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Introduction

The purpose of this paper is twofold. First, we wish to present some of the
unpublished results of Wesley Browning, and secondly, to generalize them. Some
comments are in order.

Browning’s results appeared in his thesis and in three pre-prints written
at ETH in 1979. These papers are extremely difficult to read, because they
are written in a very general setting. In addition, some of the results attributed
to other authors either were not quite there, or else they did not clearly imply
what Browning claimed. All in all, these very important results deserved a thor-
ough revision and abridgement. In addition to this, we generalize the results
from homotopy equivalence to partial homotopy equivalence, i.e. equivariant
homology equivalence of finite covers. Some of the algebraic results of this
paper have been done independantly by Linnell [Li].

Basically we work with pointed lattices over a finite group Q and with
their localizations at the set u of primes dividing the order of Q. If K is a
2-complex with fundamental group G and 0: G — Q is a surjection, we construct
a group cl,(K) using the cover K of K associated to ker(#). We define a total
obstruction to partial homotopy equivalence in cl,(K) which is defined for all
2-complexes L with fundamental group G and Euler characteristic x(K). This
obstruction depends only on the Q-lattices, Z(K)c= H,(K) and X,(L)<H,(L),
of the spherical elements together with a “reduced” k-invariant. For fixed K
and 0, there are only finitely many possible lattices N which localize to X(K),
as pointed lattices. This means the obstruction lies in a finite subgroup of ¢l (K).

Browning obtains a realization theorem that we do not reproduce, since
he works with finite complexes of any dimension. That makes our definition
of ¢l,(K) slightly different from his. At any rate we are able to locate the obstruc-
tion as a torsion element in a quotient of K,(ZQ, u), which is defined to be
the quotient of K, (Z, Q) by K,(ZQ).

There are two technicalities. The first condition is that H,(ker #) must be
a lattice. This does not apear to be a serious setback. For example, if G is
a finite free product of finite abelian groups, its commutator subgroup has free
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Schur multiplicators. The second condition is that Q satisfy Eichler’s condition.
Again, this is not a serious constraint, since “most” finite groups satisfy Eichler’s
condition.

Section 1

Let G be a fixed group. We consider 2-dimensional CW-complexes K with
only one vertex K@ (the zero skeleton). All connected finite complexes are
simply homotopic to one such. In general, we look at pairs (K, ¢), where ¢
is an isomorphism, ¢: n,(K, K°) - G. Given any two such complexes K, L,
there is a map f: K — L such that f, is an isomorphism of fundamental groups
making the diagram

(K, KO —L— n, (L, 1)
") ]
G

commute. Thus, we can identify the fundamental groups of K and L via )

Let 6: G — Q be a surjection of groups with kernel N. Let K be the covering
of K associated to N (strictly speaking to ¢ !(N)). Given K and L and f
as above, there is a unique lift f: K —L of f sending the preferred base point
of K to that of L.

(1.1) Definition. K and L are said to be partially homotopy equivalent with respect
to Q if f induces an isomorphism of integral homology.

(1.2) Remarks. 1) Among the pairs (K, ¢) as above, this is an equivalence
relation: If L is partially homotopy equivalent (with respect to Q) to M via
amap g: L— M, then the lift of go f is go f; and it clearly induces an isomorphism
H,(K)—- H,(M).

2) Clearly the isomorphism of homology in the definition is Q-equivariant.

3) Partial homotopy equivalence with respect to G is just homotopy equivalence,
since in that case K=K is the universal cover. At the other extreme, partial
homotopy equivalence with respect to 1 is homology equivalence (with
isomorphism of 7,). Thus, partial homotopy equivalence is necessary for homo-
topy equivalence and sufficient for homology equivalence.

More generally, Browning ([Br], p. 56) considers (G, m)-complexes, that
is CW-complexes (K, ¢), not necessarily 2-dimensional but with n;(K)=0, 2<i
<m—1, where m is the dimension of K. The definition and remarks above
generalize to this case. Browning showed that if G is finite (with one mild extra-
condition, see below) and if the Euler characteristic is not the minimum possible
then any two (G, m)-complexes with same Euler characteristic are homotopy
equivalent. In the finite abelian case (G, 2)-complexes have been classified in
all cases [Br 3], [M], [Si], and Section 9 below.

Section 2

In most of this paper we will consider (G, 2)-complexes only. Given K, L, f
as above, it is possible to assume that K =I") and that f|KV is the identity.
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This can be done by altering the spaces by simple homotopy equivalences.
In that case f is a homotopy equivalence if and only if either vertical arrow
in the diagram of G-modules

0 H,(R) C,(K) — B, (K)——0
l U I
0~—’H2(Z) ’Cz(z) ‘;BI(Z‘).—_’O

is an isomorphism. The equality of B, follows from our assumptions. We can
reduce the problem to an easier necessary condition as follows: Assume that
6: G—Q is a surjection with kernel N. Then the complexes Z ®y C, (K) and
Z®y C, (L) are just C,(K) and C, (L), where K is the cover associated to N,
asin § 1. We obtain a diagram

00— X,(K)—— C,(K)—— [, (R)——0
() L L I
0—— £5(0) —— C5(D) —— L(L) ——0

where X,(K)=Im(H,(K)— H,(K)) and I;(K) is the quotient. The canonical
isomorphism I (K)=1I,(L) is obtained by observing that the diagram

0 ——— H,(R)——> C;(K)—— B, (R)——0
! ! l
0—— H,(L) —— C,(D) » By([) ——0
becomes
0—— H,(N)—— I;(K) —— B, () ——0
(la) i ! I
0——H,(N) — (L) — B,(L) ——0

upon division by X, on the left and middle terms of each line. Then f will
be a partial homotopy equivalence with respect to Q if and only if either vertical
arrow in (1) is an isomorphism of Q-modules.

For our purposes we shall assume that Q is finite. Let R=ZQ and consider
I'=T,(K) as in diagram (1). Any R-free presentation

0-M->F->TI-0
can be extended to a free resolution
.o F,>F,>F—*—>F->TI->0
where k factors through an epimorphism which we will also call «, k: F; -» M.

Thus k determines a class ke H! (Homg (F;, M)=Extk(I", M).

(2.1) Definition. The class keExt}(I', M) is called the reduced k-invariant of
M. Notation: k =k (M).

