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1 Introduction

This paper is primarily concerned with certain jump discontinuities in weak
solutions of hyperbolic systems of conservation laws, namely discontinuities
associated with linearly degenerate modes for which the integral manifolds of
the corresponding eigenspace bundle are compact. We prove that, besides the
familiar contact discontinuities, there are also shocks associated with these
modes, and that, in many cases, these shocks have viscous profiles. When applied
to magnetohydrodynamics, this theory proves that for arbitrary dissipation cer-
tain shocks associated with the rotational Alfvén mode have viscous profiles.
The abstract results are not restricted to simple eigenvalues. As a preliminary
step, we establish basic notions and properties of general linearly degenerate
modes corresponding to eigenvalues of arbitrary multiplicity.
The systems under consideration are of the form

(L.1) u(x, )+(f(ulx, 0)):=0, (x,)eRxR,;

the flux function f maps the state space U, an open connected subset of R”,
smoothly into IR", and hyperbolicity of (1.1) means that D f (u) be R-diagonaliz-
able at any ue U. We restrict attention to special weak solutions of (1.1) which
have the form

u-, x<st
(12) O S

with appropriate u~, u* €U, seR; these frequently considered piecewise constant
functions serve as prototypes for more general jump discontinuities. Given u-,
u®, and s, (1.2) is a weak solution of (1.1) if and only if the Rankine-Hugoniot
jump conditions

(1.3) S —f@ )=sw*—u")

are satisfied.
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Now assume that Ae C(U, R) is an eigenvalue of D f of constant multiplicity.

Definition 1 A is called linearly degenerate iff its gradient is everywhere orthogo-
nal to the corresponding eigenspace bundle R =ker (D f— 1).

Definition 2 A solution (1.2) of (1.1) is called a contact discontinuity associated
with A iff

(1.4) Au )=s=Au").
Definition 3 A solution (1.2) of (1.1) is called a shock associated with A iff
(1.5) Au")>s>Au’),

and A~ <s for any eigenvalue 1~ <A(u~) of Df(u~) as well as A* >s for any
eigenvalue A* >A(u*) of Df (u™).

Contact discontinuities and, especially, shocks which are associated with
a linearly degenerate eigenvalue are the main objects of interest in this paper.
The notions of linear degeneracy, contact discontinuity, and shock were intro-
duced by Lax in [8] for the case of a simple eigenvalue. The above definitions
give obvious generalizations to eigenvalues of arbitrary multiplicity. Whereas
Definitions 1 and 2 seem to be appropriate in general, Definition 3 is made
here only for convenience in the present context and is not intended to give
a new general interpretation to the word shock. Although the case of a simple
eigenvalue can be just the interesting one for applications — so for the one
given in the Appendix, which has also been the original motivation for this
study —, we keep the multiplicity arbitrary throughout this paper since actually
all results do not depend thereupon.

The following five theorems contain the abstract results of the paper.

Theorem 1 Assume AeC(U, R) is an eigenvalue of D f of constant multiplicity l.
Then the vectorspace bundle R=Xker(D f— Al) is integrable, and its integral mani-
folds y constitute a foliation F of U. If | is greater than 1, 2 must be linearly
degenerate.

Theorem 2 Assume AcC(U,R) is an eigenvalue of Df of constant multiplicity
and linearly degenerate. If u™,u* lie in the same contact leaf x of the corresponding
foliation and s is the (constant) value that A attains on y, the triple (u”, ut,s)
defines a contact discontinuity associated with A. For any (u”, u”, s)e A an appro-
priate open neighborhood of {(u, u, A())|ueU}cU x U xR, these are the only
weak solutions (1.2) of (1.1). Especially, no (u™,u*, s)e A" defines a shock associat-
ed with A.

Theorem 3 Assume AcC(U,R) is an eigenvalue of Df of constant multiplicity
and linearly degenerate. If a corresponding contact leaf x is compact, then there
exist triples (u™, u*,s) such that (1.2) is a shock associated with 1. Such triples
exist arbitrarily near y x y x A(x) and are structurally stable.

Theorem 4 Assume AeC(U,R) is an eigenvalue of Df of constant multiplicity
and linearly degenerate. If a contact leaf yeF is compact, then a whole neighbor-
hood of < U is covered by contact leaves which are all compact.

