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1 Introduction

Let 2 be a bounded pseudoconvex domain in C" with ¥*-smooth boundary.
For strictly pseudoconvex domains Q Lieb and Range have given in [13]
%*-estimates for the d-equation. Let

n

(@, 2)= Z 10, 2)(6i—2)

be the Henkin/Ramirez barrier function. For (¢ and zeQ® has only zeroes
for {=z. So the barrier form

n

w((, 2)

is well defined for {¢Q and zeQ. The Lieb/Range solution operator is of the
following form. There exists a kernel 2({,z) on (U/Q)x Q, such that for all
(0, g)-forms f, which are of class ¥* on C", supported in a neighborhood U
of Q and d-closed on €, a solution on Q of the equation

ou=f
is given by
T()2)= | I OA2(2)+ [ f(O)AB,,( 2).
U

U/

B, , is the Bochner-Martinelli kernel and 2 is a sum of terms

o lg— 2|2 (aguc z||2)) (a;nc 2”2))—
°°"St'(||c—z|12)A“<5‘ T (g“’“( 1=z

with i+j=n—1—q¢.
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This method would also work on any domain, which has a barrier function
@ with good estimates. In the literature there are many integral representations
on special weakly pseudoconvex domains using appropriate barrier functions
(given for example by Range, Bruna/Castillo, Fornaess, Berndtsson/Andersson,
etc.). But it is well-known, that there exist pseudoconvex domains without sup-
port function (see [12]). The special form of the first integral in the above
integral formula suggests the following idea. Let 6=06(({) be the distance of {
from Q. Then there is a constant c,, such that we have

I6f O s el flo@) .

(We denote by ||, the ¥*-norm.) So whenever it is possible to control the z-
derivatives of w({,z) and J, w((,z) in terms of powers of 6™, then it is also
possible for sufficiently large k, to give %'®-estimates for u with a certain loss
of regularity. This idea is due to Aizenberg/Dautov [1] and Lieb/Range [13].
Nearly at the same time it has been Chaumat/Chollet [2, 3, 4] and Range
[16], which used an idea of Skoda [17] to construct barrier forms, or what
is the same, a decomposition of unity

1= ¥ G-z)wi(G.2)

for special domains. Range applied this to pseudoconvex domains of finite type
in C2. Chaumat and Chollet constructed barrier forms for so called s-H-convex
domains, which are pseudoconvex domains with a special Stein neighborhood
base. For example, a convex domain is 1-H-convex, which is also called uniform-
ly H-convex, and a bigger s indicates a worse neighborhood base. In their
case Chaumat and Chollet were able to control the derivatives of w in terms
of 1. The loss of regularity increases when s increases.

There are some criteria, which guarantee 1-H-convexity, given for example
by Diederich/Fornaess, Catlin and Sibony. On the other hand, no example of
a smoothly bounded 2-H-convex pseudoconvex domain is known, which is not
1-H-convex. Probably not every smoothly bounded domain with Stein neighbor-
hood base is s-H-convex and moreover there exist pseudoconvex domains with-
out such a base [5]. The method of Chaumat and Chollet heavily relies on
the fact, that they can apply Hormanders theory on a Stein neighborhood of
Q. This method fails for general pseudoconvex domains and we have to look
for a more intrinsic method. The famous result of Kohn [9, 10] about the
Neumann problem with weights suggests the reformulation of Skoda’s theory
in order to get a barrier form as a solution of a non-coercive elliptic boundary
value problem with weights.

This leads us to the notion of the .#-complex and will give us a ‘canonical’
solution of the above decomposition problem. Recently a paper of K. Diederich
and T. Ohsawa [6] has appeared, in which problems about canonical solutions
for the Cauchy Riemann complex on families of domains are studied.

Now we shall describe the #-complex. Let Q be a bounded pseudoconvex
domain in C" with ¥*-smooth boundary and let ¢ be a plurisubharmonic func-
tion on Q. We denote by L, (%2, ¢) the I*-weighted Hilbert space according
to Héormander.



Weakly pseudoconvex domains

439

Let (¢Q be a fixed point and t>0 be a fixed real number. Set for zeQ

and x>1:

gz, 0)=1z-LI% o(z, ) =log g(z, ),
¢1z L )=(1+)n—1aloggz )+t|z|?

022,060=0,z 00+ 0E)=(1+1)(n—1)a+1)logg(z, )+ 1tz

Let
3: L o(@,0) > Logur (@90, i=1,2

be the densely defined closed d-operator and

2‘.1.1': sz,q+l('Q’ (pi)_)LZp‘q(Q’ (pi)’ l=l,2

its adjoint. Note that the domains of definition Dom(d¥, ;) and Dom(d) are
independent of {, t, i and coincide with the corresponding domains for the

unweighted operators.
We are now concerned with operators on the following spaces

HY=(5,(2,0,)),  HY=L% 4(2, 02),
Wi:=Hj{x HY" ',
with H; '=0.
HY — HY

(fis s/ 14 Y G20

15

We - Wt
Z '{(a, b)—(da, Ta-0b)

where a=(ay, ...,a,)e H{,be HY" ' and da=(day, ..., 0a,). %, is a densely defined

closed operator. We call the following complex the #-complex:
0> WO LWt L w2 W Wt 0,

Now the important relation is true

%,

q

+1° Z; = 0’ q g O
T is continuous and the Hilbert space adjoint is given by
H% — HY

C_l_zl C_n—z-n
b — 1+t(g(Z,C) b,...,g(z,ob).

