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0 Introduction

Let M be a compact manifold and let y,: M > M be a C* flow acting on
M. The flow y, is said to be an Anosov flow if there exist constants C>0,
0 <A< and subspaces E}, E4, E, of T, M, VpeM such that:

(a) ES@E“®E,=T, M
0
Ep‘_‘a (l/’t(p))r=0 and

D‘prlE;:Es.p,(p)» le|E§=E;n(p)
() I1DY,()II=CA|v|,Vt=0,VveE;
IDY_ ()] SC2|o], Y20, VoeEs,

Geodesic flows of manifolds of negative curvature are well known examples
of such flows [1]. Recall that given a Riemannian metric g of M, the geodesic
flow ¢,: Ty M- T; M — with T; M being the unit tangent bundle of M — is
defined as ¢,(p,v)=(y(t),y'(t)), where y(t) is the unit geodesic of M with initial
conditions y(0)=p, ' (0)=wv.

A Riemannian metric of M has no conjugate points if there exists pe M
such that the exponential map exp,: T, M - M is non-singular. Let B(M) be
the set of metrics with no conjugate points of M, and let A(M) be the set
of metrics of M whose geodesic flows are Anosov flows. The set 4 (M) is open
in the C* topology for every ke N as was showed by Anosov [1]. On the other
hand Klingenberg [8] proved that A(M)< B(M), so if M admits a metric whose
geodesic flow is Anosov then the interior of B(M) in the C* topology is non-
empty for every ke N. The main result of this work is the following:

Theorem A. The interior of B(M) in the C? topology coincides with A(M).
This statement is straightforward from the following result:

Theorem B. Let (M, g) be a Riemannian manifold with no conjugate points whose
geodesic flow is not Anosov. Then, given ¢>0 there exists a metric g, — which
is conformal to g — having conjugate points and such that

g —gellc:<e.



42 R.O. Ruggiero

The main idea of the proof of Theorem B is the fact that Eberlein’s characteriza-
tion [4] of metrics in B(M)— A(M) is not an open condition in the C? topology
for the set of metrics with no conjugate points. In fact, we show that if
ge B(M)— A(M) then there exists a geodesic y (which is just the one given in
Eberlein’s theorem [4]) such that for every >0 there are 7' >0 and a non-trivial,
sectionally C? vector field X:[—T,T]—R" defined along vy with
X (—T)=X(T)=0 such that
1[—T.T](Xa X)<e

where I, is the index form of y. From this fact we deduce that performing
arbitrarily small perturbations of g in the C* topology, augmenting the curvature
along a compact segment of 7, we get geodesics of those metrics and non-trivial
vector fields defined along them having both two different zeros and negative
index. So from Morse theory we conclude that those metrics have conjugate
points. We do not know if Theorem B holds for any C* topology with k> 2.
The obstructions appearing on these cases are similar to Pugh’s closing lemma
problems [11]. Indeed, the metrics g, in Theorem B are obtained from local
perturbations of the metric g. Since the set of recurrent geodesics in the unit
tangent bundle is of total Lebesgue measure, we must be very careful in control-
ling the intersections of y with the support of g, in order to guarantee a “global”
increase of the curvature along perturbations of 7. This control is achieved
by choosing very special shapes for the supports of the g,. This is the main
step toward the proof of Theorem B. And it is just at this stage when we loose
some regularity in the proximity of the perturbations g, to g. It is interesting
to remark that if the geodesic y is either closed or non-recurrent, then Theorem B
holds in the C* topology for every keN. In the first three sections we shall
construct a family of perturbations of g satisfying certain particular properties,
and in Section four we shall prove Theorem B. I am specially grateful to the
referee for his useful remarks and suggestions concerning this work.

1 The equation x” (f)+ K(?) x(1)=0

The purpose of this section is to show that the property of having conjugate
points is an open property in the set of metrics of a given manifold. We start
by recalling some canonical features of Morse theory of Riemannian manifolds.
Given meN consider the set of pairs A(m)={(h, H)} — where h: R"XR"—>R
is an inner product and HeR™ is a symmetric linear operator with respect
to h — endowed with the induced C° topology. For a given continuous curve
H (t) of linear operators of R™ we say that the equation

x"()+H(t) x(1)=0

has conjugate points if there exists a, beR, a#b, such that the equation has
a non-trivial solution J (f) with J(a)=J (b)=0. We say that a and b are conjugate.

