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A p-adic torus is the rigid analytic quotient T/M of an affine torus T over
a p-adic field K by a lattice M of rank equal to the dimension of T If such
a torus admits Riemann period relations, it is an abelian variety with torus
reduction over the valuation ring R of K. Conversely, an abelian variety over
K whose Néron model over R has torus reduction is a p-adic torus; cf. [R1]
or [BL2]. Let us call such abelian varieties toric in the following,

In this paper we study abelian schemes X — S where S is an affinoid space
or a scheme of finite type over K and where the fibres X, are potentially toric;
ie., become toric after extending the residue field k(s) of s, for the (closed) points
s of S. We will show that such abelian schemes can be uniformized simultaneous-
ly after étale surjective base change, i.e., étale locally on S with respect to the
rigid analytic topology there is a representation G, s/M where M>~Z5% is an
S-subgroup space of G, s which is constant.

As an application we will show a rigidity theorem. In the case where S
is a connected K-scheme of finite type, (d-fold polarized) abelian schemes X — S
with potentially toric fibres can occur only in quasi-isotrivial form; i.e., the
associated map from S to the coarse moduli space of (d-fold polarized) abelian
varieties is constant. The latter means that the fibres X, become isomorphic
to each other over an algebraic closure of K. Since the Jacobians of Mumford
curves are toric, the rigidity result implies via the theorem of Torelli that an
algebraic smooth family of Mumford curves over a K-scheme of finite type
is quasi-isotrivial; cf. [L1].

Global rigidity problems for families of curves resp. of abelian varieties were
considered by Arakelov [A] resp. by Faltings [F]; see also the lecture of Mum-
ford [M2, Lecture II].

1 Uniformization

In the following let R be a complete discrete valuation ring with field of fractions
K and residue field k, and let # be a uniformizing parameter of R. The purpose
of this section is to study the simultaneous uniformization of abelian schemes
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over an affinoid space Sp(4); i.e., the analytification of an abelian scheme over
Spec(A4). We will assume that the rigid fibres of the given abelian scheme are
potentially toric. The main result of this section is the following theorem.

Theorem 1 Let S be a normal affinoid space and let n=3 be an integer prime
to the residue characteristic of K. Let X — S be an abelian scheme such that
all rigid fibres are potentially toric. Moreover assume that X and its dual X'
admit level-n-structures. Then, locally on S with respect to the Grothendieck topolo-
gy, X can be uniformized: ie., X x 3S;~G¢, 5/M where M=Z$, is a lattice in
G4, s, for a finite covering {S,, ..., S,} by open affinoid subdomains S; of S.

Proof. The abelian scheme X — S has generically a polarization. Since the base
scheme is normal, the polarization extends to the whole S; cf. [R4, XI, 1.4].
Therefore we may assume that X — S is polarized.

Set S=Spec(4) where A4 is a flat R-algebra of topologically finite type such
that S=Sp(4®K). Due to [AC, IX, § 4, Exercice 22] such a ring 4 is a Nagata
ring in the sense of Bourbaki [AC, IX, § 4, n° 2, Definition 2]. So its normaliza-
tion A is finite over 4 and, hence, it is of topologically finite type over R.
Since A®zK is normal, we may choose A=4 to be normal. We remind the
reader that A consists of all elements f of A® zK with spectral norm |f|<1.
As a first step we will prove:

(1.1) There is an S-admissible blowing-up §' — S of § and a finite morphism
S* > § which is an isomorphism over the rigid part such that X extends to
a semi-abelian scheme X over §*.

Let us first assume that X — S is principally polarized. Let A, , — Spec Z[1/n]
be the moduli space of principally polarized abelian varieties with level-n-struc-
ture. Let 4, , be a projective toroidal compactification of 4, , over Z[1/n];
cf. the book of Chai and Faltings [CF, Chapt. 5]. Our abelian scheme X — S
corresponds to a morphism @:S— 4, ,. Let 'cS§xz4, , be the graph of &.
Then consider the schematic closure 'cSxz4, , of I'. Since A4, , is proper
over Z[1/n], the projection I' —» S is proper. Due to the flattening technique
[R2, 5.7.12], there exists an S-admissible blowing-up §’ — I such that the compo-
sition §' » I' - S is an S-admissible blowing-up of §. The pull-back of the univer-
sal semi-abelian scheme over 4, , yields a semi-abelian scheme X — §’ extending
the given abelian scheme X — S.