Theorem 5 Assume AeC(U, R) is an eigenvalue of Df of constant multiplicity |
and linearly degenerate with compact contact leaves. Consider, in addition to the
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hyperbolic system, any strictly stable viscosity associated with it. Assume that
I=1 or that the system of o.d.e. describing the traveling wave solutions of the
associated parabolic system is gradient-like. Then there exist shocks associated
with A which have a viscous profile with respect to the given viscosity. More
precisely, such shocks exist arbitrarily near any compact contact leaf y in the
sense that the corresponding triple (u™, u*, s) comes arbitrarily close to y x y x Ay),
and each of these shocks has actually a whole (I—1)-parameter family of profiles
associated with it. In all cases, the profiles are given by structurally stable hetero-
clinic orbits.

Theorems 1 and 2 will be proved in Sect. 2, Theorems 3 and 4 in Sect. 3,
and Theorem 5 in Sect. 4.

Similar results were already established in [3] for the case that the flux
function is equivariant under O(m) (for some m<n) as acting in a standard
way on the state space. In that case the linearly degenerate mode is a rotational
mode induced by the symmetry, and the compact integral manifolds are given
by the orbits of the group action: spheres. Actually, for that specific case, more
then is proved here was shown in [3]. The assumptions made in the present
paper being more general, its results can be applied to less specialized cases,
so to systems that have a rotational symmetry which is, however, not given
by a standard representation of the orthogonal group. This property is shared
e.g. by the system governing plane magnetohydrodynamic waves. In the Appen-
dix, the theory is modified so as to establish, for arbitrary ratios of the commonly
used four dissipation coefficients, the existence of viscous profiles for certain
magnetohydrodynamic shocks associated with the linearly degenerate Alfvén
mode, see Theorem A.1. Physically speaking, Theorem A.1 implies that in the
presence of arbitrary dissipation — so especially for physically realistic values
of the dissipation coefficients — some of the so-called intermediate shocks, which
are unstable in the framework of ideal dynamics, can exist, see Theorem A.2.
For these phenomena, the perception of which is suggested by previous observa-
tions in [A10] and [A8, A1, A10], respectively, no mathematical proofs seem
to have been given prior to this work.

Theorems A.1 and A.2 and proofs thereof were presented during the IMA
Workshop on Multidimensional Hyperbolic Problems in April 1989, see [4].
Most arguments used in the proofs of Theorems 1 and 3 had already been
introduced in [2].

2 The geometry of linear degeneracy

In this section, we prove Theorems 1 and 2, which establish properties of arbi-
trary linearly degenerate modes. The proof of Theorem 1 is elementary, the
existence of the foliation being a consequence of Frobenius’ integrability theo-
rem; Theorem 2 follows easily from a geometric consideration.

Proof of Theorem 1 In the case of a simple eigenvalue, the integrability of R
is trivial: the leaves of & are given by the obvious integral curves of any vector
field reR. Assume now that the eigenvalue Ae C(U, R) of D f has constant multi-
plicity greater than 1. According to Frobenius’ Theorem (see e.g. [10]), a vector
space bundle R is integrable if and only if for any two vector fields r,, r,eR
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also their Lie-bracket [ry,7,]=(ry-V)r,—(r,-V)ry lies in R. In our case ry,
r,€R means

(Df—AD)r;=0, i=1,2
This implies

0=(ry-V)(Df=ADr)—(r2-V)(Df—AD)ry)
=(D*f(ra, r)—D*f(r,r)—((r,-V4) ra—(ry-VAr)+(Df=AD)[ry, 12l

Here, the first term in the last line vanishes because of the equality of mixed
partial derivatives. Thus, since RN (D f—AI)R"={0}, the second and third term
must also both vanish. The evanescence of the third term means [r,, r,]€R.
By Frobenius’ Theorem the integral manifolds x of R exist and constitute a
foliation # of U. Furthermore, at any point where ry, r, are linearly independent,
the evanescence of the second term means r;-VA=0 for i=1, 2. Since ry, r,
were arbitrary, this yields r-V =0 for all re R, which means linear degeneracy.

Proof of Theorem 2 Since grad A is orthogonal to R everywhere, the restriction
|y is a constant for any ye % which will be denoted s, in the sequel. Consider
a yeZ and two arbitrary states u~, u* €x. Then (1.4) holds with s=s,. Integra-
ting along any curve u: [0, 1] — x which joins u™ to ut yields

1 1
f@H)—fw)=[Df @) w@de= [ Au@) v'@)dr=s,u"—u")
0 0

because of u'(t)eR(u(r). We have thus shown that, for any y, all pairs
(u™, u*)ey x x define contact discontinuities. In order to prove the rest of the
theorem, fix ye%, u~ ey, and a sufficiently small number 6>0. Consider now
any (u*, s)eU xR with

fh)—f@w)=s@" —u")
and
lut —u~|<é, |s—s,|<0.