Convention. Whenever we use k, we will mean x(M), consistently.
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(2.2) Proposition. Given any other presentation 0 > M’ — F' — I' -0, then a mod-
ule map p: M — M’ extends to a map ji: F — F' making the diagram

0 > M — F »[——0
[ s [
0 — M’ > F’ —T >0

commutative, if and only if the induced map p,: Exty(I', M) — ExtL(I', M’) sends
K(M) to k(M').

Proof. If p extends to a map j then, by the freeness of F,, we have a chain
map

o Pyt Py R P P e
NM
/‘M\

cos i B yF|— 5 F 'Y

It is clear from the commutivity of the above diagram that U, takes k to k'
Now suppose p, takes k to k'. We know that there exists a chain equivalence

*9

s F—8  F P 40
lﬁ:l *ZJ lhl #ol “
o F——F—F — F' > I — 0.

We will modify this chain equivalence to a chain equivalence § such that Vol M
=p. Let i: M—F be the inclusion map and similarly with i': M’ — F’. Let
k: F{ > M’ and k': F{ - M’ be the respective representative maps of the k-invar-
iant. Since p, sends k-invariant to k-invariant, the image of x will differ from
k' by a coboundary, and so there exists a map h: F — M’ such that Hok—K ol
=ho0,. Since F is free and k' is onto, we can lift h to a map A: F - F| so
that k’oA=h. Now define /o=y +i'ch(i': M'S F’) and §, =, + A-d,. Other-
wise let Y,=y,. The ;s will be a new chain map and the restriction of
toMwillbe p. O

Such maps can be realized geometrically:

(2.3) Proposition. Given a chain map p,

0—— 2,(K)—— C,(K) —— I[;(K) ——0
g I I
0—— %,(L) —— C,([) —— L() ——0,

then there exists a map g: K — L such that the induced chain map is My

Proof. Given a map f: K — L such that f,=y: n,(K)—>x,(L) is the identity,
then the induced chain map will differ from u, by a module map &: C,(K)
— X,(L). By composing with the projection n: C,(R)- C,(K) and lifting to
7m,(L). (We can do this since C,(K) is free and n,(L)— Z,(L) is onto), we get
8: C,(K)—m,(L) which “projects” to 6. So p, is induced by a map on the
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chain complex of the universal covers of K and L which differs from 7. by
the map 8. By a Puppe modification (See [L 1], Lemma 1.4, p. 656) we may
realize the map on the universal cover as a geometric map g: K — L with g,
=f*' (|

Section 3

Our complexes K are finite so that I(K) is a finitely generated Q-module.
Thus we may assume F is a finitely generated free Q-module and, since Q
is finite, M is a finitely generated free abelian group. In other words, we may
assume M is a Q-lattice. We will do so hereafter.

Let gLat be the category of Q-lattices and Ab the category of abelian groups.
Let #: jLat - Ab be an additive functor with & (ZQ)=0.

(3.1) Definition. An #-pointed lattice is a pair (M, k) where M is a Q-lattice
and ke # (M).

Example. # (M)=Extg(I'; M) and k=x(M) as in (2.1). #(ZQ)=0 by [C-E],
8.2 a, p. 198.

(3.2) Convention. Hereafter Q is of finite order |Q|=n and u is the set of primes
in the decomposition of n.

(3.3) Lemma. If & is as in the definition, then n-% (M)=0, for all M.

Proof. Let M be a lattice, then there exists a finitely generated free module
F and a surjection n: F— M. Since M is a free abelian group, there exists
a group splitting s: M — F, such that ns=id,,. Define t: M - F as

t(x)=Y gs(g”"'x).

qeQ

Now t is a module map and n¢(x)=|Q|-x. So

F (M) 29, 7 (F)—Z2, |0|- F (M).

But # (F)=% (20" =0, so # (nt)=0 and |Q|-F (M)=0. []

(3.4) Definition. A Q-lattice map f: M — M’ is a local equivalence if it induces
an isomorphism f,: M, - M, where M,=Z,®, M and Z,, is the ring of integers
localized at u.

Observe that, in particular, Z, Q =(ZQ),.

A sequence P,: 0»PB,—...» PR —Z - 0, exact except at B,, P projective,
is called a truncated Q-resolution of length m over Z. Given P, consider the
lattice (M, k), where M =H,,(P,) and ke H"* 1(Q; M) is the (Postnikov) invariant
defined in (2.1).

' Quoting Bass cancellation, Wes Browning showed that any two pointed
lattices arising from trunated projective resolution of the same length and with
the same Euler characteristic will be “locally-equivalent” [Br2]. Secondly,
Browning showed that if the given Euler characteristic was above the minimum,
then any two such pointed lattices were equivalent. In other words, any two
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such truncated projective resolutions were chain equivalent. Thirdly, Browning
was able to show that at the minimum Euler characteristic level, the different
classes of equivalent pointed lattices could be equated to a particular finite
abelian group [Br2], [Br3].

We shall reproduce Browning’s results in our context. Many of the proofs
are the same or similar, but we reproduce them anyway for clarity and the
fact that Browning’s work is not published.

(3.5) Definition. Two #-pointed Q-lattices (M, k) and (M’, k') are stably equiva-
lent if there exist finitely generated free Q-modules F; and F,, and an isomorph-
ism y: M@®F, > M'®F, such that # (Y)(k)=k'. If F,=F,, we say that the
pointed lattices are strongly stably equivalent.

Observe that, since # (M @ F,) =% (M), the statement % (y/)(k)=k’ is mean-
ingful. We say that ¢ is point-preserving.

(3.6) Theorem. Let M and M’ be Q-lattices. If

0-M->F->TI->0, and
0->M —>F —>TI-0,

are presentations of I, then (M, k) and (M’, ') are stably equivalent. If  is
the isomorphism above, it extends to an isomorphism F @ F; — F' @ F, which com-
mutes in the diagram

0O—MedF, ——F®F, —— T ——0

Y| l I

0— M @®F,— > F®F,— T —0.

Proof. Given the surjective maps F —I' -0, and F' — I -0, there exists some
chain map ¢ extending the identity on I':

O— M —S F >T »0
¢zl ¢1l H
0 — M’ — F’ > I” — 0.

Construct the mapping cone of ¢.