Let C2([a,b], R™ be the space of continuous, picceweise C? functions
X :[a, b] = R™such that X (a)=X (b)=0. Associated to each continuous function
c: [a,b] = A(m), c(t)=h(r), H(2)), we define the bilinear form

It,[a,b} : Ci([d, bl Rm) X Ci ([a: b]’ Rm) =P R
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by the following formula:

b
Ipam(X,Y)=—[h(O(X" (1) +HX (¢), Y(1) dt +Lh(E)XT ()= X' (), Y(d)

where t;, i=1,2,...,1 is the set of points on which X(¢) is not differentiable
and

X’*(t)=slim X'(s), X' ()= lim X'(s).
i -t

We shall restrict our study to the subset I' of continuous curves in A (m) satisfying
the following two properties:

(1) Forevery c: [a, b] —» A(m) belonging to I' the family of index forms associated
to the restrictions of ¢ to each [d,e]<[a,b] is a family of symmetric bilinear
forms.

(2) For every ccI there exists e=¢(c) such that the index form associated to
the restriction of ¢ to every interval [d, e] of length less than ¢ is positive definite
in the set C2([d, e], R™).

In these conditions the Morse theorem holds in I, i.e.,

Theorem 1.1 Let cel” be a continuous curve, c(t)=(h(t), H(t)) defined in an open
interval. Then the equation x"(t)=H (t) x(t) has conjugate points if and only if
there exists [a, b], a=b, such that the form I, is degenerated in C3([a, b], R™).
For every t>a in the domain of c the index of 1., (ie., the subspace of
Ci([a,t], R™ on which I, (4, is negative definite) is finite and if t>b is close
to b it equals the dimension of the kernel of I. 1, ;.

Remark that Theorem 1.1 implies that for every continuous curve c=(h, Hyel'
the fact that the equation x”+Hx=0 has conjugate points is equivalent to
the existence of a, 7, a<t with the property that the form I, 5 has non-zero
index. Denote as | ||, the sup norm for functions. From the upper semicontin-
uity of the index in the set of quadratic forms and Theorem 1.1 it is not hard
to prove the following fact:

Corollary 1.1 Let c: R— A(m), c(t)=(h(t), H(t)) be a continuous curve in I" such
that the equation x"(t)+ H(t) x(t)=0 has conjugate points a=+b. Then for every
D >0 there exists >0 such that if a(t)=(q(t), Q(t))el satisfies

(1) [Iq(®)—h@®)l, <eVtela, b].
2 [[HN|,=D and [|Q()—H(r)ll,<eVre[a,b+1]

then the equation x”(t)+ Q(t) x(t)=0 has conjugate points a, b(a), where b(x) is
close to b.

From Corollary 1.1 we deduce the persistence of conjugate points under small
perturbations of metrics. More precisely we have:

Corollary 1.2 The set of metrics with conjugate points of a given manifold is
an open set in the C* topology for every k= 2.

Proof. Let g be a metric with conjugate points of a manifold M. Let # be
the associated curvature tensor, ie., Z(X,Y)Z=W WZ-VWWVZ+Vxy, Z,
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where V is the Levi-Civita connection of the metric g and X, Y, Z are C®
vector fields of M. There exist a geodesic y(t), and real numbers a%b such
that the equation

x"(t)+ K(t) x(t)=0

has conjugate points, where K(t): N,y — N, is a family of linear operators
defined in the subspace N, of T,, M which is normal to y'(t) as follows: let
{e;(1)}, i=0,1,2, ..., m be an orthonormal parallel frame defined along y(t) with
Y (t)=eo(t), and let K;;(t)=g(Z(y (t), e;(t))y'(t), e;(t)) Vi,j+0. Then K(z) is the m
xm matrix whose entries are K;;. It is clear that the curve c(1)=(g(t), K(t))
belongs to I'. Let g be a C* perturbation of g, k>2. Let 7(t) be the geodesic
of h with initial conditions 7(0)=7(0), 7 (0)=1'(0) and let {¢;(t)} be the orthonor-
mal parallel frame defined along 7(f) with initial conditions &;(0)=e¢;(0) Vi. Let
K () be the curvature operators constructed as above using {&;(t)}. If g is close
enough to g it is clear that 7, Z and q(1)=(g(t), K(t)) will be sufficiently close
to y, Z and c(t)=(g(t), K(t)) in a way such that Corollary 1.1 applies. So the
equation x”(t)+ K (t) x(t)=0 has conjugate points. []