We will prove that actually u* ey, s=s,. For any point uey, we have

f@H)—f@)=f@")=f W) +s,u—u"),
which yields

£ —f () —su* —u)=(s—s)(u—u")=rc.

Let R denote the Df(u~)-invariant complement of R(u") in R" and choose
u to be the locally unique point in y with u* —ueR.
Now, on one hand

c=fu")—f()—su* —u)
=(_‘} Df(ru* +(1-—‘t)u)dr—sI) (u*—u)
0

=Df ™ )—s,1+0(0)(u" —u).
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Since (D f (u™)—s,I)| R is non-singular, this implies that

ce(I+0()R
and
c=0 onlyif u=u*.
On the other hand,
c=(s—s)(u—u")e(I+0(5) R(u™).

For sufficiently small 4§,
(I+0(9) R™)n(1+0(5) R={0},

which implies u=u", i.e. actually u* ey and s=s,. The proof is complete.

3 The geometry of compact linear degeneracy

In this section, Theorems 3 and 4 will be proved. They deal with the special
case that the foliation associated with a linearly degenerate mode contains a
compact leaf. Theorem 3 proves an important consequence of this geometric
property, whereas Theorem 4 establishes its structural stability. Theorem 3 is
proved by applying a topological argument to the Rankine-Hugoniot conditions
(cp. [2]), Theorem 4 by viewing the leaf as an invariant manifold of an appro-
priate flow.

Proof of Theorem 3 Definesets 4,47, A* cU xR,and amap F: U x R >R"*!
by
A ={(u, s)|s<A(u) and [s, A(w)) "o (D f () =2},

A" ={(u, s)|s>A(u) and (A(u), s]na(Df (u)=2}.
A={(u, s)|s=A(u)}=04"noA*,
F(u, s)=(f(u)—su, s).
Consider a compact contact leaf ye.# and let
C=xx{s}c4.

As consequences of Theorem 2, F maps all of C into one point goeR"*! and
C is isolated in F~!(gy), ie. there exists an open neighborhood P,= cU of
C such that

F~l(go)nR=C.
Moreover, R, can be chosen such that also
PcA~vududa®,

Since go¢F(0R), there exists a connected open neighborhood QocR™*! of
o such that F(0R) N Qo=2. For Qy=Q,\F(4 N B) we claim

() QocF(RnAT)NF(RnA™).



588 H. Freistiihler

Assuming (i) for a moment, we choose any geQp and find p~"eRnA",
pteBnA* with

F(p7)=F(p*)=q.

By the definition of F, p~=(u", s), p* =(u", s) for a certain triple (u~, u*, s)eU
x U xR which also satisfies the Rankine-Hugoniot conditions (1.3). Since
pteA*, (1.2) as given by this triple defines a shock associated with 4. Moreover,
since By, can be chosen to be an arbitrarily small neighborhood of C, such
triples can be found arbitrarily near y x x x {s,}. These are structurally stable
since Qp is open. Thus Theorem 3 will be proved once (i) is shown to be true.
We show that Qo F(B,nA™"). This is a consequence of the following three
facts:

(i) F(RNAT)NQ+2,
(i) I(F(RNA*)NQo=2,
(iv) Qp is connected.

Here, (ii) follows obviously from the local behavior of F near any point in
C; (iii) follows from

OF(BNnA")NQoc=(F@R)NF(ANR)N Qo
cF(0R)NQo;

(iv) follows from the fact that the codimension of F(A) is at least 2, which
in turn is a consequence of

TA=(kerDF)| A.

Thus Q,c F(BynA™"); by analogy Q= F(Fyn A ™). These yield (i) and the proof
is complete.

The proof of Theorem 4 is based on the following fact, which is an obvious
consequence of the fundamental theorem on normally hyperbolic invariant man-

ifolds (see [6]):

Lemma. Let veC® (U, R") be a smooth vector field on an open set UcR" and
McU a compact smooth submanifold which is stationary for the (local) flow
of v: v|M=0. Assume that at any ue M the eigenvalue 0 of Dv(u) has algebraic
multiplicity equal to dim M and there is no other purely imaginary eigenvalue
of Dv(u). Then for any vector field ¥ sufficiently close to v there is a unique
smooth submanifold M close to M which is invariant under the (local) flow of
7.

