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1 Introduction

Let M = (M, J, g) be an almost Hermitian manifold and U(M) the unit tangent
bundle of M. Then the holomorphic sectional curvature H = H (x) can be regarded
as a differentiable function on U(M). If the function H is constant along each fibre,
then M is called a space of pointwise constant holomorphic sectional curvature.
Especially, if H is constant on the whole of U(M), then M is called a space of
constant holomorphic sectional curvature.

An almost Hermitian manifold M with integrable almost complex structure is
called a Hermitian manifold. A real 4-dimensional Hermitian manifold is called
a Hermitian surface. It is known that there exists an example of a Hermitian
manifold with pointwise constant holomorphic sectional curvature which is not
globally constant ([4]).

In [2], A. Balas and P. Gauduchon proved that every Hermitian metric of
constant non-positive holomorphic sectional curvature on a compact complex
surface is Kahler (Theorem 1). In the same paper, they also studied the structure of
compact Hermitian surfaces of constant positive holomorphic sectional curvature
(Theorem 2).

It should be noticed that the holomorphic sectional curvature in the above
paper is defined by means of the curvature tensor with respect to the Hermitian
connection (known also as the Chern connection). By the definition, the Hermitian
connection coincides with the Riemannian one in a Kihler manifold. It is easy to
observe that the holomorphic sectional curvature with respect to the Hermitian
connection is greater than or equal to the holomorphic sectional curvature with
respect to the Riemannian one, and in general, the constancy of the holomorphic
sectional curvature with respect to the Hermitian connection does not imply the
constancy of the holomorphic sectional curvature with respect to the Riemannian
one (cf. [10]). So, it is worthwhile to study the structure of Hermitian surfaces of
constant holomorphic sectional curvature with respect to the Riemannian connec-
tion.
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In the sequel, we assume that the curvature tensor of a Hermitian surface means
always the one with respect to the Riemannian connection. In connection with the
above results, we shall prove the following

Theorem A. Let M = (M, J, g) be a compact Hermitian surface of constant non-
positive holomorphic sectional curvature. Then M is a Kahler surface.

Theorem B. Let M = (M, J, g) be a compact Hermitian surface of constant positive
holomorphic sectional curvature. Then the Euler number y(M) and the Chern number
¢,(M)? are positive, and the Pontrjagin number p,(M) is non-negative (and hence,
M is an algebraic surface with positive Euler number and non-negative signature).

The proofs of Theorems A and B are given by applying the Miyaoka’s inequal-
ity for two Chern numbers, ¢,(M)? and c,(M) of a compact complex surface M.
The authors would like to express their hearty thanks to Professor L. Vanhecke for
his valuable suggestions.

2 Preliminaries

Let M = (M, J, g) be a 2n-dimensional almost Hermitian manifold with the almost
Hermitian structure (J,g) and Q = (;;) the Kdahler form of M defined by
Q;=gaJ%. We assume that M is oriented by the volume form
dM = ((— 1)"/n!)Q". We denote by V, R = (Rii'), p = (p;;) and 7, the Riemannian
connection, the Riemannian curvature tensor, the Ricci tensor and the scalar
curvature of M, respectively. The Ricci *-tensor p* = (p#) and the x-scalar curva-
ture t* are defined respectively by

@.1) ot =3 JiRIS
@2) o* = gp} .
The generalized Chern form y = (y;;) is given by
(2.3) 8y = — 4J5pk — IV, IR Vidu -

It is well known the 2-form y represents the first Chern class of M in the de Rham
cohomology group.

For any pe M and any unit vector x = (x‘)e T,(M), the holomorphic sectional
curvature is defined by .

H(X) = — Riaka}'J:’xixjx"x' .
Now, we assume that M is a Hermitian surface. Then we have
2.4) dQ=w A Q,

where w = Q0 J. The 1-form w = (w;) is called the Lee form of M. This form
w satisfies the following ([8, 9]):

2.5) JiVw, =0,
(2.6) 2VIij = COaJ;g;k — w,,Jﬂg,-j + wj"ki -_— (D,‘Jﬁ )
2.7 T—1* =26w + |o|?.
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We denote by x(M), ¢, (M), ¢,(M) and p,(M) the Euler class, the first Chern
class, the second Chern class and the first Pontrjagin class of M, respectively. We
note that c, (M) is equal to y(M). The following theorems play essential roles in the
proofs of our theorems.