0 0
| l

C, F

l 0o L ™

C, rer
| N 100
Co r

| |
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This mapping cone gives us an exact sequence in homology:

) 0 H,(C,)»M—2> M - H,(C,)—0.

Now C, =T @Fis a finitely generated free abelian group, so H,(C,) is a finitely
generated abelian group and hence a finitely generated module. Consequently,
there exists a finitely generated free module F, and a surjective map F;, — H, (C,).
Since F, is free this map will lift to a map A: F; > M'. The induced map ¢, @ 4:
M @ F, - M’ will be (a) surjective and (b) point preserving:

(@) ¢, @ 4 is surjective since the sequence (2) is exact and A commutes with
the map M’ — H,(C,).

(b) ¢, @ Ais point preserving. Consider the commutative diagram:

0—— M®F, —— F®F, —— T —0
3) [v-02 [ [

O— M —— F —I'—0.

Now re-do the above construction with diagram (3). Let M =M ®F,, F=F@® F,,
etc. Since ¢, is onto we have that H,(C,)=0. The map C, —C, is split by
the identity on I'. Since H,(C,)=0, we have an exact sequence 0— H,(C,)
—C, - F' >0, which splits. So, in particular, H,(C,) is stably free. Let p: C,
— H,(C,) be the splitting map, and consider the diagram:

0——H,(C,)—— M M 0
ke i
0o—— C, F—— 0

R R

The map p-o~!-jis a splitting for the map H,(C,) — M. So that M, and therefore
M, is stably isomorphic to M. It is similar to the above that the isomorphism
M=M'@® H,(C,) is point preserving. [J

(3.7) Corollary. In the theorem, if F=F' then (M, x) and (M, k') are strongly
stably equivalent.

Proof. With the notation of (3.6) since F;, ® F~F,@®F as Q-modules, and Q
is finite, the Z-ranks of the F; are equal and so are their Q-ranks.

Tietze’s theorem as presented in [Wh] also implies the following corollary
to (3.6):

(3.8) Proposition. If K and L are finite 2-complexes with isomorphic fundamental
group then K v nS* and Lv nS? are homotopy equivalent for some n. (Here nS*
is the n-fold wedge of 2-spheres).

(39) Lemma. Z, Q is a semi-local ring for any finite set of primes v.

Proof. By [Sw 2], Lemma 9.2, there are only a finite number of maximal ideals,
so Z, is semi-local. Also, Z, Q is finitely generated since Q is finite. Therefore
Z,Q is semi-local. [J

(3.10) Definition. For a pointed lattice (M, k) define (M, k), =(M,, k).
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Observe that k lies in & (M) (in general &# (M,) makes no sense as M, is
not finitely generated as a group). Now, let v=u=the primes in the order of
Q, we are in the situation of Definition (3.5). Let ¢: M, — N, be an isomorphism
of localizations. Let r be an integer prime to |Q| and such that r¢(M)c N
(this is possible) and let s satisfy rs=1 mod|Q|. Then the formula s.% (r ¢) gives
a well-defined map & (M) — % (N).

(3.11) Lemma. (Semi-local cancellation for pointed modules.) If [(M,
k®ZQ],=[(N, )®ZQ], then (M, k),~(N, l),, for any finite set of primes

VO uU.

Proof. Browning ([Br2] (a), p. 12) refers to work of [Wi] to prove this. We
shall prove it directly by modifying the unpointed proof in [Sw 1], Lemma
11.7, p. 176. We merely need to check that the defined maps send points to
points.

Note first that since & (ZQ)=0, the notation [(M, k)@ ZQ], is consistent,
ie. keF (M ®ZQ)=% (M). Now suppose ¢: [M, k)@ ZQ],=[(N, h® ZQ],.
Let us consider the diagram:

0 >(N, Dy—— [(N,)®ZQ], ——Z,0 >0
N ¢
[(M, k)@ ZQ],.

Since i and ¢ are point preserving, so is ¢ ~'i and we have the exact sequence:

0 (N, ), L (M, k@ 2Q], —*— Z, 0 —0.

By composing with the appropriate injections j¢ is the sum of two maps :
M,—-Z,Qand 7: Z,Q —Z,Q where 7 is multiplication by reZ, Q. By a lemma
of Bass ([Sw 1], Lemma 11.8, p. 176), there is an me M, such hat r+y(m)=p
is a unit in Z, Q. Now consider the diagram:

z,0—4-7,0—"--7,0

®@ " ® v @

M, > m, »M,,,
id id

where —m(r)=rm. Notice that the composition h of the two maps described
above is a module isomorphism which, since it restricts to the identity on M,
is point preserving. Therefore the following diagram commutes:

A h lid

where the induced map A is point preserving. By the Five lemma, A is an
isomorphism. []
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(3.12) Corollary. Given any two ZQ-lattices M and M’ with 0 —>M —» F > T —0,
and 0—M'—F —»T —0, then the pointed lattices (M, k) and (M’, ) are locally
equivalent with respect to any finite set of primes v>u. (Note that the free module
in each short exact sequence is the same F.)

Proof. By Corollary 3.7, (M, x) and (M’ k') are strongly stably equivalent, so
they are strongly stably equivalent when localized. By Lemma 3.11, they are
locally equivalent. []

Section 4

In this section, u is the set of primes of the order n of Q (cf. (3.3)). Let v be
any set primes vou.

Let M and M’ be Q-lattices, and suppose f: M — M’ induces a local
isomorphism f,: M,— M,,. Since f=f,|M, f is monic. Consequently, we have
an exact sequence 0 - M - M’ — X -0, where X,=0. We say that such an
f v-localizes to an isomorphism, and that M and M’ are v-locally equivalent.

(4.1) Definition. Let A4,(M) be the set of Q-modules X which are epimorphic
images of M and which satisfy X,=0.

Notice that X is the cokernel of some map f: N — M of Q-lattices which
v-localizes to an isomorphism.

(4.2) Definition. Let G,(M) be the Groethendiek group of 4,(M), that is, the
free abelian group in the isomorphism classes [X] of modules X in A,(M)
modulo the relations [Y]=[X]+[Z] whenever 0 » X - Y- Z -0 is exact.

(4.3) Lemma [Br 1]: G,(M) is a free abelian group with basis {[S]|SeA,(M),
S simple}.