2 Conformal metric changes

In this section we shall deduce some technical lemmas concerning conformal
deformations of a given Riemannian metric. Let (M, g) be a complete Rieman-
nian manifold of dimension n and let y(¢) be a unit geodesic of (M, g). Here
we use the notation g, to designate the metric g at the point pe M. A metric
g of M is said to be conformal to g if there exists a function h: M —R,h>0
of class C* such that for every pe M we have g,=h(p)g,. Suppose that the
geodesic segment y:[—L, L] - M is imbedded in M. We first find conditions
for h such that this geodesic segment of g is also a geodesic segment of g.
Let ¥ be the Levi-Civita connection of g, and let V' be the corresponding one
of g. For a given C*® function f: M — R let grad(f),eX* (M) be the gradient
vector field of f at p with respect to the metric g. We know that the connection
of g can be written in terms of g and V. In fact, if we write §,=e?°"'g, where
a(p)=3log h(p) we have:

(% Y),=(Vx Y),+g,(grad(o), X), Y, +g,(grad(o), Y), X ,—g,(X, Y) grad(o),

where X and Y are C® vector fields defined in a neighborhood of p in M.
It is easy to see that this formula does not depend on the differentiable extensions
of X, and Y, to any neighborhood of p. Consider a parallel, orthonormal frame
E(t)={e;(t)} i=0,1,2, ..., n—1 defined along y(t) with y'(t)=e,(t). Since the seg-
ment {y(¢),|t| <L} is imbedded there exists an open neighborhood V of this
segment which can be parametrized by a Fermi coordinate system of y associated
to the frame E(t), i.e., there exist 6,>0 and an injective map ¢: V- R", ¢(q)

(z4)

q= exp [x;(q) ey (x0(q))+x2(q) e2(xo (@) + -.. +x,-1(q) €n-1(x0(g)]-

7(x0(q))

=(x0(q) x1(q), s Xp—1(@)s [x0(@)| <L, <d,VqeV, where x;(q) is

defined by
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Here, exp is the exponential map at the point ae M. Remark that the coordinates

are given by the arclengths of y(t) and the geodesics which are tangent to e;(t).
Moreover, if R,={geM,d(q,y(t))<wa, |t|<L} then there exists b>0 such that
for every 0 << d, we have
n—1 3
(£)
i=1

Lemma 2.1 Let g,=h(p)g,, where h: M — R is a differentiable function and let
y(t) be a geodesic of (M, g). If grad(h),,,=0 and h(y(t))=1V|t| <L then y(t) is
a geodesic of g for every |t|<L. Moreover, the parameter t is the arclength
of the segment {y(t),|t|< L} for both g and g.

d)_l{(x(}sxly'--’xn—l)slxolél-‘, ébé}cRﬁ'

Proof. Using the coordinate system ¢ constructed as before, the gradient of
a function f: {y(t), |t|< L} — R can be written as

n—1
grad(f),,= Y. g(grad(f),q, e:(t) & (2).

i=0
Writing h=e?° we get, by the conformal connection formula

BV (O=F 0¥ (0+28,0(grad(0),y) 7 ()= &,n () grad(e),q

where this derivative makes sense in any differentiable local extension of y'(t)
to a vector field in a neighborhood of y(0). We shall show first that the condition
g, (grad(h),q, v) Yoe N(y(t),7'(t)) is enough to deduce the fact that y(¢), |t|SL
is still a geodesic segment of g. Indeed, this means that all the components
of grad(h), corresponding to the directions which are normal to y'(t)=e,(t)

are zero. This clearly holds as well for ¢ since grad(o)p=—1— grad(h),. This

implies that 2hiz)

V¥ (0)=2g(grad(0),, eo()) €0 (1) — g (grad (a), ), o (1)) €0 (%)
=h(y(1)) g(grad(0),, eo(t)) €o(?)

=h(y(r))5—f;;(y(r» Y (1)

But now, it is well known that if the covariant derivative of a curve is a multiple
of its tangent vector at every point of the curve then it is a geodesic of the
given metricc modulo reparametrization. And using the fact that
grad(h(y(t))=0V|t| <L we get

Vy'qt) 7' (t)=0.

V|t| £ L which clearly concludes the proof of the Lemma. []

Denote as dx;: ¥<M — TM the coordinate vector field associated to the
i coordinate of the system ¢. Given two vector fields X, Y defined in V let
Q(X, Y) be the following linear operator defined in the set of C* functions:

(X, V)(h)=X (Y (h)—(Vx Y)(h)— X (h) Y (h)
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where X (h)=dh(X) is the derivative of h: M — R in the direction of X. Notice
that Q is linear with respect to C® functions, ie., Q(fX, Y)(h)=Q(X, fY)(h)
=fQ(X,Y)(h)Vf,heC® (M, R) thus defining a tensor. Let # and Z be the curva-
ture tensors associated to g and g respectively. Then we have

e AKX, Y, Z,W)=R(X, Y, Z, W)+ [Q(Y, Z) +g(Y, Z)| grad(0)|*] (X, W)
—[Q(X,2)+g(X, Z)| grad(o)|*] g(Y, W)
+8(Y, Z2) Q(X, W)—g(X, Z) Q(Y, W).

