then

f(T)'¢ = / FOT O dt=Fb,
S

s0 [f()I  I7(T)" || = 17(T)]. Thus x € Sp(T).
Finally, suppose that y € Sp,(T). For each compact subset Q of S, define

fa in L'(S) by

W@
fdt):{@ if teQ

0 otherwise.

By assumption, ||TQ(T)|| > |fg(x)| = 1. Hence there exists yg in X such that
lygll =2 and |xq|l = 1, where

1 S
%= Q/ TOT (Oyq dt.
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Then

1 S .
IT(xq — 2(Oxa]l = ETHQ [ TOUOT $)yq ds — Q/ T TS ds

M|(Q+t)AQ|

1
It follows from Felner’s condition that y € Aa(T) (x € A,0(T) if S is o-
compact).
Corollary 2.3 If S = R, and A is the infinitesimal generator of T, then
o(4) = Sp(T), and Sp,(T) = a(A4) NiR.

In the main stability results, we shall be concerned only with the unitary
part of the spectrum. Proposition 2.2 shows that, for these purposes, it matters
not at all whether we consider the full spectrum which we have introduced, or
merely the approximate point spectrum. The advantage of considering Sp(T)
is given by Proposition 2.4, which allows us to use Banach algebra techniques.

Given a bounded representation T of S on X, let o/, be the closure of

{?(T) : f € L(S)} in #(X) for the norm topology. Then .« T Is a commutative
Banach algebra. As o/ may be non-unital, we shall also introduce the notation

;T ford’r +CIX
Proposition 2.4 There is a bijective correspondence between points y in Sp(T)
and characters ¢ of o/ r, given by: ¢(?(T)) =7 ().

Proof. If x € Sp(T) and ¢,(f(T)) = f(x), then, by definition of Sp(T), ¢,
is bounded, and therefore extends to a multiplicative functional on .«7,. By
assumption on S, ¢, is non-zero, and the map y — ¢, is injective.

Suppose that ¢ is a character of /. There is a character y of L!(S) given
by v(f) = ¢(F(T)). Exactly as for groups [19, p.8], it can be seen that every
character of L!(S) arises from a character of S, so there exists ¥ in S* such
that p(f) = f(x). Thus y € Sp(T) and ¢ = ¢,.

In the sequel, we shall identify Sp(T) with the character space :JT.
Thus we write xG(T)) for ?(x). In the topology induced from QT, Sp(T)

is locally compact, and the identification of Sp,(T) with a subset of G is a
homeomorphism [see 19, p.10]). Let I'- be the Silov boundary of </ .

lIA

Proposition 2.5 For y in 'y, there is a net (x,) in X with ||x,| = 1 such that
IT()x, — x(®)x,]l = O for all t in S and ||f(T)x, — f(x)x, || — O for all § in
LL(S).

Proof. By Zelazko’s Theorem [22] [see also 7], there is a net (U,) in &/ with

U, =1 such that H?(T)Ua —?(x)Ua | = O for all f in L!(S). Choose Y, In
X such that |y,[| <2 and |U,y,|| = 1. Let x, = U,y,, so that ||x,| = 1. For

any f in L1(S),
IF(T)x, — F)x, Il S IF(TYU, = F U, Il NIy, = 0.
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For fixed ¢ in S, let

_ [fe=1) if s—tes
fi(s) = {0 otherwise .
Then
7= [ 1956 =0ds= [1s+050ds = x0T (0. F(T) = TOFT).
S+t N
Thus N R
IT@f(T)x, — 2@ f ()%l = 0.
But R R
ITOf(T)x, —f)T@Ox,| — 0.
Hence

Fl IT®Ox, —x@®)x,] — 0.

Choosing any f in L!(S) such that f(x) # 0, it follows that || T (£)x, — x(t)x,|
- 0.

3 Two constructions

In this section, we describe two constructions which reduce the study of
asymptotic behaviour of bounded representations of semigroups to that of
isometric representations of groups. The first construction was used in [14]; it
was called the limit isometric representation in [18].

Let T be a bounded representation of a semigroup S on X. We regard S
as being ordered by: s <t if t —s € S. We put

X(T) = {x e X :inf |T()x|| = 0} = {x €eX :lim |T@)x| = O}.
tes tes

Proposition 3.1 Let T be a bounded representation of S on a Banach space
X. There exist a Banach space E, a bounded linear map Q of X into E with
dense range, and a representation U of S by isometries on E, with the following
properties:

(1) Ifxe X and Qx =0, then x € X,(T);

2 9T =U@®Q (te9);
3) Sp(U) = Sp(T), Pa(U*) < Pa(T").