If X - § is not principally polarized, we use Zarhin’s trick to define a princi-
pal polarization on P=(X x 3X’)*. By what we have proved so far there exists
an S-admissible blowing-up §’ — § such that the product P=(X x sX')* extends
to a semi-abelian scheme P’ - §'. We can write X as a quotient X = P/N. Due
to [R2, 5.2.2], there exists an S-admissible blowing-up §” —§ such that N
extends to a flat §”-subgroup scheme N” of P’ =P x 5 §8". The representability
of (P"/N") as an algebraic space follows from [A1, 6.3]. The representability
by a scheme follows from Poincare’s complete reducibility theorem [M1, § 19,
Theorem 1] and extension properties of morphisms; cf. [D, 4.10]. For the latter
one needs S’ to be normal; so one has to replace S’ by its normalization
S* »§”. The morphism §* —» 3" is finite, since the coordinate rings of open
affine pieces of §” are Nagata rings. Since the rigid space S is assumed to
be normal, S*@K - S”®K is an isomorphism of rigid spaces. The quotient
is semi-abelian, since P" is semi-abelian; cf. [BLR, 7.4/2]. Since a composition
of S-admissible blowing-ups is an S-admissible blowing-up [R2, 5.1.4] also,
we have shown (1.1).
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For the proof of the theorem, we may assume S*=S. Indeed, let ¥ be
formal scheme obtained as the m-adic completion of S*. It can be viewed as
a formal structure on the rigid space S. Working locally on & means in the
rigid context to perform base change from S to an admissible open covering;
cf. [R3] or [L2]. Now the formal completion & - of X —»§ with respect
to the special fibre yields a formally smooth semi-abelian groups scheme which
gives rise to an open rigid S-subgroup F®K — S of X —S. The special fibre
% is isomorphic to the special fibre X, of X; the notion “special fibre” is
related to the situation over the base ring R. Let R(s) be the valuation ring
of the residue field K(s) of a closed point s of S. Since X —§ is a semi-abelian
group scheme, X x 5 Spec R(s) is the identity component of the Néron model
of the fibre X x5 Spec K(s). Due to the assumption that all rigid fibres are
analytic tori, the closed fibres of the S-group scheme X, are tori. Due to
[SGA 3y, X, 8.2] X, is a torus over S, and then by the lifting of tori [SGA 3y,
IX, 3.6] we see that the formal completion & of X is a formal torus over
<. Due to [SGA 3y, X, 4.5] there exists an étale surjective affine base change
¥ - H such that ZF =2 x , %* is split. The morphism %* — &, lifts to a
formally étale morphism #* — % which is again surjective on the generic fibre.
Due to the lifting of tori Z* =% x ,%* is a split formal torus over &*. Thus
we have shown:

(1.2) The formal completion & - & of X —§ with respect to the special fibre
is a formal torus. Furthermore there exists a formally étale surjective base change
F* > & such that F* =% x , F* - F* is a split formal torus.

In the case where X — § is principally polarized, we can obtain the uniformi-
zation of X over $*=9*®K directly from the result of Chai and Faltings
[CF, Chapt. 3]. Namely they have shown that the category of semi-abelian
group schemes over $* whose special fibres are extensions of abelian schemes
by split tori is equivalent to the category of degeneration data for Mumford’s
construction. In our case when the special fibre is a split torus, this result implies
the uniformization of X as claimed in the theorem. We want to work also
with not necessarily principal polarizations. So we have to follow the program
of Raynaud [R1] which can now easily be deduced from the result in the
principally polarized case by using Zarhin’s trick:

(1.3) In the following denote by X the rigid space # ® K associate to & viewed
as an open S-subgroup of X. Then the restriction map induces a bijection of
the set of rigid group morphisms

Hom (G,, 5, X) —— Hom (&, 5, X)

where @,, s is the open subtorus of units of G, s. The latter is the formal
completion of G, s with respect to its special fibre.