If we define #,,;;,(p) by
R k(D)= g,(Z (0 x,(p), 0x;(p)) 0 x;(p), I x,(p))
and g;;(p)=g(dx;(p), 0x;(p)) then we get

8—26(p)'@0i0j(p)='@0i0j(p)+ [Qio+gio llgrad(o)] %] gjo
—[Qo0+ 8oo llgrad (o) |1*] 8ij+8i0 Qoj—8oo Qij

where Ry ()=, (Z4(0x(p), 0 x;(p)) 0 x,(p), 0x,(p)) and Q;;=Q(0x;, I x;). These
formulae are calculated in [5] with detail (see also [6, 10]).

Following the notation in Corollary 1.2 we have that the operators
K(t): N, = N, defined along y(t) have entries K (t)=Z0;0(y(t)). Let K(z) be
a family of self-adjoint linear operators whose expressions in local coordinates

are _ B
Kix(t)=Roiox(y(t))-

Notice that if g and g coincide along y(t), then [K;.(t)] would be a matrix
representation of the sectional curvature operator of g in y(t) in a Fermi coordi-
nate system for (M, g).

0*h
Lemma 2.2 Let h be as in Lemma 2.1. If Fxq ( ®)=0, ——— FPR T (y(®))=0 for every
i, k>0, ik, and |t| <L then

(@) Ku(()=Ku () Vi k>0,i%k.

2

(b) Kii(y(8)=Kii(y(0)— % (@)

where 0 =14 log(h) and |t| < L.

Proof. Since — from the hypotheses of Lemma 2.1 — h has the property that
grad(h),, =0 we have that

do
FPa @)=

Vi and |t|<L. Moreover, from the hypotheses in the statement of Lemma 3.2
we also have that

st 5 00)=0
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Vi=*j,|t|<L. From the construction of the coordinate system it is easy to get
that g;;(y(t))=9;; V|t| < L. These remarks imply that

(*) Qei, e)) (o), ={eile;(0) — (Ve.ej)(a)—ei(ff)ej(a)}lm

d*a 0 0
=, 10— 400 (R ) =5 - 00) 5 (00)
az

a 6 (y(t)) g(grad(a)’ e; ])v(f)

52

=y, 0

So the conformal curvature formula and (*) imply

0%o %o
e VDK (y(1) = K,,(y(t))+go,a ixg y@)— gua z(v(t))
0*c 0%o
—go:'m(}’(t))—goom(?(t))
Ki;(y(t) ifi, j>0i%j
2

Kulr0)— 5.5 010) ifi=j>0

2
where, in the last equality, we used the fact that %(y(t))=0V|t|§L which
0

comes from the hypotheses on h. From the hypotheses we get also that
a(y(t))=0V|t|£L so the statement of the lemma follows from the last formu-

la. O

To conclude this section we shall point out some of the consequences of
Lemma 2.2. Observe that for every (p,v)eTM the subspace N(p,v)
={weT, M, g(v,w)=0} is the same for every conformal change of g. So from
statement (a) we deduce that the curvature operators of the family of conformal
deformations of the metric g obtained by g,=h(p)g,, where he C*(M,R) is
as in the statement of this lemma, generate a family of operators

D(): Nyw— Ny
D()=K(@)—K(1)

which is a curve of diagonal operators, ie, D;;(t)=0Vi%j, where N,
=N(y(¢), ¥ (t)). Moreover, from Lemma 2.2 (b)

%o

D)= e ().

3 Metric perturbations with prescribed curvature

Proposition 3.1 Let L>0 be such that every g-geodesic segment of length 2L
is an imbedding. Then, for every C* neighborhood U of g in the set of Riemannian
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metrics there exist £>0, 59=203,(¢9)>0, such that given a geodesic y: R - M
of g and every 0<e<g, there exist one parameter families of metrics {g;} = U,
6€(0, 4], and self-adjoint operators with respect to g

K;(t): Ny = Ny

defined for every teR and every 6€[0, 5,] with the following properties:

(a) g; and g are conformal for every o, gs=g along y(t), |t| <L and outside of
a o-tubular neighborhood of {y(t), |t|<L}, and there exists C>0 such that
lg—gsllct <CY3€(0, d0]. Moreover, g coincides with gs along y(t) up to the
first jet, and if y5(t) is the geodesic of gs defined by y;(0)=7(0), y5(0)=7y'(0)
then y;(t)=y(t) V[t| S L.