Proof. Replacing the norm by the equivalent norm

Ixlly = sup ({nmeu .teshu {nxn}) ,

we may assume that |T(z)|| < 1. Let

Z(x) = inf | T(¢)x|| = lim | T (¢£)x]| .
tes tes
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Then ¢ is a seminorm on X, with /(x) < ||x|| and #~1(0) = X,(T). Let 7 be the

induced norm on X/X(T), and (E, | - ||g) be the completion of (X/X,(T), 7).
Let 0 : X — X/Xg(T) < E be the canonical map. It is clear that Q is bounded
with dense range, and (1) is satisfied.

It is also clear that /(T (t)x) = #(x) for all ¢ and x. Hence T(t) induces an
isometry U(t) on E satisfying (2). Moreover,

Z(UMQx — U(s)0x) < | T()x — T(s)x],

so U is strongly continuous.
For f in L!(S), f(U)Q = Qf(T). Hence, for x in X,

7GU)Qx) = ¢(F(T)x) = inf | T(OF(T)x| < inf [F(T)] 1T @)x]

= IF(D)lI£(x)
= [Ff(DIZ(Qx) .

Thus, II_?(U)ll < |F(T)|. Hence, Sp(U) = Sp(T). Moreover, if y € E*, v # 0,
and U"(0)y = x(t)y, then Q*p € X", Q*p # 0, and T*(1)(Q"y) = x(1)Q" .
Thus Po(U*) € Pa(T™).

The second construction is a variant of one used in [18].

Proposition 3.2 Let U be a representation of S by isometries on a Banach space
E. There exist a Banach space Y containing </, and a representation V of G
by isometries on Y such that

0 EMFW) =)W (f,geL'©S);
2)  Sp(V) < Sp,(U).

Proof. Let o/ be the Banach subalgebra of #(E) generated by &7,
{U(t) : t € S}, and the identity operator.

Let ty,ty, ..., t, €8, Ay, Ay, ..., A, € A, m; EN(@{i=0,1,..,k;
Jj=1,2, ..., n), and suppose that

k
A()U(m()ltl il +m()ntn) = ZAiU(miltl s +m,~ntn) o

il
Then
[ Agll = sup{[lAox|l : x| = 1}
= sup{[|U(mg t; + -+ + my,t,)Apx|| : x| = 1}
k
< > sup{IUGm; ty + -+ +my,t,) Ax] < x| = 1}

i=1

k
=141 .
i=1
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It follows from a construction of Arens [3, Theor. 3.93] that there is a
commutative Banach algebra 4, with identity, containing &/ J , in which each
U(t) is invertible. For ¢, t, in S, define

Ut —ty) = Ut,)U(y) L.

Then {U(¢) : t € G} is a well-defined group of elements of norm one in %.
Let Y be the closed linear span in % of

(U®Df(U) :te G, feL(S).
For s in G, define V(s) : Y — Y by: V(s)(4) = U(s)A (A€ Y). Then V is a

strongly continuous representation of G by isometries on Y.
Let f,g € LI(S),t € G. Then

E(V)(U(t)?w)) -/ g(s)V(s)(U(r)?(U)) i
S
- / ¢OUOUETU) ds
S
= U f ¢ U (U) ds,
S

where the integrals are convergent in the norm of %. But, for x in E,

( / g(s)U(s)?(U)ds)x = [s0U6 (?(U)x) ds= (§(U)?(U))x,
S S

where the second integral is convergent in the norm of E. Thus
20)(VOF(W) ) = VOROFW) = E0UOFW). )

Now (1) follows immediately on taking t = 0.
Let y € Sp(V), so that

Bl < 1BV (g € L'(G)).
For g in L1(S), it follows from (*) that

g4 =84 (4€Y),
s0 [[g(V)|l < Ig(U)]. Thus

B < IEW)I (g € LY(S)),

so x € Sp(U). Since V is a representation of the group G, Sp(V) consists of
unitary characters.
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Corollary 3.3 Let U be a representation of S by isometries on a non-zero Banach
space E. Then Sp(U) is non-empty. Moreover, Aa,(U) is non-empty. If S is o-
compact, then A,o,(U) is non-empty.

Proof. The space Y constructed in Proposition 3.2 is non-zero, so the spectral
theory of isometric representations of groups [6, 12] shows that Sp(V) is non-
empty. Hence, Sp,(U) is non-empty, by Proposition 3.2(2). The results now
follow from Corollary 2.2.

Corollary 3.3 was previously known in the cases when T is norm-
continuous, in particular when S is discrete, (essentially due to Lyubich, [12]),
and when § = R [14], but we believe it to be a new result for § = R" . We
shall need it to prove our main result, Theorem 4.2. From that result, it will
follow that Corollary 3.3 is valid, not only when U is isometric, but whenever
U is not stable. In the case when S = R, a particularly elementary proof of
this is contained in [2]. In that case, we can formulate Corollary as follows.

