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Introduction

Let X be a smooth algebraic surface over the complex number field. Fix a
line bundle ¢, over X, an integer ¢, and an ample divisor L on X !. Let
M (cy, ¢;) be the moduli space of rank two vector bundles stable with respect
to L in the sense of Mumford-Takemoto. Consider the question: what is the
difference between .#, (c,, c,) and M, (cy, ¢3) for two different ample divisors
L, and L,. This arise naturally in the definition and the computation of the
I'-type diffeomorphic invariants ([D] and [FM]). In [Q], we have defined walls,
chambers and equivalence classes for ample divisors, and discussed the case
when X is a ruled surface.

In this paper, we study the case when X is a surface of Kodaira dimension
equal to zero. For chamber structures, we have (see Sect. 1 for notations).

Theorem 1 Assume (4c,—c?)>0 and +2 y(0Oy). Then,
(i) For any ample divisor L lying in some chamber (denoted by €, )

4, =6.=%,;
(i) For any ample divisor L lying in some face of a chamber €
€<da,—6&,.

We then analyse the numbers of modulis of stable rank two bundles coming
from walls, and obtain

Theorem 2 Let ¢, ePic(X) and c,eZ with (4 c,—c3)>0. Then for any two ample
divisors L, and L,, M, (c,,c,) and My,(cy, ¢;) are either birational or empty
except the following two cases:

(1) . X is Abelian and (4c,—c?)=2;

(i) X is K3 and (4c,—c?)=6 or 8.

! Conventions: Throughout this paper, X stands for an algebraic surface of Kodaira dimension
zero over the complex number field. The stability of a rank two bundle over X is in the
sense of Mumford-Takemoto
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In Sect. 1, we recall the definitions of walls, chambers and equivalence classes
of ample divisors on algebraic surfaces, and some useful notations. For conve-
nience, we also state two well-known results about the construction of rank
two bundles on algebraic surfaces, which will be used in later sections.

In Section two, we study the chamber structures and prove the theorems
above. First of all, stable rank two bundles will be constructed by walls, and
the numbers of modulis of these bundles will be calculated by standard methods.
Then, we discuss the chamber structures. Finally, we compare the moduli spaces
of stable rank two bundles under different ample divisors.

We see that Theorem 2 has two exceptional cases. In the final section, we
discuss one of them. Let X be an elliptic K 3-surface such that all fibers are
irreducible. We begin with the description of divisors on X, and find a set
of ample divisors L, where r>2. Then for values of ¢, and ¢, on X which
give (4c,—c3)=6 or 8, we will investigate moduli spaces with respect to L,.
In particular, we will obtain results which are parallel to those of Mukai [M].
Also, the equivalence classes of L, will be classified.

1 Preliminaries
1.1 Basic definitions ([Q])

Let X be a smooth algebraic surface over the complex number field C, and
let Num(X) to be the group of divisors modulo numerical equivalence relation.
Then, Num(X) is a finitely generated free abelian group. There is an ample
cone Cy in Num(X)® R which is spanned by ample divisors. The intersection
theory on Div(X) induces a quadratic form on Num(X)® R. By the Hodge
Index Theorem on algebraic surfaces, this quadratic form has positive index
1. We begin with the definition of equivalence classes of ample divisors.

Definition 1 Let L,, L, be two ample divisors on X. Fix c,ePic(X) and c,eZ.
We define LléLz if every rank two vector bundle with ¢, and c, as its first
and second chern classes is L,-stable whenever it is L,-stable. We define L, = L,
if both L, =L, and L,>L,.

Notations. When L is an ample divisor on X, we put

A,={L|L ample and L>L};
&,={L|L ample and L=L}.
Definition 2 Fix ¢, ePic(X) and c,eZ with (4c,—c?)>0.
(i) Let {eNum(X)® R. We define W* as
Cn{xeNum(X)®R|x-{=0};

(i) We define # (cy, c¢,) to be the set of W* where ¢ runs over all numerical
equivalence classes such that ({—c,) is numerically equivalent to 2 F for some
divisor F, and that

—(@dcy,—c) S <0;

(iii) A chamber of type (cy, ¢,) is a connected component of Cy — ¥ (c,, c,).
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Remark 1 If ¢, =0, then in (ii) we change { to {/2, and change the numerical
condition to

_02§52<0.

Remark 2 If {; and {, define the same wall of type (c,, ¢,) then the linear equa-
tions x-{; =0 and x-{,=0 have the same set of solutions in Num(X)®R, so
{y=A{, for some A€R. Thus, if moreover {3 =(3, then {, = +{,.

Remark 3 From §3 in [8], we know each chamber is contained in some equiva-
lence class, so we can say a rank two bundle is stable with respect to a chamber.
Moreover, we conclude that an equivalence class is a union of chambers, and
possibly some ample divisors lying on walls.

1.2 Rank two bundles constructed by extensions ([F1] or [Q])

From §2 of [Q], we know that if L, and L, are two ample divisors which
aren’t equivalent, and if a rank two bundle V is L,-stable but not L,-stable,
then there exists an exact sequence

0> 0x(F)> V- 0x(c,—F)®I,-0

where Z is a locally complete intersection O-cycle on X and (2F —c¢,) defines
a wall of type (cy, c,) separating L, and L, (more precisely, (2F —cy)-L,; <0
<(2F —cy)-L,). In view of this, as in [Q], we make the following

Definition 3 (i) Let { be a numerical equivalence class defining a wall of type
(c1, ¢3). We define E(c,, c,) to be the set of rank two bundles V such that

0= Ox(F)>V—->0x(c;,—F)®1,-0

where F is divisor with 2F —c,={ and Z is a locally complete intersection
0-cycle with length I(Z)=c, + ({* —c})/4. Moreover, we require that V isn’t given
by the trivial extension when {*= —(4 ¢, —c?);

(i) We define D({) to be the number of modulis of those V in E/(cy, ¢,), and
put d({)=D({)—(4c, —cf—3 x(Oy)).