(b) The operators K4(t) are the sectional curvature operators of the metrics g,
ie., if R, is the curvature tensor associated to gs then

(K3)ij(1)=(Zg,)0i0;(y (1)

g(K5(0)—K(1)) w,w)20

Vée(0,00], VteR and

Vt|SL,weN,.

(c) The operators K (t) are defined by

(i) Ko(t)=K;(t) for every|t|<L and every 6€(0, d,].

(i) Ko(t)=K(t) for every|t|>L

and they satisfy

(iii) g(Ko()—K{@)w,w)>e|w|?V|t|<e, weN,.

Let {es(t)} i=0,1,...,n—1 be the orthonormal frame defined along y,(t)
by es(0)=e;(0). Then a matrix representation of K,(t) according to Proposi-
tion 3.1 (b) is given by

(K)i j (1) = 85(Ry, (v5(2), €5:(2)) ¥ (2), €5:(0)).
Remark that es(t)=e;(f) Vi=0,1, ...n—1, V|t|< L. This is because the metrics
g and g, coincide along y(#)|t| < L up to the first jet (Proposition 3.1 (a)).

Let C>0 be a fixed constant. We proceed to construct a family of C®
functions hs: M — R satisfying the hypotheses of Lemmas 2.1 and 2.2 and such
that the matrices [D;;(f)] defined at the end of Sect. 2 are just C-1"~ 1" for
every |t|<L, where 1"~ * is the identity matrix on R"~!. This will conclude
the proof of Proposition 3.1.

Let f: R— R be a C* bump function satisfying the following properties:

@) f(x)=1VY|x|=}
(b) £(x)=0V|x|>1
€) O f(x)=1VEZX|S L.

For a given C>0 let p(x)=g-x2(x2—l). Define Q(x)=f(x)-p(x). For a real
number ¢ >0 recall that R;= () B;(y(t)), where B,(q) is the closed ball of radius

ltlsL
r with center at g, and define #;: R— R by

m(r)=529(§).

The function 7,(¢) satisfies the following properties: for a given function f: R — R
let supp(B)={te R\ B(t)*=0} be the support of 8. Then



Creation of conjugate points 49

Lemma 3.1 (a) supp(7,)=supp () =supp(n;)=[—9,d].

(b) There exists a constant A >0 such that
(b.1) sl <CAS?
(b.2)  lnsllci<CA9
(b.3)  nsllc2<CA

© 15(0)=n5(0)=0, and 7;(0)=—-C.

Lemma 3.1 follows from elementary calculations. Define A;: M — R as

@25 a5 =1 (2 (5]

i=1

where b>0 is defined in the remarks preceeding Lemma 2.1. From the very
definition of b we have that the support of A; and all its derivatives is included
in R;, and subsequently we give a series of properties of A;:

Lemma 3.2 (a) 4,eC*”(M,R)V0<d<d,

(b) 25y () =0V [t| =L, 45(q)=0VgeM —R;

(©) gl"

L 0@0)=0Viv[f<L
(d) #he (r(@)=0Vi%j,V|t|SL
axian )) - .]’ =

0% A t .
© a—xiz-(y(z»=—Cf(z)§o,vw=0,vut|§L

2
T2 00)=—CVi+0 VST
%2
ox2
Notice that the second derivatives of 4 at the points vy(t) do not depend on 6.
(f) There exists B>0 such that || As||c: < BC, and || 45| 2 < BC.

((@)=0V[t|=L

Remark that the function 4; is concave when restricted to small normal sections
of y(1)|t| < L, i.e., for each fixed te(— L, L) the Hessian of the function

451 Vyo(p)nexp(Ny) = R

y(t)

is a negative definite matrix for p=p(d) suitably small, where recall that

N, (y(2),7'(¢)) is the subspace of T, M which is normal to y'(t), ¥, (p) is a ball

of radius p centered at y(f) and exp is the exponential map. Now, define the
P

family of C* functions hs;: M — R by hs(q)=1+ A4(g), and consider the family
of conformal metrics

(85)g=hs(q) g4-
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Observe that h;(y(t))=1V|t| <L and hs(q)=1YqeM — R;. Statement (a) of Prop-
osition 3.1 follows from Lemmas 3.1 and 3.2.