T =

So we conclude
TT*=(1+1)idys.
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The Hilbert space adjoint of % is given by

. Wit 5 wa
g '{(a, b) — (0%, a+ T*b, — 0%, , b).

Dom(%) and Dom(%*) are independent of the weight functions and coincide
with the corresponding domains of d: W%— W4*! and 6*: We*! - W9 where
the operators are applied componentwise and ¢ and J* are the unweighted
operators.

Note that

0% 11 f=e% 0% (e %f)
=5*f—a(a-*s d(Pz)f

Here o denotes the symbol of 0* coming from the differentiation of the weight
function (see also [7]). o is a differential operator of order zero. So the main
part of the differential operators %, respectively %,*, is given by

0: (a,b)—(Ja, —0b),
respectively

0%: (a, b)—(0*a, —0*b).

These operators are independent of { and t. Because of this fact the .#-complex
has similar properties as the weighted J-complex of Kohn.
Set

A=t L+ L,
with

Dom A¢,={feW!|feDom £* ,nDom %, &,feDom £*, £* , feDom %, _}.

For the applications we have in mind, only A=A}, is interesting. We shall
show, that the kernel of 4 vanishes for ¢t >0. From functional analytic reasons
it follows that

N = ‘/Vélt =(AC1,t)- !

is a bounded operator on W'. The same reasoning as in the case of the Neumann
problem shows, that we can solve for a given a with %, =0 the system:

L p=u
by the canonical solution
B=%* /V&.r a,

which is orthogonal to the kernel of .%,.
So let a=(a, b)=(ay, ..., a,, b)eker %, ie. da=0, Ta=0, b.
Then f=(w, 0)=(wy, ..., w,, 0) solves

o,w=a,
Tw=b.
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Applying this to «=(0,]/ 1 +1), we obtain a solution w=w(z, {, 1) of
0, w=0,

Z Ci—z)wi=1

If for a given Sobolev norm with respect to z there exists a t, independent
of {, such that 4" and % A" respect this norm and if we additionally can
control derivatives of { and z in terms of § !, then we can insert this barrier
form w into the solution operator described above. In our case however, we
cannot explicitly calculate the loss of regularity. We only know, that it is finite.
Consequently this method leads only to an integral representation in the
€ -category.

Main results

Before stating the theorems we need some definitions. We denote by (¢, );,
i=1,2 the inner product in the Hilbert space L2 (Q, @) ¢l7:=(¢, §);. For
x=(a, b)e W9, y=(a, b)e W* we set

(x’ y)= z (ai’ di)] +(b7 E)Za
i=1

Ix)12:= 3 la T+ 1b]3.
i=1

Let x=(a, b)e W? be ¥*-smooth up to the boundary of Q. For each nonnegative
integer s we define the weighted Sobolev norm, namely

1= ZHGH-WM&y

with
2

au+vc
0z ... 02" 9z ... 0% ||;

letf=3

for ce 2, (R, p) N €., (Q),i =1,2. Here the sum is over all nonnegative integers,
u;, v;, with uy+...4+u,=u, v,+...4v,=v, u+v=s. Note, that in the norms
the weights are involved.

We denote by WY the completion of Wén &~ () with respect to the norm
I+ ]ls- We shall need also pointwise norms for nonnegative integers k, s, depending
on point {.
oM+l x(z, &) 2

ou .. 00 og .. o0

Ixls, = X

lul + ol <k

Let U denote a fixed sufficiently small neighborhood of Q.
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Theorem 1 There exists an increasing sequence 0< Ko< K, <... of real numbers,
such that for every smooth mapping «: U\Q — W' and every non-negative integer
s and t = K we have the estimate

c(t, s)
507
c(t,s)
3
c(t, s)

o(0)*

Theorem 2 There exists an increasing sequence 0 <K, <K, <... of real numbers,
such that for every smooth mapping o: U\Q — W' and every non-negative integers
k, s we have the estimate

“ JV&,OC(Z, C) ”s.(k)éc(t, S, k) Z 5—.K(s'k‘)Ha“S+k1-(k2)

kit+k2<k

I Az (Ol = e, s

I £* A a0 = (=, Dlls,

1% L6* A e (5Ol = o, O)lls-

and
| ¥ Aoz, Dl Sclt, s, k) Y 877 a|

kitka=k
for t=K, .y, with (S, a)=(2s+2+a)(a+1)—2.

Theorem 3 For each positive integer r there exists an increasing sequence 0<t,
<... of real numbers and a €*-smooth maping w: Q x (U\Q) - C", which solves

0,w(z,0=0, Y ((i—z)wi(z0=1,
i=1

and fulfills the estimates

c(s,r)

S(0)=’

for a<v, and all s where D{ is an arbitrary differential operator of type

IDfw(- =

au+v
0% .. 0l 0L ... 00"

withu, +...+u,=u, v +...+v,=v, u+v=a.
When we insert the barrier form w into the solution operator T,(f), which
will be constructed in Sect. 5, we obtain the following integral representations.

Theorem 4 Let Q< = C" be a pseudoconvex domain with smooth boundary. Then
there exist for q=0,1,..., n linear integral operators R, T,, with R;=0 for
q>0, Ry: €° ()€~ (Q)n0(RQ), T €5 4(Q) > €5 ,4-1(Q), T_;=0, such that
for fe€%¢,(2) we have

=Ry () +T(f)+ T+, (0f)-
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For d-closed forms we obtain a solution operator analogous to the operator
of Lieb/Range resp. Chaumat/Chollet. In the case of non-0-closed forms, we
can use an idea of Peters [15], substituting Edf —dEf for df (cf. the proof
of Theorem 4, E is a Seeley continuation operator). Then we obtain a homotopy
formula for f. There are some obvious consequences of the existence of a barrier
function.