(1.4) Assume that X — S is a split formal torus T. Let T— S be the affine torus
which contains T as an open analytic subgroup (as torus of units). The canonical
map T— X extends to a surjective group homomorphism p: T— X. Let M be
the kernel of p. Then M is a lattice in Tand, hence, X is a quotient T/M.

Let X'—>S be the dual of X and assume that X’ admits a semi-abelian
extension over S. Denote by X' — S the formal completion of this model with
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respect to its special fibre; it is a formal torus also. If X' — S is split over S,
then M is a split lattice; i.e, M=~Z$ is a lattice in the sense of [BL2, 3.3].
The lattice is split, since it is isomorphic to the character group of the formal
torus X’ — S which is assumed to be split.

For the rigidity theorem in Sect. 2 we need to know that the uniformization
is actually given locally on S and not only after some formal étale surjective
base change which in general will not be finite. The key point which is left
to be shown is the splitting of the formal S-tori X and X' locally over S.

(1.5) The splitting of the formal rigid torus X in (1.2) and the splitting of the
lattice in (1.4) is already satisfied locally over S (with respect to the Grothendieck
topology).

This follows from Proposition 3 below, since the n-torsion ,X of X and
the n-torsion ,X' of X' are also rational as we will show now. Indeed, let S
be connected and let 6:S — ,X be an n-torsion point such that for some point
seS the image o(s) lies in X. Then we have to show that ¢ maps S to X.
It suffices to show that ¢~ (X — X) is empty. Of course we may assume that
S is affinoid. Assume first that there is a covering map ¢:T— X from a split
torus T=G4 s to X and that the kernel M of ¢ is split; ie, M~Z%. For

an element a€]/|K*| with a <1, we set
T,={t=(ty, ..., t)e T a<|t|<a ' fori=1, ..., d}.

Since M is a closed subvariety of T and since M nT,;={1}, there exists an

element ae]/|K*| with <1 such that M n T,={1}, due to the maximum modu-
lus principle. In other terms, this means that the canonical map p: T, » X of

(1.4) is injective for any e€]/|K*| with a<e?<1. Denote by X, the image of

T, under p. Setting 6='i/;: there is no point te T;— T which is mapped to ,X.
Returning to our original problem, we see 6~ (X — X;)=0"'(X — X). Therefore
o6~ !(X—X) is an admissible open subvariety of S and, hence, it is empty due
to the connectedness of S. The general case is reduced to the special case treated
just before by base change using (1.2) and (1.4).

Thus the proof of Theorem 1 is clear. []

In view of Sect. 2, let us state the following remark.

Corollary 2 Let X — S be an abelian scheme over a normal K-scheme of finite
type such that all closed fibres are potentially toric. Then there exists an algebraic
étale finite surjective map S’ — S such that X x 3§’ can be uniformized locally
(with respect to the rigid Grothendieck topology) over S'.

A different proof which relies on the Lemma of Gabber [D] and which
follows strictly the program of Raynaud is given in [V]. Finally it remains
to supply the splitting of the formal torus.

Proposition 3 Let 7 — & be a formal morphism of admissible formal schemes
where 7 is a formal torus over &. Let T— S be the associate rigid morphism.
Assume that S is normal and that the n-torsion ,T is rational over S for some
integer n 23 which is prime to char (K). Then there exists an admissible blowing-up
&' = F suchthat T'=T x &' is locally trivial over &'
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Proof. Due to [SGA 3y, X, 4.5] there exists an étale surjective, affine base change
¥ > S such that T¥=7 x , ¥ splits. The morphism F* —» & lifts to a
formally étale morphism ¥* — & which is again surjective on the generic fibre.
Due to the lifting of tori [SGA 3y, IX, 3.6] the formal torus 7*=7 x , &*
is split over *. We may assume that . is affine and, hence, that 7 is affine,
since J — & is formal affine; cf. [SGA 3y, X, 4.9]. Denote by T— S and by
§* - § the associate rigid morphism; these are morphisms of affinoid spaces,
and let T* be Tx ¢S* which is the generic fibre of J*. Now, using the fact
that the n-torsion of T'is rational, we will show that T'is actually split, locally
over S.