To prove (b) and (c) in Proposition 3.1, remark that the function o;(q)
=1log h;(q) satisfies

2
7 0) =32 (0)= 5 2 (r0)=0

for every |t|<L, i=0,1,...,n—1 and for all §, which follows easily from Lem-
ma 3.2. Besides, all the mixed derivatives of o, are zero along y(t) from (d)
in the same lemma. So we conclude that the function h; satisfies the hypotheses
of Lemmas 2.1 and 2.2. In particular, the curve {y(t),|t|<L} is a segment of
a unit geodesic of g; for all § and the frame {e;(t)} is an orthonormal frame
for gs. Thus, using the formulae of Lemma 2.2 and the remarks above we have
that the sectional curvature operators K; associated to g; at the points y(z),
|t| <L, are given by:

(K3ik ()= K (t)
for every i$k and
K _K 00,
(Ky)ii(D)= ii(t)—W()’(t))-

But now,
0%0, 1 0% h,

a—xiz()’(f))=mm(}’(t))§0

for every |t|< L by the properties of the function h; given in Lemma 3.2. There-
fore, statement (b) holds from the last two inequalities. It is also true that

%0, 1 €
—a;iz-(?(t))—m(—c)——j

V|t|§—121,Vi=l=0 and V0<d<d,, with d, suitably small, which implies that the
operators D,(t)=(K;— K)(t) are diagonal and

(D)ii(t)=(K);;(t) — K;;(8) =2

| A

Y|t| <—é1. Taking C =2¢ we obtain statement (c).

Corollary 3.1 If 6 -0, then g;— g in the C* topology.
Proof. This is immediate from Lemma 3.2 (f).

Corollary 3.2 There exists D> 0 such that
sup [ g;—gllc2<De
0<6=do

and in particular
sup |y, —Rgllco<De.

0<d=do



Creation of conjugate points 51

Proof. This follows from Lemma 3.2 () and the formula for the curvature of
a conformal metric.

Let (x;, yx) K=0, ..., n—1 be the canonical coordinate system of TM induced
by the system ¢ =(x,,x,, ..., x,—,). The geodesic flow of g in this coordinate
system is the set of integral curves of the following vector field of M:

(k) = yi
Z(t)=

> 2>

D

7 )= —21—55" YiYi
ij

where I% are the so-called Cristoffel symbols of the metric g with respect to
the coordinate system ¢. Let G and G, be functions of R?" into itself such
that the differential equations

X'()=G(X(1)
X' ()= G,5(X (1))

define the geodesic flows of g and g; respectively in the coordinate system ¢.
Then, it is clear that by looking at the formulae of Cristoffel symbols we get
that

Corollary 3.3 G;— G in the C' topology. Moreover, there exists E >0 such that

|Gs—Gllci<Eé.

Corollary 3.4 Let T >0. Then ;|- 1 1) converges uniformly to V-7, as 6 —0.

This lemma follows from of Proposition 3.1 (a), Corollary 3.3 and the following
basic fact of the theory of ordinary differential equations:

Lemma 3.3 Let x'(t)=f(x(t)) be a differential equation defined in U = R", where
f:U—>R"is of class C'. Let f,,: R — R" be a sequence of C' maps satisfying

(@) lim || f,,—f | =0in every openset V<U.
m— oo

(b) sup|| finllw <C, where C is a constant.

meN

Then, if a sequence {a;} = U satisfies lim a;=ao€U, and x;:[—b,b]>R" is a

sequence of solutions of x" = f,,(x) with initial conditions x;(0)=a;, we have that
lim x; = x,
1—* oo

uniformly in [—b, b], where x, is the solution of x'= f(x) with initial condition
x0(0)=a,.
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4 Proof of Theorem B

We begin this section by stating a characterization in terms of Jacobi fields
of metrics with no conjugate points which are not Anosov metrics. This property
plays a key role in understanding the boundary behavior of those metrics in
the set of metrics with no conjugate points.

Lemma 4.1 Let g be a metric of M with no conjugate points which is not an
Anosov metric. Then, there exists a geodesic y: R — M such that for every A>0
there exist perpendicular Jacobi vector fields Ji(t) and J,(t) defined along y(t)
with the following properties:

(@) J;(0)=45(0), |4 (0)] =[L0)]=1.
(b) There exists a>0 such that J,(—a)=0, J;(a)=0.

(©) 1570 =L (0)]| <. .
(d) There exists o> 0 such that |1|nf {FHON 1LO1}>4.
t|<a

Proof. By the results of Eberlein [4], there exist a geodesic y(t), a constant

D>0, and a perpendicular Jacobi field J(t) in y(t) such that |J(t)| <DVteR.