Corollary 1 If f depends smoothly on some additional parameters, then also R,(f)
and T,(f) depend smoothly on these parameters.

Once that for a weakly pseudoconvex domain with smooth boundary a
barrier form is constructed, there exist well-known techniques for real transversal
intersections of such domains (see for example [14]). So let the domain Q be
a real transversal intersection of finitely many weakly pseudoconvex domains
with smooth boundary.

Corollary 2 For q=1,..., n there exist operators T: € o.0(@)nker(0)
= %%, q-1)(Q), such that we have

T ()=
Actually one can prove the existence of a homotopy formula. The following
corollary is trivial, when a Stein neighborhood base exists.

Corollary 3 Let V be a fixed neighborhood of Q. Then there exist for q=1,...,n
operators T,: €l (V) " ker(9) > 6o 4 1)(Q), with 0T, (f)=fon Q and

|7;(f)|k+/1,n§ck.alf|k,v

for A<land k=1,2,....

Because f is already defined in a neighborhood of Q, we can construct a
solution operator analogous to the one in Theorem 4, but with JEf=0 in
a smaller neighborhood of Q. Then the regularity of the solution is given by
the Bochner-Martinelli integral. The other term is ¢ *-smooth up to the bound-
ary.

Before coming to the proofs I want to thank Anne-Marie Chollet and Jaques Chaumat from
Orsay (Paris) for their patience in many discussions concerning their articles.

2 Generalization of the Skoda estimate

Let ¢, yeW? nDom % nDom %* and set

2¢, ) =(L" ¢, LW+ (L1 ¢, L1 Y).

First we have to estimate 2(x, x).

Lemma 1 Let x=(a,b)e W' nDom %, nDom . Then the following estimate
is true:

2(x, x)zt | x[>+(1—~1/a)[b]13.



444 J. Michel

Proof.
1£()1?=dal}+| Ta—0b|3,
| %55 (x) 1> = | 8¢, a+ T*b|3.
2(x,x)=0ali+ 0t al}+10bl3+ | Tal3+ | T*b|3
+2Re(F¢, a, T*b), —2 Re(Ta, db),.
IT*b|}=(b, TT*b),=(1+1)| b]|3.
(G}, a, T*b), =(a, 0 T*b),,
(Ta, 0b), =(a, T*3b),.
Hence

2(x,x)z|0alli + 0% all +(1+1)[blI3+2 Re(a, [J, T*] b);,

with [4, B]:=AB— BA.

Set Ty: =(/1+0)"'T, T¢¥ i=()/141)" ' T*. In his paper Skoda used the fact,
that b is holomorphic. But instead of the Skoda term dT;b in our case we
have [d, Tg¥]b for a not necessarily holomorphic b. Since the result is the same
we can take over the Skoda estimate. Note that in the following calculations
the Kohn weight function ¢|z|* plays the role of the additional plurisubharmonic
weight ¢ occurring in the Skoda weight function. There is also a difference
in the meaning of the function g!

Following the ideas of Skoda we obtain for the crucial term

2|Re(a, )/ 1+t[0, T&1b)y|=2|Re()/1+1 a, [J, Tg] b),|

i ewwa ze-de_
k=

1
< 2 ,-02 -1 .
= [1bl%e dV+oc(l+t)g g a2, i

[o]

i 1

Here d V denotes the volume element and

a;,= Z aide_k, fOI' i=1,27'-"n

k=1

For aeDom 0}, » Dom ¢ we need the Hérmander estimate for i=1,...,n

1313 aliz] ¥ 5(p1 ey
2

,l=1

This yields

°@(:c,ac)g(1—§+t)||bn§

NI T P

P4 62,,8‘ k

2
a; ]e_“"dV.

Because of
2

626,

0% log(g)

=(m—1Da(l+t) m—== 92, 03,
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and the Skoda estimate [17, (2.12)]

L 0% log(g) P
n—1)a et
( o 2, 0z, 0z

ik,0=1

o d _
Qi A 2 g e? 5;(((; —z) e %) a;

1
we obtain

1
:z(x,x);r||an%+(1—;+t)||b||§.

Now the lemma follows for xe Dom % n Dom %*.

Remark. t will be large for our applications, so we do not need a> 1. For sake
of simplicity we choose

a=1.
We need the following notations

D;,x=%2ﬁr+gzr 5',
A =% L+ 4F 4.

An easy calculation shows for x =(a, b)
Ag,x=(0g, a+[3, TX1b+ T*Ta, g, b+[T, 3t J a+ TT*b),
and Dom 4, , is given by the set

{x=(a,b)eW'|a;, beDom &* nDom J, da;, 0be Dom &*, 6*a;, 7* be Dom J}
={xeW!|xeDom %, nDom %*, & xeDom %*, %} xeDom %}.

With this definition 4=4,, becomes a densely defined self-adjoint operator
on W'. The main part of A is given by n+1 copies of the usual unweighted
complex Laplacian [J. It follows, that the system of 4, , is elliptic.

Convention. Let A and B be two quadratic matrices, where the entries are differ-
ential operators of degree r and s. Then in general it is not true, that the degree
of [4, B] is smaller than r+s. But if one of the matrices has a scalar form,
that means, it is a multiple of the unit matrix, then we can apply this rule.
The commutator of two scalar matrices is again scalar. This will be important
in the following considerations.