Proof. Use Swan’s rearrangement theorem, [Sw 2], Lemma 9.3.

(4.4) Definition. Let .#,(M) be the category whose objects are the lattices N
which are locally equivalent to M and whose morphisms f: N - N’ are module
maps which localize to an isomorphism.

(4.5) Lemma [Br 1]. For any N in 4 ,(M), G,(N)=G,(M).

Proof. Let ¢: M, — N, be an isomorphism. ¢ can be thought of as a Z,-module
isomorpism. Since M and N are finitely generated free abelian groups, M, and
N, will also be finitely generated Z,-modules generated by the free Z-generators
of M and N. Given these generators, the matrix representative of ¢ will have
rational numbers as entries. Let s be the least common denominator of these
fractions. So s¢ will map M into N and will still be an isomorphism on M,
s-¢: M,=N,. So we can assume, by changing ¢ to s- ¢ if necessary, that ¢(M)c
N. Now let m: M — S be onto with S simple and S,=0. Since ¢ is 1—1 and
N> ¢(M)=M, then N/¢(ker n) will contain an isomorphic copy of S. And there-
fore S must appear in a composition series for N. Therefore G,(N) and G,(M)
have the same free generators. []

The above proof provides us with an explicit identification G, M =G, N
which is independent of ¢. We need #-pointed versions of the above. The
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most important case is where & (M) is a finite abelian group. For example,
if #(M)=Exty(I', M) and k=K (M), this is satisfied.

(4.6) Definition. Let .#,(M, k) be the category whose objects are the pointed
lattices (N, I) which are v-locally equivalent to (M, k), with respect to v and
whose morphisms are maps f: (N, [) > (N’, I') which v-localize to isomorphisms.

(4.7) Lemma [Br 1]. #,(M, k) has finitely many isomorphism classes.

Proof. By the Jordan-Zassenhaus theorem for ZQ([Sw 2] p, 43), there are only
finitely many isomorphism types of ZQ-lattices of a given Z-rank. The Z-rank
of the modules locally isomorphic to M is the same as that of M. Since % (N)
is finite by (3.2) for any Q-lattice N, there can only be a finite number of such
pointed modules locally equivalent to (M, k). [

(4.8) Definition. Let (N, ]) and (N’, I') be pointed lattices v-locally equivalent
to (M, k). Let f: (N, ) (N', I') be any map that v-localizes to an isomorphism,
then define [ 1], as [cok(f)]eG,(M).

(4.9) Proposition. a) [ f], is well defined.
b) [fogl,.=Lf1.+[2l..

Proof. a) since f: (N, [)—(N’, I') v-localizes to an isomorphism, the cokernel
of f will localize to zero, and so cok(f) does represent an element of G,(N)
which equals G,(M) by (4.5).

b) Any map that localizes to an isomorphism must be one-to-one. Consequently,
given monomorphisms
g:(N,)>(N',I)and f: (N, I')>(N", ") then

0—- Cok(g) — Cok(f-g)— Cok(f)—0

So by the definition (4.2) of the Grothendieck group G,(M), [cok(f-g)],
=[cok(f)],+[cok(g)],. O

(4.10) Definition. Let Aut(M, k), be the subgroup of G,(M) of the [ f],, where
f: (M, k) — (M, k) v-localizes to an isomorphism. Define cl,(M, k) as the quotient
G, M/Aut(M, k),.

Normally we omit the reference to k and write cl, M instead.

(4.11) Lemma. If (N, I) is v-locally equivalent to (M, k) then cl, N=cl, M.

Proof. By (4.5) and symmetry, it suffices to show Aut(M, k),=Aut(N, I),. If
¢: (M, k)— (N, I) v-localizes to an isomorphism, there is a map y: N> M
so that ¢y and Y ¢ v-localize to point preserving automorphisms. Thus in
G,M=G,N, [¢fy],eAut(N, ]),, for any £ as in (4.10). By (4.9), [¢ fy],=[¢]
+0f 1+ W1l=0f1+[o¥],, so that [f],=[¢f¥],—[¢¥], is obviously in
Aut(N,]),. O

The above result allows the following:

(4.12) Definition. If (N, ]) is as in (4.11) and {: (N, ) (N', I') v-localizes to
an isomorphism, define {{>,=[cok({)], in cl, M.

Our main goal is to extend this definition for isomorphisms {: (N, ), = (N’,
I),. Since N < N, it is meaningful to talk about {(N). Unfortunately {(N) need
not be contained in N'. However, since N and N’ are finitely generated, there
exists re Z¥ N Z such that r{(N)c< N'.



Partial homotopy type of finite two-complexes 369

(4.13) Lemma ([Br 2]). If r is mutually prime with all the elements of v (notation
(r, v)=1), then there exists an r' withr|r’, (¥, v)=1 and r'=1 mod n.

Proof. Let s be the number such that rs=1 mod n. By the Chinese Remainder
Theorem there is an s'=smodn with s’ =1 mod p for all peu. Let ¥ =rs’. [J

We may now assume that r{ will (i) map N to N’, (ii) v-localize to an
isomorphism and (iii) be point preserving, the later since r=1+kn and, by
(3.2)(1+kn) I'=1, since n# (M)=0(3.3).

(4.14) Definition. If (: (N, I),— (N, I') is a v-local isomorphism, define {{),
to be {r{>,, where r{(N)c=N,reZ*nZ and r=1 mod n.

The above definition makes sense, for if r and s both satisfy the conditions
above then multiplication by r is a v-self-equivalence of (N, I). So by the defini-
tion of cl,(M), (4.10), {r-s->,=<{s-{D,. Similarly, {s-r-{>,={s-0),.

(4.15) Definition. Let (N, ]) and (N, I') be pointed lattices v-locally equivalent
to (M, k), then define the Browning Obstruction {(N, I), (N, I')>,=<{¢)>,ecl,(M)
for some local isomorphism ¢: (N, I), = (N, I),.

Note. The Browning torsion of a pair of 2-complexes will live in a subgroup
of cl,(M), where M is an “appropriate” 2" homology group and u is the set
of prime divisors of |Q|. However, we will need the other groups cl,(M) as
well. Eventually (in Sect. 6), we will need to show that for the right M,
cl,(M)=cl, (M) for finite sets of primes v > u.