It is clear that J(t)+0VteR, otherwise we would have that lim sup || J(¢)]| = +
t—=>+ o

by elementary properties of manifolds without conjugate points. Indeed, from

[4] Proposition 2.9 we have

Sublemma. Let y(t) be a unit geodesic with curvature > —k?. For a given A>0
there exists T = T(A,y)> 0 such that

IX()>A]X ()]

for every Jacobi field X (¢) with X (0)=0, X'(0)=%0. Given TeR, denote by J(t)
the Jacobi field on y(t) determined by the initial conditions J(0)=J(0) and
Jr(T)=0. From the sublemma and the fact that ||J(T)—J(T)|=|J(T)|=D
we also get that

| Tlilew [ J(0)— J7(0)[| =0.

Since J(t) is continuous and ||J(0)| =1 there exists a>0 such that ||J(t)| >3
for every |t| <a. Now set J,(t)=J,(t) and J,(t)=J_,(t) for a>0 big enough and
then the lemma follows. []

Now we proceed to the proof of Theorem B. Suppose that g is a metric
with no conjugate points which is not Anosov. Let L >0 be the same of Proposi-
tion 2.1 and let y(t) be given as in Lemma 2.1. For a given C? neighborhood
U of g let ¢,>0, 6,>0, be as in Proposition 2.1 and let g, be the family of
metrics of Proposition 2.1 constructed along y(t). Take 0<eg, <}&3. Let J (1),
J,(t), « and a> 0 be defined as in Lemma 2.1 for 1=¢,. Without loss of generality
we can suppose that a>g,. Fix an orthonormal, parallel frame {e;(t)},
i=0,1, ..., n—1 along y(t) with ey(¢)=7'(t). Consider the operators K(t) in these
coordinates. By means of J,(t) and J,(t) we find a continuous, piecewise C?
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solution X (t) of x”(t)+ K (t) x(t)=0 in the interval [ —aq, a] satisfying the follow-
ing properties:

@) I X@®l>4Vie[—a,a].

(b) X(—a)=X(a)=0.

() 1 XO)=1.

(d) X(t)is C*forevery t#+0and | X'* (0)— X'~ (0)] <é&,.

This solution is defined as:

(L) Vtee[0,a]
X(t)_{Jz(z)Vte[—a,O].

Consider the curve c¢(t)=(g(t), K(t)). From the index formula we get that

e (-a,a(X, X)=]g(X" " (0)— X"~ (0), X (0))]
SIX™O)=X"" ()] 1 X )
<¢.

Now, let K (t) be as in Proposition 2.1 and define ¢q(t) =(g(y(t)), Ko (?)). It follows
from the properties of g; that K,(¢) is of class C* and that it is C°close to
K(¢).

Claim. The equation
x"(t)+ Ko(t) x(t)=0

has conjugate points in the interval [ —a, a].
Indeed, let us estimate I (-, (X, X):

Iy (—a.aX, X)=Ic-aa(X, X)— | gUKo®)—KE)(X(®), X (1) dt

—a

sle-aalX, X)— Io g((Ko()—K@®))(X (1), X () dt.

—&0

But from assertions (b) and (c) of Proposition 3.1 we get

<Ici-aaX, X)— | &lX(0)ldt

— &0

<eg; —3e2<0

by the choice of ¢, . Therefore, by Theorem 1.1 the equation above has conjugate
points.

The next step toward the proof of Theorem B is to show the connection
between conjugate points of the equation x”(t)+ K, (t) x(1)=0 and conjugate
points in the manifold (M, g;). Remark that if y possesses an isolated point
p, ie., there is an open ball B with center at p and radius f>0 such that
YN B consists in only one connected segment ¢ of y, then by taking
L =2 length(o) in the above argument one can easily verify that the existence
of conjugate points for the equation is equivalent to the existence of conjugate
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points along 7(t) in the metric g; (remark that y is still a geodesic of g;). If
p(t) is either periodic or non-recurrent the last assertion holds for instance.
And in both cases we are also able to prove the statement of Theorem B in
every C* topology with k>2. This fact is straightforward from the construction
of the g;.

However, recurrent orbits of the geodesic flow form a set of total Lebesgue
measure by Poincare’s lemma for measure preserving flows, so the above cases
are certainly far away from the general case. The problem here is that Proposi-
tion 3.1 assures that K,(t) coincides with a curve of curvature operators of
a geodesic of some Riemannian metric of M only in some imbedded segment
of the given geodesic y. At this point it becomes more appropriate to look
at curves of symmetric operators from the point of view of Corollary 1.1 instead
of looking at curvature operators coming from Riemannian metrics. We shall
assume also that the geodesic y has no isolated points.

Lemma 4.2 Let L>0 be as in Proposition 3.1, and take b> L. Then V|t|>b we

have
lim || K1)~ K (0)] . =0.