Corollary 34 Let {U;(r) :1 20} (j=1, ..., n) be commuting Cy-semigroups

of isometries on a non-zero Banach space E. There exists a sequence (x,) of unit
vectors in E and real numbers 4, ..., 2, such that

IU;()x, —eimx, | — 0

as T — oo, uniformly for t in compact subsets of R, j=1, ..., n.

4 Stability

The following proposition is needed for the proofs of Theorems 4.2 and 5.1. In
fact, the latter theorem will give more information about the situation of this
proposition.

Proposition 4.1 Let U be a representation of S by isometries on a non-zero
Banach space E, and suppose that Sp,(U) is countable. Then there exist a non-

zero projection P in QU and a character y, in Sp,(U) such that U(t)P = y,(t)P
Jor all t in S. In particular, y is an eigenvalue of both U and U".

Proof. As in Section 2, we identify Sp(U) with QU, and we consider the Silov
boundary I';. By Corollary 3.3, Sp(U) is non-empty, so <, is not radical, and
I'y is non-empty. By Proposition 2.5, each y in I'; satisfies:

[£(@)] = lim (), | = lim | U@)x, | = 1

for some net (x,) of unit vectors. Thus I'y; is contained in Sp,(U), so T’ U is
countable. Since I'y; is locally compact, it follows that ', has an isolated point

Xo- By [21, p.55], x, is isolated in QU = Sp(U). By Silov’s Idempotent Theorem,
there exists P in :JU such that P2 = P, y(P) = 1, and (P.o/ ;) = {xolP:JU}.

Take t in S and A in Ao(U(#)|PE). Choose f in L!(S) such that f(xo) #0,
and let g = f, — Af, where f, is as in the proof of Proposition 2.5. There is a
sequence (x,) in PE such that ||x,| =1 and |U(t)x, — Ax,| — 0. Then

18U, = IF W)U @)x, — Ax,)]| - 0.
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Thus Pg(U) is not invertible in Pgu, so there is a character y in (P y) such
that z(Pg(U)) = 0. Since y = yo|P oy, it follows that

~

0=y (PE(U)) = 2xo) = fxo) (o) — 4)-

Hence 1 = x,(t).

Thus Ao (U@t)|PE) = {y,(?)}. Since do(U(1))|PE) < Aa(U(t)|PE), it follows
that a(U(t)|PE) = {y(®)}. Since U(t)|PE is isometric, it now follows that
20| =1, U(t)|PE is invertible, and hence, by Gelfand’s Theorem (for a short
proof, see [1]) that U(t) | PE = yo()Ipg, so U()P = xo(t)P.

If we choose a non-zero vector x in PE, then U(t)x = y,(t)x for all ¢, so y,
is an eigenvalue for U. If we choose a non-zero functional v in (PE)* and put
¢ = P*y, then U (t)¢p = yy (1), so x, is an eigenvalue for U*.

Remark. Proposition 4.1, and hence Theorems 4.2 and 5.1, remain valid if the
assumption that Sp,(U) is countable is replaced by the weaker condition that
Sp,(U) is scattered, that is, each subset of Sp,(U) has an isolated point. If S is
second countable, then G, G and Sp,(U) are also second countable, in which
case Sp, (U) is scattered (if and) only if it is countable.

The following theorem was proved in [16] in the case when T is norm-
continuous and in [2, 14] when S =R, .

Theorem 4.2 Let T be a bounded representation of S on a Banach space X, and
suppose that Sp,,(T) is countable and Pot(T") is empty. Then lim, ¢ || T (t)x| =
0, for all x in X.

Proof. Let E, Q, and U be as in Proposition 3.1, and suppose that E # (0).
Then Proposition 4.1 shows that Poii(T") is non-empty, a contradiction. Hence
E = (0), and the result follows from Proposition 3.1(1).

The following theorem was first proved in [9] when S = N, then in [8, 18]
when § =R, and in [18] when S is norm-continuous.

Theorem 4.3 Let T be a bounded representation of S on a Banach space X,
let f € LY(S) and suppose that f is of spectral synthesis for Sp,(T). Then
lim, s IT(O)f(T)] = 0.

Proof. Let Q and U be as in Proposition 3.1 and V be as in Proposition 3.2.

Since Sp(V) < Sp,(U) = Sp,(T), f is of spectral synthesis for Sp(V). It follows

from the spectral theory of isometric representations of groups [6, 12] that

f(V) = 0. By Proposition 3.2(1), f(U)g(U) = 0 for all g in L'(S). But, if ty is

an interior point of S, then taking a limit in the strong operator topology, we

find that f(U)U(ty) = 0. Since U(t,) is isometric, it follows that f(U) = 0.
Now let x € X. By Proposition 3.1(2),

Qf(T)x = f(U)Qx = 0.