3 A priori estimates

Lemma 1 shows, that 4., is injective on its domain of definition in Wi It
follows, that there exists a unique bounded operator A" =.A4; - W' - W', with

Im /" =Dom 4,
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and for all ae W', y e Dom %, n Dom %:

2(N oY) =(, ¥)
A;'! JVzidWl,
V,th{,I:idDomA‘

Letae W' n%*(Q). Suppose we are given g€ W' n 4 (Q)nDom % nDom %,
with
2(h, ¥)=(x, ),

for all yeDom ¥ nDom %, and fixed { and t. We want to show, that for
a given nonnegative integer s there exists a constant K;>0, such that if t> K,
then the following estimate is true

const.(t)

||¢|IS§T(E)2—S—||“||S-

The estimate is trivial for s=0. For the other cases we follow the ideas of
Kohn in [9]. But in our situation it is crucial, that we will be able to choose
the constant K independently of {! Let Q be given by a smooth defining function
rwith Q= {r <0}. Let PebQ2 be a boundary point, V a sufficiently small neighbor-
hood of P with a special boundary coordinate system

I],tz, ...,tz,,_l,r.

ty, t3,...,t5,—; are the tangential and r is the normal coordinate. If « is a
(2n)-tuple of nonnegative integers we denote by

olal

D*=(—i)* ;
(=) atyr...0t%r=1 0rm

For a,,=0 we write Di. We shall apply these operators to forms and matrices
of forms componentwise. If ¢eDom LN €< (Q), then DjpeDom ZF. Let ¢
be a ¥°-smooth function on ¥'n Q2 with compact support in V.

Definition. A finite sum of terms

Cr—2za .. AL, —2J"(Cs — )" . AL —E P
g(z, 0y ’

Mz,

where 1 is a €*-smooth matrix on @ x (U\Q) xR, and i,, j, =0, will be called
of type o7, k=0, if

2a—(iy+...+ip+js1+...+j) Sk
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A scalar matrix of type 7, is denoted by Z,. A diagonally acting differential
operator of order s, which is independent of { and ¢ we denote by U°. The
following formulae are immediate

AR r)|§%,
go =5*+.ﬂ1=U1+ﬂ1,

(£, D*]=[0* D+ A 1 jq=U+A  +1a-
For %, the formulae are similar.

D= Y A,Di  Ao=D,=U'==l
ﬂ+ulﬁ:|al

Lemma 2 For each nonnegative integer s and real positive number t there exist

constants K, K, K2, such that the following is valid. Let ae W!'n&>(Q) and
peW' %= (Q)nDom ¥ nDom £* be given, such that for fixed { and t

2(¢,¥)=(0.¥)

for all yeDom % nDom &*. Let @ be a smooth cut-off function supported
in the neighborhood, where the tangential derivatives are defined. Then we have
the following inequality

| = i
2(¢Df §, oDE P)SK, [ DI+ Ki(M) ¥ 91+,,||¢>|Is2—p+K3(t) b3 Wllallf-p,
p=1

with |Bl=s, 0=06(0)% K, is a constant depending on s, whereas K!(t) and K2(t)
are constants depending on s and t. None of these constants depends on o or

4

Proof. We shall use the following convention to shorten the notations. The
calculations will be of that kind, that for any term which contains %3* there
exists a twin term of the same kind with a %, instead. We shall only write
down the %*-terms and the symbol @ then indicates, that we have to complete
the formula by the corresponding %;-term.

We show the lemma by induction over s.
s=0.

2p ¢, 0 d)=(L* 0, L 0 ) D
= (L &, L 9> ) (L 6. [0, L5 0 )+ ([0, L] ¢, L 0 ) D
=(px 0d)+(LK" ¢, [0, £ 9)
+ Lo, L1 1+ ([ L, 0] . L 0 ) D
=W, + W+ W+ W, .
Wi Zell@l®+Cellel?,
for small ¢ >0. Analogously

W+ Wil <e2(0 0, 0 9)+Coll 17,
|Wsl=cliéll”
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For ¢<1 the conclusion follows.
s=>s+1:|Bl=|(By, ..., B2 =5+1.

2(¢Df ¢, 9D} $)=(pDf @, 9D} §)+(LL*, 0 DE] b, %* 9 Df §)
+(Z* &, [(9DY)*, L1 o DEP) D
=W+ W,+ W, P.
IVVl|§C||¢”s2+1+C”a||sz+1,
|Wa|<e2(@Df ¢, 9D} ¢)+C, Wy,
with
Wor=[%*, o DF1 ¢ 1>
Now
[Z*, ¢Df1=[0% ¢Df1+[#,, pDf]
=[5*,¢D£]+ z A 141y D .

[viz1
[7I=s+1-]v|

The first term on the right side is of order s+1 and independent of { and
t. So we obtain
Walsclglivi+ Y o4, D'¢|?

v21
lyl=s+1—v

Scldlint T o gléli ..

v21
l7l=s+1-v

It remains W;.
W, =(%* ¢, X oD} ¢),

with
X =[(pD))*, Z1.
s+1
(pDfy*=(+D,+oA Y o= Y A DE o,
[vIz0

with o/,= +1=const.
Hence W3 =A+ B+ C, with

A=(ZL . [[(DY*, 0], %] oD} ¢),
B=(Z* ¢, Lo, L*1(DY)* o Df ),
C=(pZ* ¢, [(DY*, £*] 0D ).
Set
Y =[[(D))*, o], L],
Y, =[[[DH* 0]. %1, ¢l.
Then
A=(pL* ¢, Y, D} ) +(L* b, Y, Df §).
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Y, is much easier to handle and gives better estimates than Y;. So we concentrate
on the first term.