Remark 4 By the standard construction in [HS], E(cy, c;) is quasi-projective
and there exists a universal rank two bundle over X x E(cy, c;). We will omit
this process when we use E(cy, c,) later.

In order to study chamber structures, we need to construct stable rank
two bundles. We next introduce an exact sequence coming from the local to
global spectral sequence ([F1]) and two standard results ([F1] or [Q]) for
the sake of reference. Let L and L be two divisors on an algebraic surface
X; let Z be a locally complete intersection O-cycle on X. We have

0— H' (Ox (L~ L)) > Ext' (I, Ox(L— L)) > H* ()
— H*(Ox (L— L)) » Ext?(I, Oy(L— L)) 0.
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Proposition. Suppose Z consists of n distinct points {p,, ..., Pn}- Then, a locally
Jree extension of Ox(L)I, by Ox(L) exists if and only if every section of Ox(L —L
+ Kx) which vanishes at all but one of the p; vanishes at the remaining point
as well where Ky is the canonical divisor of X.

Corollary. Suppose that H®(Oy(L — L+ K ))=0. Then there exists a locally free
extension of Ox(L)I, by Ox(L) for any Z.

2 Chamber structures and comparison of moduli spaces
2.1 Construction of stable rank two bundles

Before we study the chamber structures and equivalence classes of ample divisors
on an algebraic surface X with Kodaira dimension zero, we now construct
stable rank two bundles by using walls. From the classification theory ([B]),
we see that the Kodaira dimension of an algebraic surface X is zero if and
only if the canonical divisor K is numerically equivalent to zero (ie., K, =0).
Thus if Ky =0, then X is one of the following:

(a) Enriques’ surfaces: p,=0, ¢=0, x(0x)=1;

(b) Bielliptic surfaces: p,=0, g=1, x(0yx)=0;

(¢) K3-surfaces: p,=1, g=0, x(0y)=2;

(d) Abelian surfaces: p,=1, g=2, x(0y)=0.

Fix ¢, ePic(X) and c,€Z such that (4 ¢, —c)>0. Let { be a numerical equiva-
lence class defining a nonempty wall of type (c;, c,) on X and F be any divisor
such that 2F ={+c,. The following Lemma shows the vanishing of some coho-
mology groups.

Lemma 1 H(Ox(c, —2F + Ky))=0 and H*(Oy(2F —c,))=0.

Proof. By our assumption, { defines a nonempty wall, thus {-L,; >0>(-L, for
some ample divisors L, and L,. Since ¢;—2F+Ky=—({+Ky=—(, (c,—2F
+Ky)-Ly=—{-L;<0, so (c;—2F+Ky) can never be effective, therefore
H®(Ox(c;,—2F+K4)=0. Also, 2F—c,)-L,={-L,<0, so H°(0x(2F —c,))
= O

Next, we give a necessary and sufficient condition for E(cy, c3) to be empty.
Lemma 2 E(c,, c,) is empty if and only if (*=(c?—4c,)= —2 y(Oy).

Proof. By the Lemma 1 above and the Corollary in Sect. 1, for any locally
complete intersection 0-cycle Z with length I(Z)=c,+({®>—c?)/4 on X, we can
construct a rank two vector bundle ¥ such that

0> Ox(F)> V- 0x(c,—F)®1,—-0.

Clearly, ¢, (V)=c, and ¢,(V)=c,.

When Z=g, ie, 1(Z)=0, we have {?’=(c?—4c,). In this case,
dim Ext!(0x(c; — F), Ox(F))=h*(Ox(2F —c,))= — x(Ox)—¢?/2, the second equity
is obtained by the Riemann-Roch formula and Lemma 1. Thus,
dim Ext'(Ox(c, — F), Ox(F))=0 if and only if {>= —2y(0y). Therefore, when (2
=(c}—4c,)=—2x(0y), V can only be given by the trivial extension. []
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Let VeE(cy, c;). Assume that L, is an ample divisor such that L,-{>0,
and that € is a chamber such that one of its faces is contained in W* and
¢-( <O (that is, L,-{ <0 for any ample divisor L, in %). Fix L,€%, and Le W°.
Then, {-L, <0 and {-L=0.

Lemma 3 (i) Vis L,-unstable;
(ii) V is strictly L-semistable;
(i) Vis L,-stable.

Proof. (i) is clear. For (ii) and (iii), let Ox(F’) be any sub-line-bundle of V with
torsion free quotient. Then, either 0— Oy (F ') = Ox(F) or 0— Ox(F')— Ox(c,
—F)®I. In the former case, F—F' is effective, so F-L,<F-L,<c¢,-L,/2 and
F-LEF-L=c,-L/2 since {-L,<0 and {-L=0. Suppose 0— Oy (F') = Ox(c,
—F)®I,. Then, (c, — F — F’) is strictly effective since V is indecomposable when
Z is an empty set. Thus, 0<(c; — F—F’)-L, so F'-L<(c;—F)-L=c,-L/2, there-
fore V is strictly L-semistable. If F'-L,>c,-L,/2, then (2F' —c,) defines a wall
of type (c,, c,) separating L and L, with (2F' —c,)-L<0 for any Le W* but
this is impossible since one of the faces of ¥ is contained in W~ Thus, F'-L,
<c;-L,y/2. So V must be L,-stable. []

From (iii) above, we conclude the following

Corollary 1 Let { be a numerical equivalence class defining a nonempty wall W°,
and let € be a chamber such that one of its faces is contained in W* and € -{<0.
Then, V is L-stable for any VeE,(cy, c;) and Le®¥.

We end with a simple (and well-known) result which will be used later and
treats the moduli spaces in the case when the.surface is either Abelian or K 3.

Lemma 4 If X is either Abelian or K3, then any moduli space is smooth and
of dimension [4 c,—c?—3 x(Ox)] whenever it is nonempty.