Proof of the Lemma. Note first that it is unimportant whether we have flows
or only local flows, since we are only interested in their behavior on a compact
neighborhood of M in U. Assuming tacitly that, whenever necessary, vector
fields have been redefined outside such a neighborhood so as to make their
local flows global in time, we will only speak of flows in the sequel. If &:
U xR - U is the flow of v, we have to consider the advance maps &,=®(-,t):
U - U, which are governed by

d

E¢‘=v°¢t,. ¢0=1d
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(cp. [1]). We need to show that, for t>0, M is normally hyperbolic invariant
under @,, ie. (cp. [6]) the tangent bundle T, U of U along M decomposes
as

T,U=V_®TM®V,,

where the subbundles V_, TM, V, are invariant under the differential D &,
of @, and V_[V,] is contracted [expanded] more sharply than TM. Since
&, |M =id,, for all teR, D, satisfies

%D¢,=DUD¢,, D®y=1 at M

and thus
D®,=e'”” at M.

Thus, the D v-invariant subbundles V_, TM, V, of Ty, U corresponding to eigen-
values of D v with negative, zero, and positive real part are also invariant under
D ®,. Obviously, for any fixed t>0, the restriction of D®, to TM is identity,
and its restriction to V_[V,] has only eigenvalues of modulus less [greater]
than 1. From this it follows easily (cp. e.g. Lemma 4 on p. 147 of [1]) that,
with respect to a suitable metric, D @, contracts V_[expands V,] more sharply
than TM.

Proof of Theorem 4 For any ye# denote the constant value of f—s,idy on
x by ¢,. Theorem 4 follows from applying the Lemma with M=ye%# being
any compact contact leaf and

v=f—s,idy—c,.
Obviously, along y, v=0 and Dv=D f— Al so that

kerDv=R=T}y.
By hyperbolicity, the algebraic multiplicity of the zero eigenvalue equals dim R,
and the other eigenvalues are real; so the assumptions of the Lemma are satisfied.

It yields the existence of open neighborhoods U,cU of y and QocR"*! of
(¢, s,) such that for any vector field

i=f—sidy—c

with (c, s)eQ, there exists a unique compact submanifold M c U, which is the
maximal invariant set in U, for the flow of #. On the other hand, there exists
a neighborhood U, < U of x such that (c,, s;)€Q, for any je & with jn U, +@.
- Now, choosing any such 7 and setting

(c, 8)=(cg, S3)s

we find that the corresponding M must coincide with ¥, which implies that
¥ is compact.
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4 Viscous profiles for shocks associated with compact linear degeneracy

Theorem 5 establishes the existence of viscous profiles for (some of) the shocks
found in Theorem 3. Here we prove Theorem 5 by applying the same idea as
in the proof of Theorem 4 to a different flow.

Proof of Theorem 5 The viscous counterpart of (1.1) with respect to a given
viscosity, a smooth matrix field B: U —IR"*" on the state space, is the system

(4.1) W, (x, )+ (f (W(x, ), =(B(W(x, 1) W,(x, 1)),
of partial differential equations. A solution of the form
4.2) w(x, t)=w(x—st)

is called a traveling wave of speed s for (4.1). If w tends to limits u~, u* for
x — — 00, X = + 00, respectively, w is called a viscous profile of the corresponding
discontinuous solution (1.2) of (1.1). In this case, w is a heteroclinic orbit of
the system

4.3) Bww=f(w)—sw—c (c=fu*)—su?)
of ordinary differential equations that runs from u~ tou™:
4.9 w(—o)=u", w(+o0w)=u".

We assume that the viscosity B is strictly stable. This very natural requirement
was introduced in [9], where also its meaning and implications were investigated
thoroughly. We will make use of an algebraic property only that has been
demonstrated in [9]: for all ue U there exists a 6, >0 such that for all nelR

4.5) keo(—inDf(u)—n?Bu)=Rek < —don>.