By Proposition 3.1(1), lim, . | T(t)f( T)x| = 0. This establishes convergence of

T(t)f(T) to 0 in the strong operator topology.
To deduce norm-convergence, we perform a similar construction to

Proposition 3.2. Consider the representation T of S on ./, given by:
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T’(t)(A) = T()A (t € S, 4 € o). This is strongly continuous, and, as in
Proposition 3.2, we find that f(T)(4) = 7(T)A and Sp(T) < Sp(T). This shows

that f is of spectral synthesis with respect to Sp(T), so we may apply the result
obtained in the second paragraph of the proof and deduce that

lim |TOF(MR(T) = lim ITOFT)@TNI=0 (g € L'(S).

Taking a suitable net (g,) in L!(S) such that | (g,(T) — T(to))f(T) | — O, it

follows that lim, . ||T(t+t0)7(T) | = 0, and hence that lim, g IT@OF(T)|
=0.

In [8], it was shown, for S = R +» that Theorem 4.2 can be deduced from
Theorem 4.3 by means of harmonic analysis. Since we do not know how to
prove Theorem 4.3 for general S by such methods, and since our proof of
Theorem 4.3 involves Banach algebra techniques (in the proof of Propos. 3.2),
it seems natural to give, as we have done, a proof of Theorem 4.2 which
involves further Banach algebra methods.

5 Almost periodicity

Let T be a bounded representation of § on a Banach space X, and let X, (T') be
the closed linear span of the unitary eigenvectors of T. The representation T is
said to be (weakly) asymptotically almost periodic if, for each cofinal ultrafilter
% on §, and each x in X, lim, 4 T (t)x exists (in the weak topology), i.e. for
each net (t,) in S such that t, — oo, there is a subnet (sg) such that limg T (sg)x
exists (weakly) for each x in X. Then T is asymptotically almost periodic if and
only if X = X(T) ® X,,(T) [10]. When S =R or Z , this is equivalent to T
being almost periodic, i.e. each orbit {T'(t)x : t € S} is relatively compact. But
Example 2.1, for (Q', u'), shows that, when S = R% , T may be asymptotically
almost periodic, but not almost periodic.

Let Ec,(T) be the set of all y in S, for which there exists a non-zero
functional ¢ in X* such that T"(t)¢ = x(¢)¢ for all t and ¢(x) = 0 whenever
T(t)x = x(t)x for all t. Thus Po,(T") = Po,(T)U Eq,(T). If T is weakly
asymptotically almost periodic (in particular, if X is reflexive), then Eg,(T) is
empty.

In the case when § = R, [15, 5] or T is norm-continuous [16], Lyubich
and Phong have shown that a bounded representation T is asymptotically
almost periodic if Sp,(T) is countable and Eo,(T) is empty. We can apply the
methods of [14, 15, 16] to strongly continuous representations in the following
way.

Let L = X (T) ® X,(T). In fact, L = X (T) & X,(T). This can be seen
by elementary arguments, but it also follows from the fact that T|L is
asymptotically almost periodic, so L has a decomposition. Without loss of
generality, we may assume that | T(¢)| < 1, and, as in Proposition 3.1, we
obtain a norm ¢, on X/X(T) given by:

4@ = lim IT @1,
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where Q, is the quotient map of X onto X /X (T). Since each T'(t) maps X,,(T)
isometrically onto itself, #,(Q,x) = | x| if x € X,(T). Hence (L/X(T), ?;) is

complete, hence closed in X /X (T), so there is a norm 7 on X/L given by:

Z(x + L) = inf{£,(Q;(x — y)) : y € X,(T)}
=inf{|T@®)(x—y)| :t€S,y € X,(T)}
= lim inf{| T())(x — y)Il : y € X3(T)},

since T (t) maps X,(T') onto X, (T).
Let E be the completion of (X/L, 7). As in Proposition 3.1, T induces a

representation U of S by isometries on E, with Sp(U) < Sp(T). If E is non-zero
and Sp,(T) is countable, then Proposition 4.1 provides a non-zero functional

w in E* and a character y in S, such that U*(t)y = x(t)y. If ¢ = Q" y, where
0 : X — X/L < E is the canonical map, then T"(f)¢ = x(t)¢ and ¢ vanishes
on X, (T). Thus we obtain the following extension of Theorem 4.2.

Theorem 5.1 Let T be a bounded representation of S on a Banach space X, and
suppose that Sp,(T) is countable and Ec,(T) is empty. Then T is asymptotically
almost periodic.
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