Proof. Note that in both cases Ky is trivial. Thus, for any stable rank two
bundle V, h*(ad V)=h*(Erd V) —py,=h®(End V)—1=0 where ad V is the trace-
free sub-bundle of &/ V=V ® V*. So the moduli space is smooth everywhere
and has dimension [4 ¢, —c? —3 x(0y)] whenever it is nonempty. []

b

2.2 Chamber structures

Now, we begin to study the chamber structures. Fix ¢, ePic(X) and c,€Z with
(4c,—c)>0. We prove the following

Theorem 1 Assume (4 c,—c?) %2 x(0y). Then,
(i) For any ample divisor L lying in some chamber (denoted by €.)

A,=8,=%,;
(ii) For any ample divisor L lying in some face of a chamber €
C<d4,—6,.

Proof. (i) Clearly, we have 4, =&, <4, by the Remark 3 in Sect. 1. Let L,e4,
—%.. Then by definition, every rank two bundle which is L-stable must be
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L,-stable. On the other hand, since L, isn’t in %,, there exits a wall W of
type (c;, c,) separating L, and ¥,. We may assume that W contains a face
of %, and is represented by { with {-%,<0. Then, L,-{=0. Since (4c,—c3)
+2x(0Ox), E¢(cy, c;) isn’t empty by Lemma 2. By Lemma 3, for any Vin E;(cy, c,),
V is L-stable, so it is L,-stable. On the other hand, V has a sub-line-bundle
Ox(F) with 2F—c¢,;={. Since F-L;=[(c;+{)-L;1/2=(cy-L)/24+((-Ly)/2
>(c;-Ly)/2, V isn’t L,-stable. Thus, we come to a contradiction. Therefore,
A, —%, is empty, so we conclude (i).

(i) From a general result in §3 of [Q], we know that ¥<=4,. By (i), L isn’t
equivalent to ample divisors in %, so ¥ isn’t contained in &;. Therefore, <=4,
—&. O

Remark 1 If X is either bielliptic or Abelian, then (4c,—c3)>0=2y(0), so
the condition in the theorem is automatically satisfied. If X is K3, then by
Lemma 4, no stable rank two bundle exists when (4c,—c?)=2y(0), thus the
entire ample cone Cy is an equivalence class in this case. Let X be an Enriques’
surface and (4c,—c?)=2x(Oy). Let { is a numerical equivalence class defining
a nonempty wall of type (cy, ¢;). Then E(c,, c;) is nonempty if and only if
(?4 —(4cy,—cd). Thus, if (= —(4c,—c?), { makes no contribution. Let €' is
any connected component of Cy—{W*} where W' are walls of type (cy, ¢;)
such that 0>(*> —(4c,—c?) and Cy is the ample cone in Num(X)®R. Then,
we conclude as before the following

4,=6,=%,
for any Le ¢’ and
€<d4,—6,

for any L contained in some face of ¥".

2.3 Calculation of d({)

Let ¢ be a numerical equivalence class defining a nonempty wall W*. By defini-
tion, for any Vin E(c,, c,), we have

0 Ox(F)» V> 0Ox(c,—F)®1,-0

where F is a divisor with 2F —c,;={ and Z is a locally complete intersection
0-cycle with I[(Z)=c, +({*>—c?)/4.

Lemma 5 (i) Such Ox(F) is unique;
(i) K°(V® Ox(—F)=1.

Proof. (i) Suppose Ox(F,) is another sub-line-bundle of V with 2F, —c, ={. Then,
either 0 — Oy (F,) = Ox(F;) or 0— Ox(F,)— Ox(c,—F)®I,. In the second case,
¢, —F —F, must be effective, so is 2(c; — F —F); on the other hand, 2(c,—F
—F,)= —2¢, we conclude that 2(c, —F —F;) can’t be effective since { defines
a nonempty wall. Thus, we have 0— Ox(F,) - Ox(F), so F—F, is effective. By
symmetry, F; —F is also effective, thus Ox(F;)= Ox(F).
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(i) Tensoring Ox(—F), we get
0> 0x >V Ox(—F)—> Ox(c;,—2F)®1,—0.

Since ¢, —2F={(, ¢,—2F can't be effective, so H°(0x(c, —2F)®1,)=0. Thus,
VR Ox(—F)=h’(0x)=1. O

The above Lemma shows that for any V in E(c,, c,), the extension
0= 0Ox(F)>V—>0x(c,— F)®1,—-0
is canonical. Next, we calculate the dimension of the extension group
Ext!(Ox(c; — F)® I, Ox(F))=Ext! (I, Ox(2F —c,)).
Lemma 6 dim Ext' (I, Ox(2F —c,))=c, — (2 +c3)/4— x(Oy).
Proof. Using Lemma 1 and the exact sequence in Sect. 1, we obtain the following
0— H'(Ox(2F —c,)) > Ext (I, Ox(2F —¢,)) » 0, -0

since h?(Ox(2F —c,))=h°(Ox(c,—2F + K4))=0. Note that h®(Cx(2F—c,))=0
and I(Z)=c, +({*—c?)/4. Thus,

dim Ext! (I, Ox(2F —¢,))=I(Z)+h" (Ox 2 F — ¢,)) =1(Z) — x(Ox 2 F —¢,))
=UZ)—x(On)—*2=c,—((P+cD)/A—x(Oy). O

By the two Lemmas above,

D({)= #moduli(0x (F)) + # moduli(Z) + Ext! (Ox(c, — F)® I, Ox(F))—1
=q+2[c; +({*— /Al +[c— (P +c)/d—x(0x)] -1
=[4c;—c} =3 x(Ox)]+[(c} —4¢c)/4+ /4 + 1 (Ox) +p,].

Thus, we have

Corollary 2 d({)=[(c{ —4c,)/4+*/4+ x(Ox) + ).