Let us first discuss the special case where &* = Spf(A4*) — & = Spf(A) is finite.
In this case 4 — A* is faithfully flat and finite. Let T* be a split affine A*-torus
whose formal completion is isomorphic to 7 *. Since a formal morphism of
formal tori is algebraic as given by the map between their character groups,
we get an (algebraic) descent datum on T* with respect to A — A*. Hence,
since T* is affine over A*, the descent is effective. So it descends to an affine
A-torus T'whose formal completion is isomorphic to 7. The n-torsion of TQ K,
which coincides with the n-torsion of T, is rational. So, S being normal, T® K
is split. Namely, it is split over the generic points of S as follows from [SGA 7,,
IX, 4.7.1] by a galois argument, and due to the Néron property the splitting
extends to an open subscheme of S which contains all points of codimension 1,
and then the assertion follows from Weil’s extension argument of group morph-
isms [BLR, 4.4/1]. Thus we see that T is split over S.

The general case will be reduced to the above special case by an approxima-
tion argument. There is an open affine subscheme %' of &% which contains
all the generic points of %, such that the restriction of #* » % to %! is finite,
since an étale morphism of finite type is generically finite. Continuing this way
we get a finite partition

Fi=FHuSru...uFH
of % by (locally closed) affine subschemes such that the restriction of &* — &

to %' is finite for i=1, ..., r. Furthermore we can choose the subschemes %
of the following special type:

S ={seF; £ (5)#0},
Ki={seS%; =0 for j=1,...,i—1 and fi(s)#0},

where f'e0(¥) and where fi' denotes the restriction of f* to %,. Furthermore,
for ¢y, ..., &,€]/|K*| with ¢,<1 which will be specified later, we define open

affinoid subvarieties
S()={seS;|f'(s)| =1}
S@)={seS;|f/(s)|<e; for j=1,...,i—1 and |fi(s)|21}.
Sy ={seS;|f'(s)|ze,}
S@)={seS;|f(s)|<¢; for j=1,...,j—1 and |f'(s)|2e;}.
Then {S(1), ..., S(r)} is an open affinoid covering of S. Now S(i) is contained

in S(i) and O(S(i)) > O(S (i) is dense for i=1, ..., r. We will show that we can
choose ¢y, ..., & such that T is split over S(i) for i=1, ...,r. It is clear that
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this implies the assertion of the proposition. First choose some ¢, <1 which
will be modified later on. Then

T)=TxsSW)=T1y=Tx4S (1)
are affinoid and O(T'(1)) » O(T (1)) is dense also. Similarly,
S(I*=S*xsS1)=S)*=8*x S (1)
are affinoid and O(S(1)*') - O(S(1)*) is dense. Furthermore set
T*=T1)xsS*<T(1)*=T(1)* xsS(1y = T*=T x sS*.

Since S(1)* — S(1) is finite, it follows by the special case discussed above that
T(1) is split over S(1). Let f be a basis of the cocharacters on T(1). Now we
can approximate f by a system f” of functions on T(1) as close as we want.
Now we know that T* is split over S*, so we can choose a basis F* of its
group of cocharacters. Then we obtain

f=M-F* over T(1y*=T*x¢S(1)=Tx sS(1)*

where M is a matrix with entries being locally constant sections of Z; i.e.,
MeGL(d,Z)(T(1)*). By an approximation argument it is clear that we can
choose ¢; <1 so large that any connected component of T(1)* is a restriction
of a connected component of T(1)*'. Thus we can view M as a matrix of GL(d, Z)
defined over T(1)*. Then we can write