((P%* ¢9 Yl Dg¢)= Z ((P%* d’:Dg["'[Yl’Dz‘]ngz]’"'7DgP] ng’)

uvvcp
luf+p=s

= Y (DY*oL ¢, SD;d),

uvvcp
lu|+p=s

with
S=[...[Y;, D3], D37, ...1, Dpel

and e=(0, ..., 1, ...,0), such that u+e < f.
Now it is easy to see, that

Y=U+ Y o,..D"
k=1
lv| +x=s

S=U+ Y )i, D"
k21
lv| +k=s

So we have to estimate terms of type (|u|+p=5):

(DY* oL 0, U o+ 3 Aisxs, D7)

|w|:x§=ls+1
=( Y A.DjoLro, U d+ Y Aises, DY)
|v|1;i|u| |w|-fx==ls+1
(do—_‘UO)'
Set

Al :(‘dn DE (P%* ¢’ Us+ ! d))’
Ay =(Ay Dy 9 L5 b, 1 114 DV D),

with 7=0, n+|v|=u, k=1, |w|+Kx=5+1, [u|+p=s, L=U".

1
|A1|é01|¢llf+1+§;lll)§¢%*¢||2-
D} o %* &< I[Ds @, £31 612+ LX (D5, 9] & I° + | Z* Dy @ 1
|
Zclglify+e® X bmllqbﬂﬁpﬁﬂ(prW,quZd))-

220

Hence

Sl +c) T gy 18122+ T 5 20D 9Dy 9)

120 20
lv| +n<s

A2=(°Q¢nng*¢aM1+x+pr¢)+ Z (ﬂn+l+}.Da¢9dl+x+pr¢)s

At|a|=|v|
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Wlth do == UO.

(@) |v|=s=|u|=s, t=0, p=0=

(.2 Dz’ig*di,&fux D" ¢) |<C”¢Hs+1+01+x “¢”s+1 K*
(b) v[<s

c(t
I('dnDga’*¢"52{1+K+pr¢)|<5n+—p(+),}+_1”¢“s+l p— 1|:”¢”s+l -x

cl(t
R U NI U N PO S
9 0

cl(t
[P AN L L S YR ') W

c(t
S n+p(+)j.+l ”¢”s n—A— p x(+)1 ”d’”s+l =K*
0 0

As summary we have got

AISCIgIZ 1 +c®) E grz | B3 p+e® T 2(pDid, oD} )

p21 n=0
lv|+r<s

Now we estimate term B.
B=(%* ¢, U°(eDf)* Df ¢)
We only look at the worst, case, that is
B*=(%* ¢.(¢pDE)* U°Df ¢)
=(¢Df £* ¢, U°Df ¢)
=([oD}, %] ¢, U° D} ¢)+ (% 9 Df ¢, U°DE $)
=B} +B%

|B3|=22(pDf $, 9Df $)+C.[1$1124 1,
|Bf|Scliglis i+ I[eDE, L1 o112

The second term on the right we can handle in the usual way and obtain

|B|<£’@(¢Dﬂ¢ (PD€¢ +C“¢”s+1 +C(t) Z 91+p”¢”s+l —-p*

p21

Now we come to the most complicated and most tedious part, namely case
C. Elementary commutator operations give

C= Y DLk ¢.2,0Df9),

lul +p=s+1
p21

with
Z,=[[...[(D5)*, £&*]1, (D3)*], ..., (Dye)*].
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Hence C is a sum of terms

C.,=(Dy o %+ &, Z, 0D} §)
=(Di 9 %5 ¢, Z,[0, D51 DL~ ) +(Ds 9 L5 6, [Z,,, D1 9Df ™ §)
+((DY)* Dy 9 L $.Z, 9D ¢)
=C] +C2+C3,
with e:=(0, ..., 1, ..., 0) (i-th component), such that q+u;<p;. The case C,is

much easier to handle than the other terms, so we skip over it. Evidently we
have

Zp=U1+dl+pa [Zps g]:U1+d2+p'
Set C2=C21 +C22, Wlth

Cy =(Dy 9%+ ¢, U D}™° 9),
C22=(DE(P%* ¢a d2+pD£—e¢)’
lu|+p=s+1,p=1.
1
|C21|§C||¢||32+1+C(t) Z '91—+p”¢||s2-—pa
pz1
for arbitrary u and

1
ICalScl@llZes+c(® X Wllfbllf—p,

pz1
for |u|=s.
Now let p=2:

Cy2=|(4, Dy 9 L5 b, o4, DY §)|

clt 1
§—9(2—)||¢||52+C(t)zw+_x”¢"sz+1"’""
This yields

s+1

1
|C2|§cl|¢||f+1+c(t) Z W||¢“sz+l‘p'
p=1

It remains case Cj.
Cy=(Dy+ ) Dy p £ ¢,(U' + ., 1.,) oD}~ &),

Wlth |u|+p=S+1, pgl, u+e§ﬂ. NOW C3=C31+C32+C33+C34, Wlth

Cy,=(D; Dy 0 %5 6, U @D} ™° ),
Cs,=(Di Dy 0 L5* ¢,.4,+, Db §),
Ci3=(#, E‘P%*qﬁ’Ul(DDg_ed’),
C34=('9¢1DZ(P=%*¢,&(1+p(PDg_e¢)-
IC3|SC 1112+ [DF ™ 0. L*1 1

+e| ZHDL, @] bl +ell L oDy |12
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The terms with the brackets can be estimated in the usual way. e+u=§ for
|u|=s, so we obtain

1
|C31,§C”¢”s2+1+c(f) Z W”¢||sz+1—p

pz1

+c(t) ), 2(oDy b, oDy $)+e2(0Df b, 9 Df ¢).

lul=s
Case C;,: If |u|=s, then p=1. Hence

G.()

Csals=53

Il +elDg* o L5 ¢ 2.