2.4 Comparison of moduli spaces

Suppose that L, and L, are two different ample divisors on X. Let V be a
rank two bundle which is L,-stable but L,-unstable. Then by 1.2, VeE(c,, c,)
where { defines a nonempty wall of type (c,, ;) such that {-L,<0<(-L,. So
if d({)<0 (i.e, D({)<[4c,—c?—3x(Oy)]) for any { which defines a nonempty
wall of type (c;, c,), then any two moduli spaces are birational whenever non-
empty.

Now, we discuss case by case. By the Corollary 2, d({)=[(c}—4c,)/4+(%/4
+2(0x)+p,] for any numerical equivalence class { defining a nonempty wall
of type (cy, c,).

If X is bielliptic, then p,+ x(0x)=0, so we always have d({)<0. Therefore,
all moduli spaces are either empty or birational.

Let X be an Enriques’ surface. Assume d({)=[(c?—4c,)/4+(*/4+1]=0.
Since ¢} —4 ¢, <{*<0, we must have [(c? —4c,)/4+(?*/4+1]=0. Thus, (2= —2
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(notice that {? is even), so ¢} —4c,=(*=—2=—2y 0. But then, E(c,, ¢,) is
empty by Lemma 2. Therefore, either d({) <0 or E;(c,, c,) is empty, so all moduli
spaces are either empty or birational.

Let X be Abelian. Then as in the case when X is an Enriques’ surface,
d({)<O0 unless c2—4c,=¢{?= —2. So from the calculations in 2.3, dim Ext!(c,
—F,F)=1if 2F —¢,={. Thus, Ez((cl, ¢,) is isomorphic to Pic®(X) which is dual
to X itself. Therefore, if (4c,—c$)%+2, then all moduli spaces are either empty
or birational. When (4¢,—c?)=2 and W is a wall of type (c,, c,) let k(W) be
the number of {’s such that { represents W and (2= —2. Then, k(W)=0 or
2 by the Remark 2 in Sect. 1. Using W, we can construct k(W) irreducible compo-
nents E(c,, c;) each of which is an Abelian surface dual to X. Assume €,
and %, be two chambers sharing a common face contained in W. If k(W)=0,
then #, (cy, c,) and My, (c,, c,) are either empty or birational. If k(W)=2,
then # (cy, c;) (i=1, 2) contains exactly one irreducible component which is
isomorphic to Pic®(X) and will be lost after crossing the wall W, that is,

'/”%’1(01, cy)=M(cy, Cz)]_[B

where P, is isomorphic to Pic®(X) and L is any ample divisor in the common
face €, "€, of €, and %,.

Finally, let X be a K3-surface. By the Lemma 4, if d({)=0, then d({)=0,
so [(c2—4c,)/4+%/4+3]=0. Since c?—4c,<{?><0, (3= —6. Thus, (?=—4
or —6 for h'(2F —c,)= —x(0x)—(?/2=0, so accordingly (4c,—c?)=8 or 6.
Assume (4c,—c?)=8 and (?=-—4. Then, c,+(((*—c?)/4)=1 and
dim Ext' (I, 2F —c;)=1 for any point Z on X. Thus, E/(c,, ¢,) is isomorphic
to Hilb! (X)= X. Let k(W) be the number of #’s such that W"=W* and n*= —4.
If (4cy—c?)=6 and (2= —6, then [4c,—c?—3x(Ox)]=0, c;+(((*—c?)/4)=0
and dim Ext'(c, —F, F)=1. Thus E,(c,, c,) consists of only one element which
is given by the nontrivial extensions in dim Ext!(c,—F, F). Let k(W) be the
number of #’s such that W"= W* and %= —6. In both cases, k(W)=0 or 2.

Therefore, if (4c,—c?)+6 or 8, then all moduli spaces are either empty
or birational. When (4c,—c?)=6 or 8, let €, and %, be two chambers sharing
a common face contained in W. If k(W)=0, then .# (c,, c;) and Mg, (c,, c;)
are either empty or birational. If k(W)=2, and (4 ¢, —c?)=6, then they contain
the same number of reduced points and each will lose one point after crossing
w:

My, (Cy, C3)=M(cy, Cz)I_[E

where P is a point and L is any ample divisor in the common face ¢, N %,
of %, and %,. When k(W)=2 and (4 c,—c3)=38, then each of #,(c,, c,) and
My, (cy, ;) contains one irreducible component which is isomorphic to X and
will be lost after crossing W:

-/ll«q(c], cy)=M(cy, Cz)]_IR

where P, is isomorphic to X and L is any ample divisor in the common face
% NE, of ¢, and ¥,.
In summary, we have proved
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Theorem 2 Let ¢, ePic(X) and c,eZ with (4 ¢;—c})>0. Then for any two ample
divisors L, and L,, M, (c,,c,) and M, (cy, c3) are either birational or empty
except the following two cases:

(1) X is Abelian and (4c,—c?)=2;

(i) X is K3 and (4c,—c?)=6 or 8.

Remark 2 Let X be a K 3-surface. If ¢, =0 and ¢, =3, then all moduli spaces
are empty using an argument involved the Riemann-Roch formula. By definition,
the entire ample cone Cy in Num(X) ® R is an equivalence class of type (c,, c,)
when ¢, <3. If ¢,>3, then 4¢,>12, so all moduli spaces are either empty or
birational by the Theorem above. It is known that the moduli spaces are non-
empty and irreducible when ¢,>3 (see [F2], for instance). Thus, all moduli
spaces are birational when c, > 3.

3 Moduli spaces of stable rank two bundles on elliptic K 3-surfaces

3.1 Divisors on elliptic K 3-surfaces

Let j: X > P! be the elliptic fibration of X such that any fiber of j in irreducible
with at worst ordinary double points as singularities. Let [ be a smooth fiber,
and let X be a section. Then, I?=0, |- X =1 and X2= —2. Put L,=X+rl where
r is any real number. The following Proposition gives a necessary and sufficient
condition for a divisor L, (we require that r is an integer) to be ample, and
shows that r is bounded above if L, with r> 2 lies on some wall.