We consider a compact contact leaf ye# and let — as before — 5,€R, ¢, eR"
denote the (constant) values of A and f—s,idy on . We show that the vector
field

4.6) vp=B7(f—s,idy—c,)

satisfies the assumptions of the Lemma along M =y. Obviously, vy vanishes
on x, and

4.7) Dvg=B~'(Df—AI) on y,
so that
4.8) kerDvg=ker(Df—AI)=R=Ty on jy.

Next we prove
4.9) image D vy ker D vy ={0} along ,

which together with (4.8) implies that the eigenvalue 0 of Dvyp has algebraic
multiplicity equal to dim y.
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Consider an roeimage D vg(uo) N ker D vg(uy), i.e.

(4.10) ro=Bg!Aya withsome a
and
4.11) BylAyry=0,

where 4,, B, abbreviate D f (uo) — A (uo) L, B(uo). (4.10), (4.11) are equivalent to

(4. 1 2) AO ro — 0
and
(4.13) moBoro=0 forany m, with myA4,=0.

Assuming for a moment that 0 is a simple eigenvalue of A,, i.e. [=1, we find,
for nelR, n near 0, an (eigenvalue, eigenvector)-pair (u, m) of —i Ag—#By:

(4.14) m(n)(—iAo—nBo—p(m1)=0
which depends smoothly on 5 and satisfies
(4.15) u(0)=0, m@O0)=my+0, myAy,=0.

Differentiating (4.14) and evaluating at =0, we get
4.16) mo(Bo+ ' (0)I)+m'(0)i Ao =0.
Multiplication by r, yields

(4.17) WO)ymyro=—myBgyry.

By (4.13), (4.15), the right hand side of (4.17) vanishes, and (4.5) implies y'(0) 0.
Thus (4.17) yields

(4.18) myro=0.

By the biorthogonality of left and right eigenvectors, this implies r,=0, which
proves (4.9) for I=1. For general |, 0 is still a semi-simple eigenvalue of A,
in the sense of [7], and as a consequence of Theorem 2.3 in Chapt. 2 of [7]
we can still apply the same argument with an appropriately chosen family (u, m):
(4.9) is considered proved. Finally, assume that, at a point ugey, D vg(u,) has
a non-vanishing purely imaginary eigenvalue i ¢ <0, i.e.

4.19) B~ '(ug)(Df (ug)—s, ) r=iar foran r=0,
or, equivalently,

(4.20) (—iaDf(ug)—a®B(ug)) r=—ias,r.
With k= —ias, this means

4.21) keo(—ioDf(ug)—a® B(uy)) and Rex=0,
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which contradicts (4.5) for n=a. It follows that D vg(u,) cannot have any non-
vanishing purely imaginary eigenvalue for any uy,ey. We have thus shown that
vp satisfies the assumptions of the Lemma along M =y.

Now, let again U,, B, Q, denote sufficiently small neighborhoods of yx,
x {s,} and (c,, s - Again, for any (c, s)eQ, we find a unique smooth I-dimension-
al submanifold M < U, which is the maximal invariant set in U, for the flow
of the vector field

4.22) 55=B" 1 (f—sidy—oc).

Now assume that (c, s)¢ F (A4). Then any rest point uo of iy which lies on M
is necessarily non-degenerate: in the notation used in the proof of Theorem 3,
either (uq, s)e A~ or (ug, s)eA™. Since M is invariant under the flow of g, iz| M
is tangentlal to M, of course. As a rest point of 5| M, any such u, is a node
which is stable or unstable according to whether (u,, s)e 4~ or (u,, s)eA™. Since
the rest points of iz are the same as the rest points of =1, Theorem 3 guarantees
the existence of unstable and stable nodes, which have been called u~, u* there.
Choose now an arbitrary unstable node u~ of #3| M, and consider any orbit
w in its unstable manifold. If /=1, M must be a regular closed non-selfintersect-
ing curve. It is obvious that w cannot run all around M, but must terminate
in another rest point u*, a stable node. Now consider the case of arbitrary
I, on assuming, however, that 7z is gradient-like, i.e. there exists a (Lyapunov)
function pe C* (U, R) that increases along any orbit of &5. Since ¢ is increasing
and at the same time bounded on w, it is again obvious that w connects the
unstable node u~ to a stable node u™.

It is obvious that in all cases the established structure persists under small
perturbations of (c, s).