The second term on the right we treat like before.
Now assume |u| <s. Hence p>2.

c(t
(Caal S 4o ID5* 0.2 411141l

<O I[DE™ o, ZF] $17+1 L IDL, 0] 612)

Sgo-1

c(t)
fr-1

c(t
+ e | L D5 12+ D 112

Only the estimates for the first term are not immediate:

Dy o, £81=[D;*",0*]+ Y sy D™
|w|+x>=|1u|+1

Consequently

1 1 1
105 0 B9 S0 G 16122+ T el flhean,).

k21
So we obtain

ICsal=clldlds +e2(oDf &, 9 Df §)

+c(t){z PP

P21 lu| +p=s+1
p21

1
3 20036, 0D10)}.

C3; we can handle like Cj,. In the left factor of the inner product of Cs,
there is one derivative less than in Cj,, but a factor .« more. The factor on
the right side of the inner product is the same as in C,. The same argumentation
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is valid for C5, and C;,. Hence collecting all terms and choosing & small enough,
we have the result:

1
2(oDf b, @D P)SclPlFs+e(t) 2 W\I(bllfn—p

pzl

1
+e@) X o 2(oDs b, D} p)+cllallds .
lul+p=s+1
p21

Using the inductive hypothesis for 2(¢ D} ¢, ¢ D} ¢) we obtain the desired result.
Lemma 2 is therefore proved.

Lemma 3 With the same hypotheses as in Lemma 2, there exist for each nonnega-
tive integer s constants cq, c. (1), c2(t), such that

1 1
ledlzse, Y IoDEdI*+ci® ¥ @12, +c0 T g5 lalipm.

1Bl=s pz1 p20

Proof. Obviously it is sufficient estimating | @D“¢ |, with |u|=s. We apply induc-
tion over s. The cases s=0 and D*= Dj, are trivial.

Let D“=% D}, |yl=s—1. In the sequel we denote a matrix of functions,
which is independent of { and t by U. Because J+0* is an elliptic system,
the boundary of Q is noncharacteristic. Therefore we have locally

|

=Ud+Ud*+ 5 UD;.

le]=1

D

r

This yields

| >

=UZ%+UZL+ Y, UDj+o.

lol=1

D

y
Applying this to ¢ D} ¢, we obtain

0
5, @Di¢)=UZ ¢Dyp+UZLF 9Dy ¢+ Y, UD;oDj¢+s/ Di¢.

lo]=1
This equality implies

C(t
loD*$ 2 Sc2(0D} b, oDid)+e T loDES I+ 1.
181=s

Lemma 2 yields the conclusion.
Now let
ak

p=2
or*

thyl'ﬂ:s_k’k;z
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The unweighted Laplacian is a determined elliptic system, so there exist matrices
U, with

ik 0 0

——==U0+ ) UDj+ U—Di+U—+ UD;.

or Wiz |u|Z=1 o™ or IVI}QI ’
Because of

0 g
Ag,,=D+ﬂIE+ Z MlDb-i_ﬂZ
Ivl=1

we have

2
‘;r‘f=Ua+ Y UDj¢+ ¥ U%D#M%%—% 2 hDyp+st ¢

la] =2 lul=1 =1

Differentiating this equation and using induction gives

¢ dia d
L 4% Us-+ ¥ UDfo+ U—Dio
or fgkz—z ar le;s Iul=zl;—1 or "
0
+ X ADj¢+ Y Ao Di¢.
|u|l==k1—i |u|=lk=—1i—l

Applying Dj and using the inductive hypothesis, we obtain the conclusion of
the lemma.

Lemma 4 Same hypotheses as in Lemma 2. For each nonnegative integer s there
exist constants K and C(t), such that for t= K, we have

191,552 al..

Proof. The assertion of Lemma 2 is also valid in a neighborhood ¥ which
is contained in the interior of Q. Here Df can be replaced by a general derivative
DP, |B|=s. This is immediate from the proof. Actually there are better estimates
because of interior regularity, but we cannot use them.

So let {¢;} be a partition of unity of &, the supports chosen small enough,
such that the above lemmata for ¢ = ¢; apply. Then we have

tlli<tCs Ylloi gl

SICY.C T [0 DEpIP+HETCHD T LIl

i 18]=s i lel 21

1
Y glali,mi

lplZ0

+1tC? Z Ci1)
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Now Lemma 2 and Lemma 3 yield

HBIZSR, T COIPITIO B, gl $12, 4830 T g5l

pz1 p20

We choose K,= K, C? Y Ci+ 1. Then we obtain

2 1 ~ 1
lelZ<Ci X -H‘mll¢\13-p+cf(t) 2 yHallf—p-

pz1 pz20

The lemma now follows by a simple induction argument over s.

Lemma 5 Same hypotheses as in Lemma 4, t=K,. Then for each nonnegative
integer s there exists a constant C(t), depending on t, with

C(t
125 St 1.2, S+ 1% 2 31,2 SD o),

Proof. The proof is a simultaneous induction over s for & ¢, % ¢, L L @
and #* & p=0—% L5 ¢.