Proposition 1 (i) A divisor L, is ample if and only ifr>2;

(ii) If for some r>2, L, lies on a wall W of type (cy, c;), then either r<(1+(4c,
—c1)/2) or W contains all L, withr>2;

(iii) All ample divisors L, with r>(1+(4c,—c?)/2) are in one equivalence class
of type (cy, ¢5).

Proof. (i) We use the Nakai-Moishezon Criterion for ample divisors several
times. If L, is ample, then O0<L,-X=(r—2), so r>2. Suppose r>2. Then, (L,)?
=2r—2>0,and L,-X=(r—2)>0. Let E be any irreducible curve different from
2. If E-I>0, then L,-E=r(I-E)>0. If E-I=0, then E is a fiber, then L.-E=1.
Therefore, L, is ample.

(ii) Let { define the wall W of type (c,, c,) containing L,. By Proposition 2(i)
below, we put {=aZX+bZX,+cl where X, is a section different from ¥ and
b=0 or 1. Also, we may assume a>0. If b=0, then 0={-L, gives c=a(2—r),
so {(?=2a*(1—r) and a+0 since {2 <0, thus —(4c;—c)=¢*=2a*(1—r), and
r<l+@c,—c})/2a*)<(1+(@4cy;—cd)/2). If b=1, then 0=(-L, gives c=2a
—(Z-Z)—(@+Dr, so (*=2a"+4a—-2-2(2-%,)—2(a+1)*r=—2[(a+1)*(r
—1)+(2-2))+2], thus —(4c,—cH< —2[(a+ 2(r—1)+(Z-Z))+2]. If (a+1)
+0, then r<1+(4c;—c})/[2(a+1)’]1<(1+(4 ¢, —c3)/2); if (a+ 1)=0, then clear-
ly L,-{=0for any r>2.

(iii) Note that if ¢ defines a wall of type (cy, c;) which separates two ample
divisors L,, and L,, then {-L,=0 for some L, with r>min(r,, r,) (here, r may
not be an integer). Thus, (iii) follows immediately from (ii). [J

Next, we prove a result about divisors on X.
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Proposition 2 (i) Let F be a divisor on X. Then, F=nX+ X, +ml where n, meZ,
and X, is a section to j;
(i) If F*> —4 and F-1=0, then F=d| for some integer d.

Proof. (i) Let F-I=(n+1),and let G=F —nZX. Then, G-I=1. By the Semicontin-
uity Theorem, j, (0Ox(G)) is an invertible sheaf on P'. Put j, (Ox(G))=Cp:(m,).
Then from the canonical injection 0— j*j,(0Ox(G)) — Ox(G), we obtain that G
—m, | is effective. Since (G—m,I)-1=1, G—m, [ consists of a section 2, and
possibly some fibers. Therefore, F=n X+ X, + ml for some n, meZ.

(ii) Put F=F+(1—F-2)L Since L,-(—F,)=—1, (—F,) can’t be effective, so
0=h°(Ox(—F,))=h*(0x(F,)). By the Riemann-Roch formula, x(0x(F,))=2
+F?%/2>0. Thus, h°(Ox(F,))>0, so F, is effective. Since F,-1=0, F,=d,! for
some d,, so F=dl for somed. []

Fix c,€Pic(X) and c,€Z with (4c,—c3)>0. Note that a rank two bundle
V is stable with respect to some ample divisor if and only if V® Ok (F) is stable
with respect to the same ample divisor where F is any divisor. Thus, in view
of Proposition 2(i), we may assume that ¢, is one of the following:

0, Ox (), Ox(2), Ox(Z=1), Ox(Z—2,), Ox(Z— 2, +])

where X, is a section different from Z. For simplicity, we assume that (2-Z,)=0
in the cases of ¢;=0x(X—2,) and Ox(X—ZX,+]). Therefore, for (4c,—ci)=6
or 8, all possible values of ¢, and ¢, are the following

(i) ¢;=0,c,=2,(4c,—c)=8;

(11) Cy =COX(l)a CZ=27 (462_(:%):87
(iii) ¢, =0x(2), c,=1, (4c,—c})=6;
(iv) c;=0x(Z =), c,=1,(4c,—c})=8;

(v) ¢, =0x(2—ZX,) where X is a section different from X with (- 2,)=0,c,=1,
(4c;—c})=8;
(vi) ¢;=0x(Z—Z,+1]) where X, is a section different from X with (£-2,)=0,
cy=1,(dc;—cH)=8.
By the Remark 2 in Sect. 2, we see that no stable bundle exists in case

(i). In this section, we will study the rest five cases.

3.2 ¢;,=0x() and c,=2

We begin with the analysis of any rank two bundle V with chern classes ¢, = Ox(])
and ¢,=2. By the Riemann-Roch formula, x(V)=2, so either h°(V)>0 or
h?(V)>0, the second case gives h°(Ox(—1)® V)>0. Thus, either 0 —» Oy — V or
0-0x()—>V.

If V is stable for some ample divisor, then 0 — 0x(l)— V is impossible, so
we must have 0 — Oy — V. Thus,

05 O0x(F)» V- 0x(I-F)®1;—-0
for some effective divisor F and some locally complete intersection O-cycle Z.

By Proposition 1(iii), all ample divisors L, with r>5 are equivalent. We
now study those bundles which are L,-stable for r> 5.
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Theorem 1 (i) A rank two bundle V is L,-stable for r>5 if and only if it is
given by an extension

0-0x>V->0,()®1,-0

where Z is a 0-cycle of length 2 supported in a fiber of the elliptic fibration;

(i) For any O-cycle Z consisting two distinct points lying in a fiber, there exists
a rank two bundle as in (i).