Appendix. Application to magnetohydrodynamic shock waves

Plane magnetohydrodynamic waves are governed by the equations

pet(po)=
(pa)+(pa®+p+31|b)),=va,,
(A1) (pa)+(pxa—b),=pa.,

bt+(ab_a)x=ﬂbxx
E+(@E+p+3|bP)—a-b),=v(aa),+pu(a-a).+nb-b) x+x 6O,

where p, ® >0 denote density and temperature, aeR the longitudinal velocity
and aeR? the transverse velocity (i.e. the components of the velocity vector
parallel resp. orthogonal to the direction of wave propagation), beIR? the trans-
verse magnetic field (since the magnetic field is divergence-free, its longitudinal
component is a constant, which has been chosen to be 1 here by normalization);
p=p(p, ©) is the pressure which we assume to satisfy Weyl’s conditions, and
E=p(e+4(@*+|al?)+4%|b|? is the total energy with e=e(p, ©) being the inter-
nal energy, eg>0. The coefficients v and u are convex combinations of the
two fluid viscosities, 7 is electrical resistivity, x the heat conductivity. For “real”
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magnetohydrodynamics, these dissipation coefficients are all positive; setting
them to zero makes (A.1) the hyperbolic system of conservation laws describing
“ideal” magnetohydrodynamics. (See e.g. [A2] for a derivation of the equations).
The hyperbolic system has the well-known rotational Alfvén mode, and our
primary interest here is in viewing certain shocks as associated with this mode
and applying the previously described ideas to them; the result is

Theorem A.1 For any given value of (v, p, n, k)e(R ,)*, certain magnetohydrodyn-
amic shocks associated with the rotational Alfvén mode possess viscous profiles.
The heteroclinic orbits (of (A.2) below) that represent these profiles are structural-
ly stable.

Proof. Restricting attention without loss of generality to stationary discontinui-
ties (ie. s=0 in (1.2), 9/0t=0 in (A.1)), we find that traveling waves of (A.1)
are described by

(A.2)
ul, 0 00\ /aV ma—b—c,
0 nI, 00} b ab—a—c,
0 0 volla]™ ma+p+4|b?—c,
0 0 0x/ \®/ \me—im(a®+|al*)—4a|lbl*+a-b+a-co+b-c;+ac,—c,

where meR, ¢, ¢;€R? ¢,, c;eR are constants of integration and p, e are

evaluated at p=%. Note that the first equation in (A.1) does not give rise

to a differential equation for the traveling waves, but to a constraint (namely
constancy of the mass flux m=pa). This occurs since the viscosity matrix of
(A.1) as it stands is obviously singular. For the same reason, Theorem 5 cannot
be applied literally to (A.1), (A.2) since, of course, a singular viscosity cannot
be strictly stable. However, we can still view (A.2) as

(A.3) Bw' =v(w)

where w=(a, b, @, @) attains values in U=IR*x(R,)? and the meaning of v:
U - RR® BeR®*® is obvious. Assume in the following that c, =0 (which because
of Galilean invariance means no loss of generality) and m+0 (since we are
not interested in entropy waves here, which are characterized by vanishing mass
flux). Now, if also ¢;=0 and c,, c; are sufficiently large, the fixed point set
v~ 1(0) obviously contains a circle

(A4) x={(@a b, o ©)cUla=m"1b, |b|=Bo, a=m"", @ =6}, fo, O¢>0.

(x corresponds to a contact leaf associated with the linearly degenerate Alfvén
mode; any two elements of it give rise to a contact discontinuity traveling at
Alfvén speed, cp. [A2].) Theorem A.1 follows from applying the lemma stated
in Sect. 3 to the invariant manifold y, in complete analogy to the proof of
Theorem 5. Obviously, it suffices to check the following

Auxiliary Lemma At any uey, the eigenvalue 0 of B~ Dv(u) is simple and there
is no other purely imaginary eigenvalue of B~ D v(u).
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To see this, we compute that, at u=(a, b, a, O)ey,

m12 ‘—12 0 0
—‘Iz m_llz b 0
(A.5) Dv(u)=

dp
T
0 b m+da Pe

0 0 0 meg
and write this as

Ass A
A6 A=[“55 51)
48 (AIS Ay

with (j x k)-matrices 4, j, ke {1, 5}. Now,
(A7) B 'Dv(u)=B~'2A4AB'Y?* with A=B 124B" 12

so that it suffices to show that 4 has the properties claimed for B~ D v(u)
in the assertion of the auxiliary lemma. We decompose

_(Ass 151)
(A.8) Z-(Zns 211

is analogy to (A.6). It is obvious that 4 is symmetric and 4, 5 vanishes, proper-
ties inherited from analogous properties of A.