['=M-F*+4

where 4 is a vector of functions on T(1)*. Since f’ approximates f, we may
assume that

Alpapen? O(T (1)*)

where 7 (1)*=7* x , &% (1) and #(1) is the open subscheme of & corresponding
to S(1). Then we can choose ¢, <1 so large that

AlrawenOT (¥

where &' — & is an admissible formal blowing-up such that S(1) is induced
by a formally open subscheme ¥ (1) of &’ and where Z (1)* is induced by
base change of 7 — & with (1) - &. Itis clear that f” gives rise to a trivializa-
tion of the torus J (1), over &(1);. By the lifting of tori [SGA 3y, IX, 3.6]
this trivialization gives rise to a trivialization of T(1) over S(1). If, in addition,
we choose &’ — & in such a way that S(2) is induced by an open subscheme
& (2) of ¥, then ¥ (2); is mapped to &} set-theoretically. Therefore, the induced
map &* — & becomes finite over & (2) after the base change ¥ (2) = <. So
we can do the same reasoning as before to define ¢,. Continuing this way
we complete the proof by induction. [
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2 Rigidity

Now we will apply the uniformization theory to derive a rigidity theorem for
abelian schemes with potentially toric fibres.

Theorem 4 Let S be a connected scheme of finite type over a p-adic field K.
Let X — S be an abelian scheme such that all closed fibres are potentially toric.
Then X is constant; ie., the fibres X, are isomorphic to each other where §
runs over the geometric points of S.

Proof. For the proof we may assume that S is a smooth connected affine curve
and, due to Corollary 2, we may assume that X can be uniformized locally
(with respect to the rigid Grothendieck topology) over S. Thus there exists
an open admissible covering {S;;iel} of S such that X|S,~ T/M i where M, ~7Z%
is a lattice in T,=@% s, for icl. Let p:S—S be the universal covering (cf.
Sect. 3) of S. We may assume that the inverse image of each S; can be decomposed
into a disjoint union

P_I(Si)=Uj§ij

of connected open subvarieties S;; isomorphic to S;. Furthermore we may assume
that all intersections S; N S, j are connected. The local uniformizations give
rise to a cocycle

(p:i)eZ* ({S;,ieI}, GL(d, Z))
associated to the tori {T;;iel} and to a cocycle
(/"ij)ezl ({Sn ieI}, GL(d, Z))

associated to the lattices {M;;iel}. All these cocycle become trivial under pull-
back to S. So we arrive at a global uniformization

XxsS=T/M

where M =(Z% is a lattice in T~ 5. It is clear that we may assume that
X is polarized over S. So we have a polarization over § which gives rise to
a positive definite (multiplicative) bilinear form (cf. [BL 2, 24))

B=(b:)): (Z%)s x (Z%)s > G .

The entries b;; are global functions on §. Rewriting this in the additive form,
this means that, for any seS, the matrix

—log|B|=(—logb,;(s)): R x R‘»> R

is a positive definite bilinear form in the ordinary sense. Note that, for a function
f on §, the condition —log| f(s)| being positive implies f to be bounded. Due
to Proposition 6 below, all bounded global functions on § are constant. There-
fore, the positive definiteness of —log|B| implies that all entries b;; are constant.
Namely, it is clear for the entries in the diagonal, then it follows by induction
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that the entries in all subdiagonals are constant by the criterion of Hurwitz.
Indeed, consider a positive definite (symmetric) matrix

115 -5 A1p
A= ajl, A’, aj,,
Apys «-v5 Aup

For the determinant of A we obtain
detA=(—1)-detA4’-(a,,)*+a-a;,+B

where a and f are independent of a,,=a,;. In our case where A4 is a submatrix
of —log|B| which is symmetric with respect to the diagonal of —log|B|, we
know that detA4’, a, and B are constant, due to the induction hypothesis, and
that det 4 and det A’ are positive. Therefore, the absolute value |a, | =[log|b,l|
is bounded as (— 1)-det A’ being negative. So b, , is bounded and, hence, constant
as a function of seS. Thus we see that the matrix (b; ;) is constant as a function
of seS. This implies that the lattice is constant; i.e., the map

(Z%)s—— M—— G}, s— G, ¢

is constant as follows from [BL 2,3.2]. O

Corollary 5 Let S be a connected scheme of finite type over K. Let C— S be
a proper smooth curve such that all fibres are Mumford curves. Then C is constant;
i.e., the fibres Cg are isomorphic to each other where § runs over the geometric
points of S.