Section 5

Hereafter Q is a finite group, and R, is the rational group algebra of Q. As
usual, u is the set of primes of |Q|. We denote the raiionals as Q.

(5.1) Definition. A ZQ lattice M satisfies Eichler’s Condition if for every simple
left ideal S of R, such that End S is a totally definite quaternion algebra, then
either S is not a direct sumand of QM or S@® S is a direct summand of Q M.

(5.2) Remark. According to ([Sw 2], p. 177 or [Br 1], p. 14) examples of groups
for which every lattice satisfies Eichler’s condition include all finite abelian

groups, all simple groups, and all finite groups whose order is not divisible
by 4.

(5.3) Eichler’s Theorem. ([Sw 2], p. 177 or [BR 1], p. 14): Let M be a ZG-lattice
and suppose M satisfies Eichler’s condition, then there exists a finite set of primes
vou such that, given any two epimorphisms f: M —S and g: M — S, with S
simple and S,=0, then there exists automorphisms ¢: S — S and n: M — M such
that

commutes, and n=id,, mod|G|- M.
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(5.4) Definition. A ZG-lattice M is said to satisfy ET(v) if any module locally
equivalent to M at v satisfies Eichler’s theorem for the given v.

(5.5) Proposition. For G finite, any ZG-lattice satisfies ET(v) for some finite
set of primes vou.

Proof. Let M be a ZG-lattice such that u'>u is the finite set of primes of
Eichler’s thorem. Then any v>u’ will also satisfy Eichler’s theorem. Now there
are only a finite number of lattices locally equivalent to M at u up to isomorph-
ism. Let v be the union of the finite set of primes that “works” in Eichler’s
theorem for each lattice locally equivalent to M. Now M will satisfy ET(v),
since any module locally equivalent to M at v is in the set of modules locally
equivalent at u, and all these modules satisfy Eichler’s theorem for v. [J

(5.6) Theorem [Br 1]. Suppose M satisfies ET(v). Let (N', I), (N, I) be Icoally
equivalent to (M, k) at v, then (N, I')=~(N, I) if and only if {(N', I'), (N, 0)>,=0
in cl,(M).

The following proof is taken directly out of [Br1], Theor. 2, p. 15 with only
minor changes.

Proof. If (N, I')=(N, ) then from construction {(N’, I'), (N, )>,=0 in cl,(M).
So suppose {(N, I'), (N, I)>,=0 in cl,(M). Let f be a map f: (N, I')> (N,
I) which localizes to an isomorphism. From the hypothesis { f»,=0, there exists
a map g: (N, ) (N, ), which localizes to an equivalence, so that [ f],=[g],
in G,(M). Now we have maps f: (N’, I')>(N, I) and g: (N, [)— (N, I) which
localize to isomorphisms, and {cok f)=<{cok g) in G,(N). Let cokf=X and
cokg=Y.

gaN—L any—¢ x50

0>sN—L s N—¥ ¥,

By 4.3, X and Y have the same composition series. That is, there are composition
series .
X=XyoX,2X,>...0X,=0 and

Y=Y, Y, 2Yo..0Y=0,

such that X;_,/X,=Y;_,/Y;=S§, is simple for all i.

Note that X and Y are both quotient modules of N. Let ¢: N— X, and
Y: N— Y be the quotient maps. Let Ny=¢ '(X,) and M;=y " !(Y). Let o;:
N,— N and B;: M;— N be the inclusion maps. a; and ; are module maps that
localize to isomorphisms, since (X;),=(Y),=0, for each i. Therefore the maps
Ext'(x;) and Ext!(B;) are also isomorphisms. Let x;=[Ext!(x)] (/) and y,
=[Ext!(8,)] *(]) be the “points” associated to N; and M,. So (N;, x;) and (M;,
y;) are pointed modules locally equivalent, in the pointed category, to (N, I).
Since N satisfies ET (v), by hypothesis, then by the definition of ET(v), so do
the N; and the M.
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Note that (N09 x()):(MO’ y0)=(N’ l) and (Nli I)'E(N,, xr)7 (N7 I);(Mr’ yr)
So it is sufficient to show that (N;, x;)=(M;, y, for each i. We will do this
by induction. To start the induction, (M, y,)=(N,, xo)=(N, I).

Now suppose that h;_y: (N;_, x;— ) > (M;_,, y;_,) is an isomorphism. Con-
sider the epimorphism ¢;: N,_; - S; given by N,_, - X,_, - X;_1/X;, and the
epimorphism y;: M;_,—S; given M, ,—>Y,_, > Y,_,/Y, followed by any
isomorphism of S;. Now we have two epimorphisms from i—1 to S;. That
is, ¢; and ¢;oh;_,. So by ET(v) there are automorphisms ¢ and n such that

z
%]

=
————
™

=z

hi - Vi
=1 — M;_, —S;

commutes, and n=id mod|Q|-N;_,. Note that h;_,on is an isomorphism. So
we have exact sequences

0->N>N,_;—-85;-0 and
0_'[hi—1°7l]_l(Mi)"Ni—1 -8§;—0.

So h;_,on restricts to an isomorphism from N, to M,. We merely need to show
that h;=h;_,on|y, is point preserving,

Finally, # is point preserving since by Eichler’s Theorem n=id mod|Q|-N,_;.
Since h;_, is point preserving by induction, k; is point preserving. []

(5.7) Corollary. The group cl,(M) is a finite abelian group.

Proof. By the theorm, (N, l)~<{(N, I), (M, k), is an onto map, .#,(M, k) — cl,(M,
k). Since the former set is finite, (4.7), then so is the latter.

Section 6

For & -pointed lattices we shall assume that & (M)=Exty(I', M), where u is
the set of primes which divide |Q|. Hereafter, k and ! will be in Exty(I', M),
and will usually be x(M ) and x(N) respectively, cf. (2.1).

(6.1) Theorem [Br 2]. Let (M, k) and (N, I) be two pointed lattices. Then if vou,
then (M, k),=(N, 1), if and only if (M, k),=(N, I), for any finite set of primes
v containing u.

To prove the above theorem we will need the following lemma:

(6.2) Lemma (Browning, [Br2]). Let M and N be ZQ-lattices, and let v be
any finite set of primes containing the prime divisors of |Q|. If G,(M)=G,(N),
then M @ N satisfies ET (v).