Theorem 2.1 ([11]). Let M = (M, J ) be a compact connected almost complex sur-
face. Then we have

p1(M) + 2x(M) = CI(M)z .

Theorem 2.2 ([6]). Let M = (M, J) be a compact connected complex surface. Then
we have

¢,(M)? < Max {2¢,(M), 3¢,(M)} .

3 Some formulas

In this Section, we shall prepare some fundamental formulas for a Hermitian
surface of pointwise constant holomorphic sectional curvature (with respect to the
Riemannian connection) for later use.

Let M = (M, J, g) be a Hermitian surface of pointwise constant holomorphic
sectional curvature ¢ = c¢(p) (pe M). Then, taking account of [7] and [8], we have

1 c 1
(3.1 Rij = 2 lol ZCijkl + <Z ~16 el 2) Hij

1
+ % {guA; — GuAp + gpAu — gpAa

+ JaBji — JuBj + JyBy — JixBy
+ 2J;jBu + 2Ju B} ,
where
Ciju = gugp — GikGji
Hijkl =Gudjx — Ja9j + Jilek - Jiijl - 2Jiijz >
Ai; = 21(Vw; + Vo, + 0,0;) — 3J1J3(V,0, + V0, + 0,0,),
By =103 Vo, — It Viw,) — U§ V0, — JE V,0)) + 30,0, — Jio,0,) .
By (3.1) and (2.7), we have

3 3 1
(32) pij = {EC + E(t - T*)} 93 T,

3 1 1

x = (=158, +-T*

(3.3) Pl {20 16(T T )}g,, +4 i
where
(34) Tij= Vo, + Vo, + 0,0, — J{I2(V,0, + V0, + 0,0,) ,
and

(3.5 T = Vio; = Vio, — J{ 1} (V,0, - V,0,) .
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By (3.2), we get

(3.6) T+ 3t* = 24c.
By (3.6), the formulas (3.2) and (3.3) may be rewritten as
T 1
(3.2) Pij =394 T,
, T* 1
(3.3) ph=g9u+7T5.

From now on we establish some integral formulas which will be needed in the
next section. Assume that the manifold M is compact and connected. By (3.4),

Tjo'e’ =20'0' Vo, + |o|* - 2J7J(V,0,)0'e’ ,
and it follows that
3.7) [ Tyo'w'dM = [ {|o]?éw + |o|* — 2F}dM ,
M M

where we define the function F on M by
(3.8) F=J{JYV,0,)0 e .
By (3.2)', (3.3)', (3.5) and (3.7), we get
(9 [ {pyo'ew’ + pfo'w’ —iF}dM
M
=i {c+™Mlo)? - |o|*éo - |o|*}dM .
M
By making use of Ricci’s identity and Green’s theorem, we get
(3.10) [(Viw)Vie'dM = | {(bw)* — pjw'w’}dM .
M M
Since
(Vo) Vo' =3(Vo;— Vo) (Ve - Vo) + (Vo) Vo',
we get
(3.11) [ (Vo) ViwldM = [ {|do]|? + (bw)* — pjw'w’}dM .
M M
Taking account of the relation V;r = 2V'p,;, from (2.6), (3.10) and (3.11), we have
[réwdM = [ 0/ V,rdM
M M
= [ {lldo|* + 2(6w)* + 2|0 |?*éw — 2p;j0'w’ — 2pfw'w’ + 2F}dM .
M

Combining with (3.9), it follows that

(312) [FdM = | {réw + }|o|* —4(x — t*)* + 6cl|@|® — |dw|?}dM .
M M

Next, we define the functions G,, G, by
G, = J?J,?(Vawb) Vio',
G, =J{ (Vo) Vo' .
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Then, by similar computations to those of (3.12), we get
(3.13) G aM = [ GyaMm
M M