Proof. (i) Assume V is L,-stable where r>5. From the analysis above, V has
a sub-line-bundle Oy (F) where F is effective. Then F - L. <(c,-L)/2=1/2forr>5,
so F-L,=0, thus F=0. Therefore, we have

0-0x->V->0,()®1,-0

where Z has length equal to 2. Suppose Z is reduced. Since V is locally free,
any section of (Ox(I) which vanishes at one of the two points of Z must also
vanishes at the other point, thus these two points must lie in the same fiber
of the elliptic fibration.

Conversely, let V be given by the above extension, and let Ox(F) be any
sub-line-bundle of ¥ with torsion free quotient. If 0— Ox(F)— Oy, then F-L,
£0<(cy-L,)/2. If 0> Ox(F) > Ox() ® I, then (I—F) is strictly effective. Put (!
—F)=E. Then, F-L,=1—E-L,<0<(c,-L,)/2. Therefore, V is actually L, -stable
for all r>2.

(ii) Since any section of @y(l) which vanishes at one of the two points of Z
must also vanishes at the other point, V exists by the Corollary in Sect. 1. [

In the proof above, we see that V is stable with respect to all L, with r>2.
In fact, we have

Proposition 3 All ample divisors L, are in one equivalence class.

Proof. We need only to show that if { defines a wall containing some L,, then
W* must contains all L,. Put {=aX+bZ +cl where X, is a section different
from X and b=0 or 1. Note that (2 is divided by 4 by the formula for d({)
in 2.3.

Assume b=0. Then, 0={-L, gives c=a(2—r), so (*= —2a?(r— 1) and a+0.
If (*=—4, then { = +(Z —1), so {-1is odd, but this is impossible since by defini-
tion {=2F —c, for some divisor F. If {>= —8, then r=1 +4/a?, so a= +1 and
r=>5, thus {= +(2—31), but this is impossible again.

Assume b=1. Then, 0={(-L, gives c=2a—2-%,—(a+1)r, so {>= —2[(a
+1)*(r—1)+2-2, +2]. If (*= —4, then (a+ 1)*(r—1)+Z%2-2,=0,s0 a= —1 and
2:2,=0, thus {-L,=0 for all r>2. Therefore, W* contains all L, with r>2.
If (*=—8,then 0<X-%,<2; when 2:-2,=0,r=14+2/(a+1)* sor=3and a=0
or —2,in both cases { -/ are odd, impossible; when X - Zi=Lr=1+1/(a+1)*<2,
but we know that r>2; finally, when 2.-X=2,a=—1, again {-L,=0 for all
r>2,so Wt contains all L, with r>2. [J

33 c;=0x(Z)and c,=1

We use the process in 3.2. Let V be any rank two bundle with chern classes
¢y and ¢,. Then, y(V® Ux(I—X))=1. Thus, either h®(V® Uy(I— X))> 0, then we
have 0— Oy (Z—~1) > V; or h2(V® Oy(I—2))>0, then h°(V'® Ox(=D)>0, so we
have 0 - Oy () - V.

Lemma 1. .#, (c,, c,) is empty.
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Proof. Note that (X—21)-L,=0.If 0> 0x(Z—1)- V, then (X —1)- Ly=(c,-L4)/2;
if 0—>0x()->V, then I-L,=(c,-L,)/2. Thus, V can’t be L,-stable in both
cases. []

Remark 1 Let #;(cy, c,) be any nonempty moduli space. Then 4, (c,, ¢;) con-
sists of finite many reduced points. By Lemma 1, any bundle corresponding
to a point of .#,(c,, c,) is the only element in some E(c,, c,) where { defines
a nonempty wall of type (c,, c,) separating L and L,. In this case, {*=—6
by the discussion in 2.4.

Now, we determine the equivalence classes of the ample divisors L, with
r>2, and the moduli spaces corresponding to these ample divisors. Put
{=(Z—2I). Then, { defines a nonempty wall of type (c,, c;) which contains
L,. Since {* = —6, both E;(c,, ¢;) and E(_;(c;, c,) consist of exactly one element.

Lemma 2 If {, with (2= —6 defines a wall of type (c,, c,) containing some L,
withr>2, then {{=+{ and r=4.

Proof. We use the same method as in the proof of Proposition 3. Put {;=a X
+bX,+cl where X, is a section different from X, and b=0 or 1. If b=0, then
{;=+( and r=4. If b=1, we obtain that c=2a—2-%,—(a+1)r and that (a
+1)2(r—1)=1—-X-%,. When X-X,=0, r<2, but this is impossible. When
2-2,=1, then a=—1 and {;=—2X+2%,—31, so {,-1=0; on the other hand,
2F —c, ={, for some divisor F, so 0=2(F-I)— 1, impossible. []

Theorem 2 The ample divisors L, with r>2 are divided into the following three
equivalence classes:
(i) L. M1, (cy, c;) is identified with E(cy, c,);
(i) L4. Ay, (cy, cy) is empty;
(iii) L, with r>4. My (cy, ;) is identified with E_;(cy, ¢3).

Proof. Note that if {, defines a nonempty wall of type (cy, c,) and (}+ —6,
then both E . (cy, c;) and Eg (cy, ;) are empty. If L, and L,, with ry, r,>4
are not equivalent, then there exists a wall W" containing some L, with r
>max(r,, r,)>4 where n>= —6, but this is impossible by Lemma 2. Thus, all
L, with r>4 are equivalent. By Lemma 1, .4, ,(c,, c;) is empty. If we can show
My, (c1, c;)=E((cy,c;) and My (cq, co)=E_ylcy, c;) for r>4, then L, isn’t
equivalent to L, with r=+4, and L; isn’t equivalent to L, with r=4.