Proof. [Sw 2], Proposition 9.5. []

Proof of (6.1): The key fact to prove is that two pointed lattices are locally
equivalent with respect to any finite set of primes v>u if and only if the two
pointed lattices are strongly stably equivalent.
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One direction follows from lemmas (3.9) and (3.11), for if v is any finite
set of primes then Z,Q is semi-local, by lemma 3.9. By (3.11) strongly stably
equivalent modules are locally equivalent.

Now suppose (M, k),=(N, I),, we will show that they are strongly stably
equivalent, and therefore, by the previous paragraph, they will be v-locally equiv-
alent. To prove that (M, k) and (N, I) are strongly stably equivalent we will
follow second half of the proof of Theorem 4.11 of [Br 2], p. 16.

Let ¢: (M, k),=(N, I), be a local isomorphism. Since u v, we may choose
r as in (4.12) so that r¢ maps (M, k) to (N, I) and multiplication by r is point
preserving. So assume we started with ¢: (M, k)— (N, I). Since ¢ localizes to
an isomorphism, we know that ¢ is 1—1. Let X =cok(¢). Note that X, =0.
Since cl,(M) is finite by (5.7), [ X], has finite order. So thereisa Y(e.g. X® X ®
X ...®X) such that [Y],=—[X], mod{Aut(M, k),}. Rim’s Theorem, ([R],
Thm 4.12, p. 705) tells us that for any Y which localizes to zero (specifically,
Y is cohomologically trivial) the Y has projective dimension <1. That is, there
is a short exact sequence

00 —2 P X0,

with P and Q projective. We may assume that P=(ZQ), for some k=>2.

Now consider the map ¢ DyY: MDA Q—>N@ P. Then cok(¢p D Y)=X DY,
so [cok(p @ ¥)],=[X],+[Y],=0mod {Aut(M, k),}. So there is a v-local self-
equivalence h of (M, k) so that [h],=[cok(¢ ®Y)],. Now 0=<h @id,», in
cl,(M@®P). But M@ P is ET(v), by (6.2). By letting M@ ZQ be one factor
and ZQ*"! be the other factor, (6.2) implies that M @ P satisfies ET(v). But
{(M@P, k), (N®P, ))=<h®id,»,=0. So by (5.6) MOP=N®P, and we
are done. []

(6.3) Lemma. Let v be a finite set of primes containing u, and M a lattice, then
(X, <X, defines an isomorphism cl,(M)=cl,(M).

Proof. The map is well-defined since G,(M)<G,(M) and Aut(M, k),c Aut(M,
k),. The map is onto by (6.1). We merely need to show that the map is 1—1.
To show this, we need to define cI2(M), in the following way: consider pointed
modules of the form (N, @ N,, I, ®1,), where N, and N, are each u-locally
equivalent to M, and I, ®1,eT(M)@® T(M). A map f: N,®N,—N;@®N;, is
point preserving if T(f): T(N,) —» T(N;), i=1, 2, takes [, to ;. We can construct
GZ(M) as the Grothendieck group of the cokernels of local equivalences of
pairs as in (4.2) and define cIZ(M) as cIZ(M)=GZ(M)/{Aut(M ® M, k@ k),}.
Note that by (6.2) M @ M satisfies ET (v) for any v>u.

Now we can define the map j: cl,(M)— clZ(M), by merely sending (X},
to (X),, since simple quotients of M @ M are the same as those of M, and
the cokernel of a local automorphism of M can be realized as the cokernel
of a local automorphism of M @ M. j is obviously an isomorphism.

Now suppose {X),ecl,(M) such that (X),=0 in cl,(M). Let f: N>M
be a map with cokernel X, then (N, M),={f>,=<{X>,=0. Now j({X>,)
={(N® M, M@ M},. But this is zero, since j is an isomorphism. Since M ® M
satisfies ET(u), then by (5.6)) N®@ MM @ M. This implies that (N ® M,
M@M),=0, for any v. But (N®@M, M@ M),=j({X),). And since j is an
isomorphism {(X)»,=0 and cl,(M)=cl,(M). O
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Section 7
Notation

Let G—2> Q be a homomorphism onto a finite group. Let K be the cover
of K corresponding to Q. Let (X,(K), ), be the pointed lattice with X,(K)
the spherical elements of H,(K), and k the reduced k-invariant corresponding
to the short exact sequence 0— X,(K)— C,(K) - I,(K)—>0. Let u be the set
of the prime divisors of |Q|. To insure that I} is a Q-lattice, we impose the
condition that H,(ker ) be a lattice (See Section 9, examples 2 and 3, and
also (1a), Section 2).

(7.1) Definition. Let cl,(X,(K)) be denoted as cl,(K) and x(Z,(K)) be denoted
as k(K).
Recall from (4.10) that cl,(K) depends on the reduced k-invariant.

(7.2) Theorem. Let Q be finite, and H,(ker 6) a free abelian group. Let (N, I)
be any pointed lattice locally equivalent to (Z,(K), k) with respect to u. Then
(22(K), ©)=(N, |) if and only if {(Z,(K), k), (N, 1)>,=0in cl,(K).

Proof. If (Z,(K), k)=(N, I) then {(Z,(K), ), (N, )>,=0, by construction. So
suppose {(Z,(K), k), (N, D>,=0. By (5.5), (£,(K), k) satisfies ET(v) for some
v. By (6.3), {(Z,(K), ¥)(N, I)>,=0, we are done by (5.6). []

(7.3) Corollary. Let K and L be two finite 2-dimensional CW-complexes with

G=1,(K) 2 7,(L) and y(K)=x(L). Let 8: ny(K)—@ be a homomorphism onto
a finite group. Let u be the set of prime divisors of |Q|. Assume further that
H,(ker 0) is free abelian and that K (resp. L) is the cover of K (resp. L) correspond-

ing to ker(0) (resp. ¢(ker(6)). Then K and L are partially homotopy equivalent
with respect to Q if and only if

{(Z2(K), k(K)), (Z2(L), k(L))),=0 in cl,(K).