= {pho'ew’ —3F — }||w|?éw}dM .
M

By (2.7), (3.9), (3.10), (3.11) and (3.13), we get
(3.14) IT|?daM = [ {4ldo|? + 2(t — t*)2 — dt*|w|?}dM ,
M M

and

(3.15) IlIT*llsz=j'4l|dw[|2dM.
M M

By (3.14), we have immediately the following

Lemma 3.1. Let M be a compact Hermitian surface of pointwise constant holomor-
phic sectional curvature. Then

(3.16) [ lo)?dM < [ {ldo|? + $(c — 1*)2}dM .
M M

Equality holds if and only if T =0 (i.e, M is Einstein).

Lemma 3.2. Let M be a compact Hermitian surface of pointwise constant holomor-
phic sectional curvature c. Then the Euler class of M is given by
1

(3.17) (M) = 972

1
A{{IZCZ = E(r — %)% 4+ %r*llwllz}dM .

Proof. We begin with a calculation of the norm of the curvature tensor. Since
CijuRUkl =21,
HijyR™ = 2(1 + 37%),
{9aAj — guAp + gndu — guAu + JuBj — JuBj
+ JiBi — JuBy + 2J;;By + 2J,B;;} R
= —44;;p"7 — 12By Jkp*V |
and by (3.1) and (3.6), we get
G18) IR =126+ Lol — 1)~ 50 Ago¥ — L Budtpes.
By direct computations, we get
(3.19) A;jp" = — 37200 — |0]*) - 6]w|*
= 12{(Vw) Vo' + (Vo) Vo' + o' V]|o|?} + 12Q2F + G, +G,),
and
(3.20) By Jjp* = 31*(200 — |w|?)
—4H{ (Vo) Vo' — (Vo) Vo' — G, + G,}.
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By substituting (3.19), (3.20) into (3.18), we get

3 N
(3.21) IR||? = 12¢2 + 1—6-(1 —1*)2 + (Vo) Ve’ + Ew' Vilw|?

+ilw|*-F-G,.
By (2.7), (3.9), (3.11), (3.13) and (3.21), we have

(322) [IRI2dM = [{12¢? + L — o) + |doo|? — Lo* )2V am .
" A 16 2

By (3.2)" and (3.14), we get
(323 [lel?dM =4[ {z* + |do|* + $(c — t*)* — t*| 0|} dM .
M M

Now, (3.17) is an immediate consequence of (3.22), (3.23) and the well known
Gauss-Bonnet formula

1
X(M)=m£{{IIRIIZ—4IIPIIZ +17}dM .

Lemma 3.3. Let M be a compact Hermitian surface of pointwise constant holomor-
phic sectional curvature. Then the square of the first Chern class of M is given by

(3.24) ¢, (M)? = 3217[2'_!;{(1:’")2 +t*|w)? + [do|?*}dM .
Proof. 1t is easy to see

(3.25) Y Ay =3 {piyad VI = 2y J* I} AM

By (2.3), (2.6) and (3.3), we get

(3.26) 8nyij = (t* + | @1*)J;; — ¥ w0, + JiTbw,0,) + JETS .
By (3.26) and (2.5), we get

(3.27) 8ny,JV =41* + 2|02,

(3.28) 64>y puJ * I = 4(t* + |0]|?)2 - 4(* + o) o2

+2)o)* = |IT*|?.
Substituting (3.27), (3.28) into (3.25), we have

1
3272

PAR= {@*)? + *lo)? + 311 T*)?}dM .

Thus we obtain (3.24).

By virtue of (3.6), Theorem 2.1, Lemma 3.2 and Lemma 3.3, the first Pontrjagin
class p,(M) is given by

(3.29) pi(M) = Tlnz J{@*)? +§( — 1*)? — 24c? + |do|?} dM
M

1 1
=it | {E(T —3t*)2 4 Ildwllz}dM .
M
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Thus we have the following

Theorem 3.4. Let M be a compact Hermitian surface of pointwise constant holomor-
phic sectional curvature. Then the first Pontrjagin class p,(M) is non-negative. If
p1(M) is equal to zero, then t = 3t* and dow = 0 (and hence, M is a locally conformal
Kdahler surface).