We use the same local set-up as in the proof of Lemma 2. Because of the
ellipticity of the system J+ 0* we can express

=UZ* +U%+ ) UDj+4,

lo]=1

9
ar

when applied to smooth elements of Dom £* ; nDom LW’ v=0,1,2. Here
we denote by U matrices, independent of { and ¢, which pick out the correct
coefficients of the operators. Higher normal derivatives we can reduce by the
formulae given in the proof of Lemma 3 to derivatives, which contain at most
one normal direction. Therefore it is easy to see, that it suffices to only treat
purely tangential directions. Let ¢ be a cut-off function as in the proof of Lemma
2 and let D =D}, with |y|=s.

loD L ¢lI><I[@D, £&]1 ¢ 11>+ 2(¢D ¢, 0D ).

Evaluating the Lie bracket and Lemma 2 gives the conclusion. The same proce-
dure works for .

X*:=(D% % N o, D L5 N 2)
=A+B,
with
A=(D, %] %+ N 0, DL L5 N a),
B=(% D%} N a,D% L§ N ).
|A|SeX?+C,|[D, %] L NV al®
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The second expression can already be estimated by the first part of the proof.

B=(%D%¥ N a,Do)— (% DLF N 0, DLF L, N o)
=BI—BZ'
B, =([%, D] £* N o, Do)+ (D% Lt N 2, Da).

Therefore we can estimate
|Bi|<eX?+C,(|Datll*+ ([ %, D] L5+ A a|?).

The second term we can estimate by the first part of the proof. The second
factor of B, is element of Dom %*, so

B,=(DL* N o, &5 DL L N )
=D& N a, ZF[D, L] % N a)
=(% DL No, [D, £*]1 £ N )
=%, D] &* N o, [D, L] L N ) +(DLy L N o, [D, £F¥] £ N ).

Consequently we obtain
|B2|<eX?+ C,(I[D, £¥] £ N al* + | [%, D1 L+ N al|?).

So if & is chosen small enough, the proof goes through for every expression.

Now the a priori estimates are finished. It is well known, how to achieve
Theorem 1 by elliptic regularisation. Because in our case the kernel of Aey
is trivial, the constructed regular solution for A, ¢ =0 is necessarily the canoni-
cal solution. Theorem 1 is therefore proven.

4 Regularity

So far we have treated the point { as a fixed parameter. It is our aim, however,
to construct a barrier form, which is regular in z and (.

The domain of definition of A, is independent of the weight function. An
explicit calculation gives the following representation

" 0]
A, =006+ 48,4
.1 0%

From this independence it is easily seen, that the operators {0/0z}}; are defined
on Dom A, (compare also [7]). We shall study the following situation. For
agiven s and t > K

AW > Dom A, ,n W,

is a bounded operator because of Theorem 1. On the other hand
AC-' ./V‘ = idwl .

The first equation shows, that the dependence on { and t is given by the factors
< and «f,, whereas the differential operations involved are constant.
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So let
‘{U/Q - W né*(Q)
L = ac(')
be a ¥*-smooth mapping. Let Df be a differential operator of order k with
respect to {. Set
'})c = ;M O(C 3
Then we obtain
D} ¥ =—N (D Ay, N+ N'DE.
The second term gives a differentiation of « and is therefore benign. Inductively
the main term of Df A" is given by
Y Y a(ky,....k) N (D¥ A ) N ... N (D Ay ) N,
r<k kiz1

kyi+...+k.=k

with constants a(k,, ..., k,). Here D} A means D; applied to A. The final estimates
for the leading term will absorb the remaining terms.

Remark. A priori it is not clear, if the above formalism is applicable. But if
one works carefully with small variations h of { in a neighborhood of a given
{o, one can see successively, that everything goes through. For example, the
continuity in the {-variable, with respect to Sobolev norms in z, follows from
the identity

Ye+n— ;="V&.r(ag+h_ag)_‘/VC.z(AC+h,x_A{.t)y(+h

and Theorem 1. Here we loose one derivative with respect to z.

Because of
Diy, = ) E: . const.(ay , a,)(D* A)(DE* o)
we obtain o
I1DZ yells=cs ; (Dg* ANDZ )l
L, +Z Y kgl | A (D¥ A) N ... N (D A) N (DG D) 5.
ay+az=arsa 2
kit tko=ay

Now

" 0
D’E Ag,z= Z 'dl+k52—_.+d2+k'
ji=1 J
We suppose t = K, ,. From Theorem 1 we conclude inductively

|AD2 AN ... N Dl AN (DE2 )54

| DE e lls < c(t) Z Z XETTET )

ay+az=a kiz 1 6

r<a; ki+..+tk.=a;
“ DEZ a ||s+r
éc(t) Z Z 52s+r+k|+(2(s+l)+k2)+...+(2(s+r'—l)+k,)+Z(s+r)

+a= kiz 1

a‘r£:1 ak1+..:+kr=a1

1

IIA

c(1) Z §ZsF2¥an(@+1-2 ||D22a1|s+,,,-

aytax=a
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With (s, a):=(2s+2+a)(a+1)—2 the first part of Theorem 2 is shown. The
proof for f, = %* A o, goes along the same line.
%* = 5* + LSﬂ] 3
D} %=t +,b>0.