We will only prove that ., (c,, c;)=El(cy, cz) for r>4. By Remark 1,
My, (cy, cy) is contained in the union of E _,(c;, c;) and E,(cy, c;) where 75
runs over all numerical equivalence classes which define walls separating L,
and L,, and #?>=—6. By Lemma 2, n= +{ where {=(Z—2I). Since L,-{=(r
—4)>0, we see that .#;_(c,, c,) is contained in E_;(c,, ¢,). Let V be the unique
element in E _;(cy, ¢;). Then, we have

0 Ox() > V- 0x(Z—1)—>0.

Suppose that V isn’t L,-stable for r>4, and that Oy(F) is a sub-line-bundle
of V with torsion free quotient and F-L,=(c,-L,)/2. If 0 — Ox(F)— Ox(]), then
F.-L,£1-L,<(cy-L,)/2, a contradiction. Thus, we must have 0— Ox(F) —» Ox(Z
—1), so (¥ —1—F) is strictly effective. Put (¥ —I—F)=E and {, =(2F —c,). Since
{,-L,20 for r>4 and {,-L,=—2(E-L,)<0, {, defines a wall separating L,
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and L, so W contains some L, with s>4. Now (2= —6 and W% doesn’t
contain L,, this contradicts to Lemma 2. Therefore, ¥ must be L,-stable for
r>4. Hence, M (cy, c;)=E_y(cy, ). O

34 c;=0x(Z—Nandc,=1

As before, let V be any rank two bundle with chern classes ¢, and c,. By
the Riemann-Roch formula, we have X(V® Ox(—Z+1)=1. Thus, either
h°(V® Ox(—Z +1))>0, then 0— Ox(Z—0)—V; or h*(V® Ox(—Z+1)>0, then
h°(V)>0,50 0— Oy — V.

Lemma 3 .#, (c,, c,) is empty.

Proof. Note that (¥ —1)- Ly=0. Then, the conclusion follows from the analysis
above. [J

Theorem 3 Any irreducible component of a nonempty moduli space is birational
to X.

Proof. Let L be an ample divisor such that M (cy, ;) is nonempty, let .# be
an irreducible component of .#,(c,, c,). Then, .# is smooth by the Lemma 4
in Sect. 2. Since ., ,(c,, c,) is empty, an open dense subset % of .# is contained
in some E(cy, c,), where { defines a nonempty wall of type (c,, c,) separating
L and L;. Then, we must have d({)=0 and (*= —4. Now, D()=2=dim .#.
By 24, E;(c,, c,) is isomorphic to the K 3-surface X. Therefore, .# is birational
toX. O

Remark 2. Mukai [M] has proved that on a K 3-surface X, any two dimensional
compact irreducible component of a moduli space of rank two bundles Gieseker-
stable with respect to an ample divisor is isogenus to X. Thus, any two dimen-
sional irreducible component of a moduli space of rank two bundles stable
in our sense with respect to an ample divisor is birational to some K 3-surface
isogenus to X. We see that Theorem 3 illustrates this result.

Next, we classify the ample divisors L, where r>2. Put {=(Z—1). Then
{*=—4, and { defines a wall of type (c;, c¢,) containing L. First, we state
a lemma similar to Lemma 2.

Lemma 4 Let {, define a wall of type (c,, c,) containing some L, with r>2.
Then,
(i) either r=3 or r=>5;
(i) {y==+Lif (}=—4andr=3;
(iii) {;=+(Z-3)if r=5.

Proof. Put {;=aZ+bX,+cl where X, is a section different from X, and b=0
or 1. Assume b=0. If {}= —4, then {;= +{ and r=3. If (3= —8, then a= +1,
r=5, and {,=+(Z—3I). Assume b=1. If {}=—4, then a=—1 and {,=—Z
+2 +cl, but this is impossible. If {3 = —8, we have r=3 and (a+1)=+1. O

Now, we show the following

Theorem 4 The ample divisors L, with r>2 are divided into the following five
equivalence classes:
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() L, with r>5. M (cy,c;y) is birational to E_;(cy, c;) which is isomorphic
to X;

(i) Ls. #y,(cy, c5) is birational to E_(cy, ¢5);
(iii) L. #,y,(cy, c3) is isomorphic to E_(cy, c5);

(iv) Ly. A, (c,y, c;) is empty.
Proof. Note that (iv) comes from Lemma3. Since D(+(Z—-30)=1,
E 4 z-3n(cy, c;) has dimension one. Using Lemma 4 and the same argument
as in the proof of Theorem 2, we conclude that (1) any bundle in E _ 5_ 3,(c;, ¢;)
is L,-stable if r>5 but not L,-stable if r<5; (2) any bundle in E;_3,(c,, c;)
is L,-stable if r<5 but not L,-stable if r=5; (3) any bundle in E _(cy, ¢,)
is L,-stable if r>3 but not Lj;-stable. Thus, all L, with r>2 are divided into
the above four equivalence classes, and the moduli spaces .#, (c,, c,) have the
stated properties. []

3.5 ¢y =0x(Z—Z,) where Z with -2, =0 is a section +Z and c,=1

Put G,=(2+2;+rl) where r is any real number. As in Proposition 1(i), we
can show that G, is ample if and only if r>2. Clearly, G,-c,=0. Let V be
any rank two bundle with chern classes ¢, and c,. Since (V)= 1, either h°(V)>0,
then we get 0 Ox — V; or h*(V)>0, so 0<h®(V*)=h°(V® Ox(— 2+ X,), thus
we get 0 - Ox(Z—2;)— V. In either case, V has a sub-line-bundle Oy (F) with
F-G,=0=(c,-G,)/2, so V can’t be G,-stable. Therefore, .#; (c,, c,) is empty
for all ample divisors G, with r>2.

Now, let us consider #; (c,,c,) for ample divisors L, with r>2. Since
x(V® Ox())=1, either h°(V® Ox())>0, then we get 0—-0Oy(—0)—-V; or
h*(V® Ox()>0, so 0<h®(V*® Ox(—1)=h°(V® Ox(—Z + X, —1), thus we get
00— Ox(Z—2Z,+1)— V. In either case, V has a sub-line-bundle Oy(F) with F-L,
=—1=(c,-L,)/2, so V can’t be L,-stable. Therefore, .#; (c,, c,) is also empty
for all ample divisors L, with r>2.