Since A5 is symmetric, it can be diagonalized by a rotation 0€0(5). Trans-
forming 4 by O x 10 (6) yields

yi T
wn  A-{3 D)romvioxr - 5)

Since 355 is diagonal and Z s=0 ais upper triangular. The eigenvalues of
A are the diagonal elements of zi ie. the eigenvalues of A55 and the value
A;;=x"'meg. It is obvious that they are all real numbers. Since eg+0, the
existence and simplicity of the zero eigenvalue of 4 follow from

(A.10) rank A5 =4.

Keeping in mind that b+0 on y, this is easy to check. The proof of the auxiliary
lemma and thus of Theorem A.1 is complete.

We conclude by a very brief discussion of the context around Theorem A.1,
referring the reader to [A4] for a more detailed account. Viscous profiles for
magnetohydrodynamic shock waves have been the subject of many previous
investigations, so [A5, A3, A8]. It is well-known (since [AS5]) that for ¢, +0
(A.2) has up to four rest points uy, uy, u,, u3€U (where the numbering is as
usual chosen according to decreasing value of the a-coordinate). These rest
points may or may not exist for a given value of ¢, and also u, and u, or
u, and u; may coalesce, but whenever u; exists and does not coalesce with
any of the other zeros of v, it is a hyperbolic fixed point of (A.2) with stable
manifold of dimension i. All discontinuities (1.2) with u*=u;, u~ =u;, i,
j€{0, 1, 2, 3} satisfy the Rankine-Hugoniot jump conditions. However, only those
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with i<j can have viscous profiles at all. (This follows from the fact that (A.2)
is gradient-like, see [AS]). So viscous profiles of six different types might exist,
often denoted as

(A.11) Ug Uy, Uy = U3z, Uy Uy, Ug > Uy, Ug— Uz, Uy = Us3.

Of these, the first two are the so-called fast and slow shocks and the remaining
ones are called intermediate shocks. The existence of viscous profiles uy— u,,
u, — u3 has been proved several times (see [A5, A3, A7]). Also it is well-known
that for any fixed intermediate shock there are choices of the dissipation coeffi-
cients v, u, n, keR, such that the shock has no viscous profile (with respect
to the B defined by these coefficients) (see [AS, A3]). In contrast to this, results
obtained in [A8, Al, A10] suggested strongly that intermediate shocks may
possess viscous profiles. Notice that the shocks considered in Theorem A.1 are
of type u; — u, since they are associated with the eigenvalue given by the Alfvén
speed, cp. [AS5]. Thus we can restate Theorem A.1 as follows:

Theorem A.1” For all (v, u, n, k)e(R )%, there are intermediate shocks u, — u,
which have a viscous profile, given by a structurally stable heteroclinic orbit.

Actually, in [A9] it was already shown that there exist values of ¢ and
(positive) values of v, u, #, k such that the intermediate shock of type u, —u,
has a viscous profile. However, from the results in [A9] one cannot tell for
which choices of the dissipation coefficients this happens. Nor does one know
whether the corresponding orbit is structurally stable.

Note now further that for the shocks under consideration the magnetic field
b does not vanish on either side since |b~|~|b* |~ B,>0. Note also that in
the absence of dissipative effects intermediate shocks are dynamically unstable
(cp. e.g. [A2]). Thus, another trivial consequence of Theorem A.1 is

Theorem A.2 For an arbitrary choice of the four positive dissipation coefficients
in the dissipative version (A.1) of magnetohydrodynamics certain magnetohydro-
dynamic shock waves with magnetic field b+0 which are dynamically unstable
in the ideal framework possess structure.

Here, structure is just another frequently used word for viscous profile. Note
that for b=0 the existence of a viscous profile uy— u; follows trivially from
[A6]. This can be used to derive Theorem A.2 much more easily than in the
above way, see [5] and [A4]. In contrast, no easier way than the above of
proving Theorem A.1 (A.1’) is known to the author at present.
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Note added in proof

As I learned recently, the fact that constant higher multiplicity implies linear degeneracy was
proofed already in Boillat, G.: Chocs charactér tiques. C. R. Acad. Sci. Paris, Ser. A, 274,
1018-1021 (1972). I think that this basic property should become known more widely than
it has in the past.



	
	Linear degeneracy and shock waves.