Proof. The Jacobi variety of a Mumford curve is a p-adic torus. So the assertion
follows from Theorem 3 by the theorem of Torelli. []

3 The universal covering of an algebraic curve

Let S be a smooth projective algebraic curve over K. After finite separable
field extension there exists a semi-stable curve § over the valuation ring R
with generic fibre S; cf. [AW] or [BL 1, 7.1]. Denote by & the formal completion
of § with respect to the special fibre. After a suitable blowing-up of certain
double points of S, we may assume that the irreducible components of S5, have
no self-intersection. Let I" be the graph of coincidence of the irreducible compo-
nents of S ; ie., the vertices of I' are the irreducible components of S, and
the edges of I joining two vertices are the double points lying on the correspond-
ing irreducible components. Let ' —+I" be the universal covering of I' in the
sense of trees. Now use I' as a rule of how to glue formal open parts of &.
In this way one obtains a formal scheme & — & whose special fibre % has
I as graph of coincidence. Denote by S ‘the associate rigid space #®K and
denote by p: §— S the associate map & — . The map § — S serves as a universal
covering in the sense of rigid spaces. For example it has the following property:
For any open rigid analytic covering {S;,i€I} of S there exists a refinement
{S;,jeJ} such that p~!(S;) decomposes into a disjoint union U, Sj, such that



Algebraic families of p-adic tori 627

pIS ;x induces an isomorphism between § jx and S;, and such that all intersections

kNS, are connected. This easily follows from the fact that one can refine
the formal structure of § in such a way that the given covering {S;, iel } admits
a refinement by a formal covering {S;,jeJ} where the reduction of any S; is
connected with at most one singular point which has to be an ordinary double
point.

If S is an affine smooth curve, one has a universal covering p: S — S also.
Namely, choose a smooth compactification S of S which exists after extending
the base field. Then take the universal covering p: S — S of § and define p: §— S
by removing the inverse images of the finitely many points of §—S in S. It
is clear that p:§— S has the property for rigid analytic coverings mentioned
above. An important point in the proof of the rigidity theorem was the following
proposition.

Proposition 6 A bounded holomorphic function on S is constant.

Proof. It suffices to prove the assertion only in the case where S is the universal
covering of a smooth projective curve. Indeed, if S is a smooth compactification
of S, we may view S as a open subvariety on the universal covering S of §
such that S—S consists of isolated points. So a bounded holomorphic function
on § extends to 5. Thus we see that we can reduce to the case where S is
a smooth projective curve. Now let f be a holomorphic function on S. Let
S; be the irreducible components of the reduction of .{ and let ¢; be the norm
of f on §;; i.e., the supnorm of f on a dense open part of S,. If f is not constant,
there exists an index i, such the reduction of f; = f/c;, does not induce a constant
function on §,-0. Thus we see that there exists a pole x on §,-0 for f;, which
has to be a singular point in the reduction of §. Now x lies also on a different
component S; . The reduction of f; induces a function on S;, which has a
zero at x,; cf. [BL 1, 3.1]. Due to [BL 1, 3.2] we have

Cip=a(xg)” ! Ci,

where a(xo) <1 is the height of the annulus associated to x. Now f;, must have
a pole x; on §; which lies also on a component on §;, which is different from
on S;,. As above we obtain

¢, Sa(xy) ey,
Continuing this way we obtain

CipSa(xo) taxy) T a(x,— ) ey,
Since only finitely many types of a(x;) < 1 occur, we see that f cannot be bounded.
Thus we see that a bounded holomorphic function on § is constant. []
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