Proof. If x(K)=x(L) then in diagram (1), section 2, C,(K) and C,(L) have the
same rank. Consequently, Theorem (3.6) applies with M =X,(K), M'=ZX,(L)
and F=F'=C,(K). So (2,(K), k(K)) and (2 (L), x(L)) are strongly stably equiva-
lent, and by (3.11) they are v-locally equivalent for some v with ucv. By (5.6)
our conclusion follows with u replaced by v, which in turn implies the final
conclusion by (6.2). [

Section 8

Now we will use the exact sequence of Bass ([Ba], p. 494):

0-K,(Z20)—2— K,(Z,0)—2— G,—1— K((Z0) -0,
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where G, is defined as in (4.2), but generated by all simple ZQ-modules. In
particular G,(M)c G, for any module M. The map i, is induced by inclusion,
and w and y will be described shortly.

(8.1) Definition. K,(ZQ, u)=K,(Z, Q)/i.[K,(ZQ)].
We can write the Bass exact sequence as a short exact sequence:

0-K,(ZQ,u)—>— G,—— K,(ZQ)

Our goal here is to show that the map y sends every element of the form
{(Z,(K), x(K)), (Z,(L), k(L))», to zero. Consequently, when we are measuring
partial homotopy type obstructions, the obstruction will lie in K, (ZQ, u).

So let us now define w and y. Given any [X],eG,, by Rim’s theorem, ([R],
Thm 4.12, p. 705) there exists projective modules P and P’ such that

0—-P ->P->X-0.

y([X],) is defined to be y([X],)=[P]—[P'].- We may define w in the following
way. Let [¢]eK,(Z,Q), with ¢: (Z,0)*—(Z,Q)*. Then there is an integer r
relatively prime to |Q| such that r-¢((ZQ)*)=(ZQ)* (See proof of (4.5)). Define
o([¢])=[(Z2Q)/r-$(ZQ))].—[(ZQ)"/r-(ZQ)*]. Notice that if r=1, w will map
the class of ¢ to the class of its cokernel. We will leave the proof that this
is well-defined etc. to [Ba].

(8.2) Lemma. Let {: n,(K) — (L) be an isomorphism. Let g: K — L, with g, =.
Let g: K— L be the lift of g corresponding to ker(0), where 0: n,(K)— Q is
a homomorphism onto a finite group and let u be the prime divisors of |Q|. If
C, be the algebraic mapping cone of the cellular chain map of g, then H,(C,),=0

Proof. We know from (2.2), (2.3), (3.4) and Lemma (3.9) that given any map
f: K- L with f, =, there is a map g: K— L with g, =f,, so that g,: H,(K)
— H,(L) is a u-local isomorphism. Since H,(C,)=cok g,, (H,(C,)),=0. O

(8.3) Lemma. If ¢ ={(2,(K), x(K)), (,(L), x(L))), then yo =0 in K, ZQ.

Proof. By (1) and (1a) in section 2, 0 ={H,(K), k(K)), (H,(L), x(L))) = [coker
&)= [HZ(C*)] which, by (8.2), lies in G,. We may assume that g,: C,(K)
-C (L) is the identity on C, and C,, so that H,(C) is the cokernel of 2!
CZ(K)—>C2(L) But this is a free resolution of H,(C). Therefore, y([H,(C,)])
=0.

In view of (8.3) we can define the following:
(8.4) Definition. With the hypotheses of (8.2), t(g) is defined to be the unique
element of K,(ZQ, u) which satisfies w,(7(g))=coker(g,). Note that this will
coincide with the usual definition of Whitehead torsion [Co] due to the way
w, has been defined.

Consider u, K and Q as usual with 6: n; K—Q onto, Q finite of order
n, u the set of primes of n, H,(ker(6)) free abelian, and K is the cover of K
associated to ker(6).

(8.5) Definition. Let 4, be the set of all maps g: K — K, which induce an
isomorphism on n,(K), and induce a localized homology isomorphism on K,
ie g*: H,(K, Z,0)~H,(K, Z,Q). Note: The coefficients Z, Q are expressing
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the fact that the chain map g,: C,(K)— C,(K) is equivariant with respect to
the Q-action.)

(8.6) Theorem. Let 0: n,(K)— Q be a homomorphism onto a finite group. Let
f: K-> L be a map with f,=y: n,(K)-n,(L) an isomorphism. Let f: K- L,
be the lift of f corresponding to ker(6), be a local homology isomorphism, then
6 =<{(Z,(K), k(K)), (2,(L), k(L))»,=0 in cl,(K) if and only if ©1(f)=0 mod 4
in K,{(ZQ, u).

Proof. By (8.3) o0 =w, t(f) and o, t4A=Aut(Z,(K), x(K)),. So the result fol-
lows. [

(8.7) Definition. Let 0: n,(K)— Q be a homomorphism onto a finite group.
Let y: n;(K) —m, (L) be an isomorphism and let f: K — L be a map with f, =y.
Let f: K — L, the lift of f corresponding to ker(6), be a local homology isomorph-
ism w.r.t. u, then define t(y)=1(f) mod 4 in K,(ZQ, u)/A.

(8.8) Corollary. Given two finite 2-complexes K and L with y: n,(K)=mn,(L).
Then for 0: n,(K)—Q be a homorphism onto a finite group, then there exists
a partial homotopy equivalence f: K — L with respect to Q with f,=y is and
only if t(y)=0in K,(ZQ, u)/A.

Section 9

In this section, we will discuss three examples. The first example will be a review
of the results of Browning for finite abelian groups (where Q=G). The next
two examples will involve finite quotients. Let ¢: RG — R be the augmentation
map.

Example 1 Let G be a finite abelian group, G~Z, xZ,, x...xZ, , where

nj—1 .
nylny...|n,. Let Ni, N,,...,N, be the respective sums N;= ) af, where g
ji=1
generates Z,,. Let N= ) g;. The following may be easily proved by induction:

gieG

(9.1) Lemma. Let u be the set of prime divisors of G, then for any pueZ,G
with augmentation e¢(u)=1, 4 may be written as a product, p=p; ls... Un,
where y;- N;=N,.

(9.2) Proposition [Br 3]. Let K be the standard complex of the presentation
{a1,a5,...,an|aY, a2, ..., a5, [a;, 4], i<j},

and let A, be as in (8.3), then the sets {1+rN|reZ} and {pue(Z, G)*|e(w)=1}
are contained in t(4,)< K, (ZG, u).