1D Bllssc Y I(DE LDyl

by +ba=b
<c Z ”ﬂHbI(DEZ}’g)”s'FC”g*Dlg’)’g“:
by +ba=b
1
Sc(s Y WHDZWHI#||5*D?v;lls}-
1+b2=b

Now D} 7, is a sum of terms
X=JV(D’C“ A0 JV..../V(D?'AE',)./V(DZZ ),
with a,+a,=b,r<a,, k,+... +k,=a,.
0* =L+ o, .

Because of Theorem 1 we obtain for t>K_,,

1
[£* X[ Ze(r) 3, WHD?WIIH,,,.

ay+a=b

Hence

1 1
IDZ Bells <)y Y Wllszhllﬁ > WHDE’%HHM}

1+b2=b by+by=b

1 b
Sc@ ) WHDgz U5+,
by +by=b

Theorem 2 is therefore proven.

5 The barrier form

For a fixed t we want to solve the system of equations

% B=00,)/1+0eW".

The canonical solution is given by

L VO, )/ T+1)=(w, 0)e WP,
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Hence w=w(z, (, t) solves
0, w=0,

Z Ci—zdwi(z, G t)=1.
=1

This barrier can be used, for large t, constructing integral kernels. However
it is more convenient to get rid of the dependence on t. This can be achieved
by glueing together the solutions having different regularity properties. The
proof is almost a copy of the proof in [10]. Therefore we give only a sketch
here. Let r=1 be a given integer. By Theorem 2 there exist an increasing sequence
0<Ry<R,<..., and for each nonnegative integer s, constants c(s, r) and a
solution w; of the above system, with

Dbl <S50 for ks

When we apply the Sobolev lemma, we obtain

c(s, 1)
Rsin

1D wie S

for k<r.

+1

Now our aim it is to construct a solution w with

c(s,r)

k
lDC Wlsg 5Rs+n+l

for k<r.

As already mentioned above, one can proceed in the same way as in [10].
It is sufficient to construct a sequence (W,); of solutions, such that for all {

|DE(Bj4y —W)|; 277 for k=r.

Then evidently
w=wW;+ Z (Wt y—Witv—1)

v=1

solves our problem. If W, ..., W, are already constructed, then we have to
correct w,, by a term V,, such that for all {

|Df(wm—l/8—wm_1)j§2""“ for k<r.
Here V, has to be a solution of the system
0. V.=0,

Y Gi—z) V2, O)=1

i=1
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With a partition of unity (p,) and local translations ®*(z)=z+¢a* (see [10])
we set with h=w,,—W,,_,:

V@) =2 pu(2) h(®L(2) - 4.(z,0).

Therefore the unknown term 4,(z, {) has to be a solution of the system

0: 4,(2,0)=} 0. pu(2) h(@4(2) = }. 3, p, (2)(h(PL(2)) — h),

3. (=2 405, D=0

The terms on the right are smooth up to the boundary in the z-variable. The
second term on the right shows, that we can make it and its derivatives in
¢ up to order r as small as we wish in terms of powers of 4({), when we let
¢ depend on {, for example

e=co()"

with constants R and c, R large. Then by the #-complex a solution with the
desired properties 4,(z, {) of the above system is given. Because of

Wm_wm—l_ I/E=h—— V;:=Z pu(h(¢g)_h)
u

this difference can also be chosen as small as we wish.

For our solution operator 7, we only need to choose r=1. The proof of
Theorem 3 is then obvious.

For the proof of Theorem 4 we proceed as follows. Let

_0ll¢—z|?

L U i
I1g—z||

be the Bochner-Martinelli barrier form and let E: €°(Q)— C%(U) be a Seeley
continuation operator (see [13]). We set do,1={(4o, A1)€R?|Ag, 4,20, Ao+ 1,
=1}, 40={0}, 4,={1}, S=bQ, R=U\Q,

’7=/10 W0+Al Wl.
For g=0, ..., n we define

Dng(2, 8, A= g1 A((Op+dR) )"0 A (D, )5,
with

=2mi)""(— 1)sa- 12 ”‘1).
cug= (i) (= 1yt ("

For fe%{,,(Q) set
Rq(f) = j (Ea-f_ B-Ef) A @n,q(z: C: A‘)’

R x4,

L= | (EF-OENADyg1r(00— | EfADyg-1(2,0, ).

R X A9,y Ux4p
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The last term is the Bochner-Martinelli integral. EJf —dEf vanishes on @, so
all integrals are well defined. w is holomorphic in z. This implies R,=0 for
q>0. Set

X =R, (N)+TT,(N)+ Ty+1 (3 ).
We show, that X = f on Q. The following Koppelman formula is well-known
0, Dy q-1=(—1)U0+d;) Dy,
Consequently we have with g:=EJf —0Ef
0. | enBug=(=1)" [ gn(O+d)D,,

R X Ap.1 R x do.1
— I (55"'" dl)(g A @n.q)+ j (a-( g) A '@n.q
R X 40,1 R x 40,1
= _‘. g @n,q'— I AN gn.q
S X 40,1 R x4,
+ [ gADuyt [ 08A Dy,
R x40 R x 40,1
This implies
X= [ grn2,,~0( | EfnZug)— | EfND,
R X Ao U x40 Ux 49
=—- 5 (a-;+di)(EfA9n,q)— j 6-f/\‘@n.q_a-( 5 f/\gn,q—l)
R X Ag 2% 4g 2x 4o
= [ fADug— | U ADug=0( | [ADpy-y).
Sx 4o 2% 4o 02 x Ag

The Bochner-Martinelli formula gives the conclusion. Therefore Theorem 4 is
proven.
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