Proof. Given a metric o in M and (p,v)eTy M define N,(p,v)
={weT,, M, w(w,v)=0}. Let K, (p,v): N,(p, v) > N,(p,v) be the associated sec-
tional curvature operator. Now let g, g; be the metrics in Proposition 3.1. Since
they are all conformal to gN;(p,v)=N,,(p,v) V6 so we shall denote all those
subspaces by N(p,v). Then, by the definition of the operators K;(t) and K(t)
we have

1K 5(t) = K(0)ll oo = [| Kg, (75(2), 75(0) — K (v (1), ' (D)l o
= [ Ky, (75(2), 75(8) — Kg, (7 (8), V' (D) ]
+ [ Ke, (7 (), 7' () — Kg (y (), ¥ (0) ] -

The map which assigns to each peM the curvature tensor %; of g; at p is
a continuous function, so given ¢>0 there exists >0 such that for every
(p,v)eTM, g(v,v)=1, if d((p,v),(q, W) <p then | K,,(p,v)—K,,(q, w)|, <& Here
d(,) is the distance on TM induced by g. Also, from Corollary 3.4 there exists
6, >0 such that d((y(t),y'(t)), (ys(¢), y' (t))<pu for every |t|<b and 0<d<6,. This
implies that

1K gy (75(8), v5(0) — Ko, (7 (0), Y ()| = &

for every 0<d<d,, V|t| b, so the first term of the right hand side of the above
inequality goes to zero with J. It remains to estimate the second term of the
inequality. Recall first that the support of g; — i.e., the set of peM such that
gs(p)=+g(p)) is included in the set

R,={peM, d,(y(t), p)<éV|t|] <L}

(see Proposition 3.1(a)). On the other hand, the metrics g and g, agree outside
R;, so their corresponding curvatures agree as well. This means that for every
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V()¢ R, we have K, (y(t), 7' (1) = K,(y(t), ¥’ (t)), so the second term in the inequali-
ty is zero, thus concluding the proof of the lemma. [J

Observe that K;(t)=K,(t) for every J and |t|<L, so assuming that a>L
we conclude the following from the last lemma:

Corollary 4.1 Consider the curves cs:[—a,a]l—> A(n—1) defined by c4(t)

;h(ga(w(t)), K;(t). Let co:[—a,a] > A(n—1) be defined by c,(t)=(g (¥ (1)), Ko (1))
en

lim || c5(t) —co (1) =0
50

where c,(t)— co(t) =(g5(t) — g (), K;(t) — K (1)) and
les(®)—co(t)llw = sup {[1gs(2s() =g (D, | Ks(t) = Ko (®)ll o} -

lt|<a

We have already proved that the equation x”(1)+ K, (t) x(t)=0 has conjugate
points in the interval [ —a, a]. So from Corollaries 1.1 and 4.1 we get that the
equations

xX"(t)+ K@) x(t)=0

have conjugate points for 6 small enough. But now, the operators K;(t) are
curvature operators of the metrics g;, which means that the Riemannian mani-
folds (M, gs) have conjugate points for  close to zero. This concludes the proof
of Theorem B.

References

—

. Anosov, D.: Geodesic flow on closed Riemannian manifolds of negative curvature. Tr.
Mat. Inst. Steklova 90 (1967)
2. Cheeger, J., Ebin, D.: Comparison Theorems in Riemannian Geometry. Amsterdam: North-
Holland 1975
3. Eberlein, P.: Geodesic flows in certain manifolds without conjugate points. Trans. Am.
Math. Soc. 167, 151-162 (1972)
4. Eberlein, P.: When is a geodesic flow of Anosov type 1. J. Differ. Geom. 8, 437-463 (1973)
5. Eisenhart, L.: Riemannian Geometry. Princeton: Princeton University Press 1964
6. Gromoll, D., Klingenberg, W., Meyer, W.: Riemannsche Geometriec im Grossen. (Lect.
Notes Math., vol. 55) Berlin Heidelberg New York: Springer 1968
7. Hopf, E.: Closed surfaces without conjugate points. Proc. Natl. Acad. Sci. USA 34, 47-51
(1948)
8. Klingenberg, W.: Riemannian manifolds with geodesic flow of Anosov type. Ann. Math.
99, 1-13 (1974)
9. Klingenberg, W.: Lectures on closed geodesics. Berlin Heidelberg New York: Springer
1978
10. Kulkarni, R.: Curvature structures and conformal transformations. J. Differ. Geom. 4, 425-
451 (1970)
11. Pugh, C.: An improved closing lemma and a general density theorem. Am. J. Math. 89,
1010-1021 (1967)






	
	On the creation of conjugate points.