Proof. To realize the elements that augment to 1, we merely note that Lemma
9.1 tells us that the matrix:

4w 0 .. 0 0 .. 0
O u ... 0 0 ... O
0 0 4y O 0
0 0 0 1 0
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will commute with the boundary map C,(K)—2— C, (K). Consequently, using
Puppe modifications on the identity map id: K — K, we can construct a geomet-
ric map, f: K — K, which induces the identity on the 1-skeleton and whose
torsion is the torsion of the above matrix, which is u by [L1].

Similarly, to realize 1+rN, we merely need to point out that N -0(8;)=0
where §; ; is the algebraic boundary in C,(K) of the 2-cell corresponding to
the commutator relator [a;, a;]. Therefore, if we start with the identity matrix
on C,(K), and replace the 1 corresponding to the S’,., ; entry with 14+kN, we
see that the new matrix again commutes with the boundary map. [

(9.3) Corollary. The elements of K(ZG, u)/t(A4,) are representable by integers
in(Z/mZ)*/+ 1, where m=|G| is the order of the group.

Proof. Since Z, G is semi-local, K(Z, G) is representable by units, [Sil], Section
6.5. So let [k]eK,(ZG, u)/t(4,), where ke(Z,G)*. Let k=e(x)eZ,. Since

1 o - . :
s(x- E)= 1, it is in 7(4,). Consequently, k is equivalent to ke(Z,)*.
From the above argument 1+rN is equivalent to 1+rmeZ, where m=|G|.

So any integer congruent to 1 mod m is equivalent to 1. In particular, [b- %] =[1],
so [%]=[b“], where b~ ! refers to the multiplicative inverse of b in Z/mZ.

Therefore, if r=—, then r is equivalent in K,(ZG, u)/t(4,) toab™*. O

L
b b
(9.4) Theorem. Let K be a finite 2-complex with minimal Euler characteristic
and with n,(K)=G, where G is finite and abelian, then K is homotopy equivalent

to the standard complex of a presentation of G of the form:
{ai,05,...a,laY, a7, ...,ap,d  aa7"as ', .. [, 0;), i<j+1,2})

where (ny, r)=1.

Proof. If K is the standard 2 complex of the usual presentation of G and
L is the standard complex of the above presentation, we can construct a
map f: K — L which is the identity on the 1-skeleton and whose torsion is

-1 r—1
Y a‘l]eKl(Z,, G),since Y -85, ,=R, ,, where R, , is the 2-cell in L corre-
i=0 i=0
sponding to the relator a; a,a;"a; !, and § 1,2 is the 2-cell in K corresponding
r—1
to the relator [a,, a,]. Note that ) 4} is a unit in Z,G. For if rs=1+4qn
i=0
r—1 . .s:—ll . q n—1 . r—1
for some s and g then ) a',(z (@) - Y a'1>=1. Also notice that )
i=0 i=0 i=0 i=0
a} augments to r. Consequently all of the elements of K, (ZG, u/t(A4,) are realiz-
able by obstructions to complex K being homotopy equivalent to a complex
of the form in the hypothesis. Therefore all 2-complexes with minimal Euler



Partial homotopy type of finite two-complexes 377

characteristic and fundamental group G are homotopy equivalent to one of
the type described. []

Note that Latiolais [L 2] has obtained results similar to (9.4) for iterated
semi-direct products of finite cyclic groups. Sieradski [Si] used the above model
to describe the homology classes of 2-complexes with finite abelian fundamental
group. Also see [M].

Example 2 Now we will consider the case where G=H *J where H and J are
finite grops.

(9.5) Definition. For any finitely presentable group G, let min,(G) be the lowest
Euler characteristic possible for a 2-complex with fundamental group G.

(9.6) Proposition. Let 0: HxJ — Q be a surjective map onto a finite group with
the restriction to H and J injective, then ker 0 is a free group.

Proof. Let N =ker 0. Let K and L be finite 2-complexes with 7, (K)=H, =, (L)=J,
%(K)=min x(H) and x(L)=min y(L). K v L will have fundamental group H*J.
Let k v L be the finite lift of K v L whose fundamental group is N, with covering
map p: KvL—-KvL. Since H and J inject into Q, then the covers of K and
L in Kv L will be universal covers, p~!(K)=1y; K, p~! (L)=uy; L, where L
is disjoint union and K and L are universal covers. Now replace the ‘wedge’,
v, in K v L by an arc connecting a point of K with a point of L, then Kv L
=p Y (K)up~!(arc)up~*(L). So off of the covers of K and L, K v L is 1-dimen-
sional. Since the components of p~'(K) and p~'(L) are simply-connected, K v L
is the fundamental group of a graph. Therefore N=n,(K v L) is free. [

(9.7) Corollary. Let H=Z,,, xZ, and J=Z,, x Z,,, where n; and m; satisfy the
above conditions, then there is only one partial homotopy type for 2-complexes
K with n, (K)=H % J and Euler characteristic y(K)>min y(H *J).

Proof. Let L be the 2-complex with minimal Euler characteristic and with =, (L)
=H=xJ. Then x(K)=x(L v nS?) for some n>0. Consequently, we may always
construct a map f: L v nS, — L v nS? which realizes all the elements of K, (Z, G),
by merely mapping one of the $¥s to a unit multiple of itself in C,(L v nS?).
Therefore, K,(ZG, u)=1(4,). [

The above corollary is of particular interest, since there are examples where
min y(H *J)<min y(H)+min g(J), [H-L-M]. This is the case if we let m,, m,,
ry, ry, ny, and n, be integers such that r;>1, r—1=n;-q;, (q,, 9;,)=1, r;
=1mod n;, and (m;, n;)+ 1. For example, let m;=n,=2, m,=n,=3, r=9. The
examples of [H-L-M] have been shown to have the same homology type
(Metzler, private communication). Partial homotopy type may be able to distin-
guish homotopy types.

Example 3 Let G be any finite group satisfying Eichler’s condition. Let p: G
— Gl(n, Z) be a representation. The representations are in one-to-one correspon-
dence with the semi-direct products Ge<Z". Let 0: Ge<Z" — G, then ker(6) will
have free second homology. Therefore we may use the theory of partial homo-
topy types to try to distinguish the homotopy types of 2-complexes with funda-
mental group Ge<Z".
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