Using the above discussion and the same method as in the proof of Theo-
rem 3, we conclude the following

Theorem 5 (i) The moduli spaces M, (c,,c,) and Mg (c,, c,) are empty for all
r>2;
(ii) Any irreducible component of a nonempty moduli space is birational to X.

By the definition of equivalence classes, we immediately have

Corollary. All ample divisors L, and G, with r>?2 are in one equivalence class.

Next, we show that there exist ample divisors with respect to which the
moduli spaces are nonempty. Put { =(Z—Z2,). Then, {?=c?= —4. Since {-G,=0
for any r, { defines a nonempty wall of type (c,, ¢,) containing the ample divisors
G, where r>2. Since {*=—4, Ei,(c,,c,) are two dimensional and are
isomorphic to X. Let ¢ be any chamber of type (c,, ¢,) whose boundary contains
part of the wall W*. We may assume %-{<O. Then, E/(c,, c,) is contained
in M(cy, ;). In particular, the moduli space #,(c,, ¢;) is nonempty for any
ample divisor Lin €.

3.6 c;=0x(Z—2,+1]) where X, with 2-X, =0 is a section +X and c,=1

We now study the last case. Put {=(2—2,+/), and H,=2L,+G, where L,=(Z
+rl) and G,=(Z+Z;+rl). Then, {(*=—4 and H, is ample when r>2. Since
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(-L,=—1and {-G,=2,{-H,=0. Thus, { defines a nonempty wall of type (c,, c,)
containing all H, where r>2. Moreover, E 1y(cy, ;) are isomorphic to X by
24.

Let V be any rank two bundle with chern classes ¢, and ¢,. Since y(V)=1,
either h°(V)>0, so 0 — Uy — V; or h*(V)>0, so 0> 0x(Z—2Z,+)>V.

Lemma S For any ample divisor L,, the moduli space My (cy, c,) is identified
with E,(c,, c;).

Proof. Suppose V is L,-stable. Since (c,-L,)/2= —1, we can’t have 0->0,-V.
Thus, 0> 0y (Z—2,+) - V. So

0= 0x(Z -2, +I+E)> V> Ox(—E)®1, -0

for some effective divisor E and some locally complete intersection 0-cycle Z.
Then, (-2, +I+E)-L,<(c;-L))2=—1, so —1 +E-L,<—1/2. We conclude
that E-L,=0 and E =0. Therefore, we get

0-0x2Z—-2,+D)>V->1,-0

for some point Z in X. Hence, Ve E/(cy, c3).

Conversely, suppose that Ve E,(c,, c,) and that Ox(F) is any sub-line-bundle
of V with torsion free quotient. If 0— Oy(F)— Ox(Z—2,+I), then F-L,
<(cy-L,)/2. If 0— Ox(F)—>I,, then (—F) is strictly effective, thus F.-L<-1
<(c,-L,)/2. Therefore, V is L,-stable. []

Next, we discuss the moduli spaces Mg (cy,c;). Put {'=(Z—2%,—1). Then,
({')*=—4. Since {'-L,= —3 and {'"-(Z,+rD=1 for any r, we conclude that {’
defines a nonempty wall of type (c,, c,) and that E 4¢(cy, c;) are isomorphic
to X.

Lemma 6 For any ample divisor G, with r>3, the moduli spaces Mg (cy, c;) is
identified with E.(cy, c5).

Proof. As in the proof of Lemma 5, we can show that every bundle in Mg (cy, C3)
is contained in Ey,)(cy, c;) for r23. Conversely, suppose that VeEg,(c,, c,).
Then, there is an exact sequence

0-0x(Z=2) > V-0 ()®1,-0

where Z is a point in X. Let Ox(F) be any sub-line-bundle of V with torsion
free quotient. If 0— Ox(F) > Ox(Z—ZX,), then F -G, £0<(c,-G,)/2. Assume 0
= Ox(F)—> Ox () ® I;. Then, (I— F)=E for some strictly effective divisor E. Thus,
F-G,<(c;-G,)/2 unless E-G,=1, but then E is irreducible and must be either
2 or X, and r=3 since G,=(Z+ X, +rl). Therefore, Vis G,-stable if r>3. []

As before, for the irreducible components of moduli spaces, we have

Theorem 6 Any irreducible component of a nonempty moduli space is birational
to X.

Proof. Let #,(c,, c,) be nonempty. If L=L, for some r>2, then My, Cp)
is isomorphic to X by Lemma 5. If L+ L, for any r>2, then any irreducible
component # of .#,(cy,c,) is birational to X by the same argument as in
the proof of Theorem 3. []
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Finally, we classify the ample divisors L, and G, where r>2. Put {, = —(Z
+Z,—1).Then({}=—8,{,-G3=0and {,-G,<0ifr>3.So0{, defines a nonempty
wall of type (c,, c,) containing Gj. Since D({,)=1, E¢,(cy, c;) has dimension
one. It is easy to see that any bundle in E,(c,, c,) is G,-stable if r>3 and
isn’t G;-stable.

Proposition 4 The ample divisors L, and G, with r> 2 are divides into the Sfollowing
three equivalence classes:

@) L, with r>2; (ii) G, with r>3; (iii) G,.

Proof. By Lemma 5, all L, with r>3 are in one equivalence class &,. Since
{-G,=2>0, any bundle in E(c,, c,) is G,-unstable, so G, isn’t contained in
&, for any r>2. By Lemma 6, all G, with r>3 are in one equivalence class
&,. Since any bundle in E,(c,, ¢,) is G,-stable if >3 and isn’t G,-stable, G,
isn’t contained in &,.
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