4 Proofs of Theorems A and B

First, we shall prove Theorem A. Let M — (M, J, g) be a compact Hermitian
surface of constant holomorphic sectional curvature ¢ <0

First of all, we show that y(M ) 2 0. To show this, suppose that (M) < 0. Then
by virtue of Theorem 2.1, Theorem 2.2 and Theorem 3.4, we have

0.< 2¢(M) — ¢,(M)? = — p,(M) <0 .

Thus we have

4.1) T=3*, do =0,
and
4.2) ¢, (M)? = 2y(M)<0.

By (4.1) and (3.6), we get
™ =4c<0, T=12¢<0.
Hence, we have

[™*|w|?dM =4c | |w|?dM 0.
M M

On the other hand, taking account of (2.7), we have

[*lo|?dM = 4c [ |o|2dM
M M
=4c [ (1 — t*)dM = 322 Vol(M)20.
M
Thus, we have
(4.3) [t*|o|?dM =0,
M
By (4.3) and Lemma 3.3, we have

L fe*ramzo0.

2 _
CI(M) B 3271'2M

This is a contradiction to (4.2), which shows y(M )= 0.
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Since x(M) = 0, by virtue of Theorem 2.2, Lemma 3.1, Lemma 3.2 and Lemma
3.3,

44)  0=32r2(3g(M) — ¢, (M)?}
= | {36c2 - ™)+ lr*llwllz —(t*)?* — | do llz}dM
% 16 2

1 1 1
< =i *)2 k)2 (%2 _ 2
< {16(1:+3r ) +16(‘c T*) (t*) 2||dco|| }dM

)
M
[} {36’(1’ — %) — ! | dw |lz}dM
M 2

1
= {3cllwl|2 —§||dw||2}dM <0.
M

This shows that

@) c+0 and w=0,
or
(ii) c=0 and do=0.

Since w = 0 implies that M is Kahlerian, it is sufficient to consider the cace (ii).
In this case, taking account of 7 + 3t* = 0, the second line of (4.4) reduces to

4.5) 0= i‘; {%(‘r — %)% — %r*llwll 2}dM
1
= lIT)am .
M

Hence, we get T = 0. Then, by (3.7), (3.12) and (4.5), we have
0= f{lol*éo + |o|*—2F}dM
M

f{-2t*|w|? - 2téw + (t — 1*)?} dM
M
=—2[twdM .

M

Since 7 + 3t* = 0, we get

[ tdwdM =0 and ft*éwdM =0.
M M

Then
f@—1%)dM = [ (t — )20 + || ?)dM
M M

= [(t— )| ol*dM
M
=—4[t*|w|*dM
M
= —2f(r—1*)%dM,
M
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from which we have
T=1%*=0 and 200 + |w||?=0.
Consequently, we have
flo)?dM =0,
M
which implies = 0 on M. This completes the proof of Theorem A.

Next, we shall prove Theorem B. First of all, we show that y(M) = 0. Suppose
that y(M) < 0. Then, reviewing the proof of Theorem A, we see that 7 = 37*,
dw = 0and ¢,(M)? = 2y(M) < 0. Thus, we have t* = 4¢ > 0 by virtue of (3.6), and
hence

[™*lw|?dM =4c | |w|*dM=0.
M M

From this and (3.24), we have ¢;(M)* = 0. But this is a contradiction.
Since x(M) 2 0, by (3.17), we get

4.6) fe*lol2dM 2 [ {$(c — t*)2 — 24c?}aM .
M M

From (3.6), (3.24) and (4.6), we get
4.7) 32n%c,(M)* = [{@*)? + 4@ —t*)2 - 24c% + dw|?} dM
M

= {%(r —3t%)2 4 Hdwllz}dM =0.
M

Thus, we have
¢, (M)*20.

Suppose that ¢, (M)? = 0. Then, by (4.7), we have t = 37*, dw = 0 and hence
™ = 4c > 0 by (3.6). Thus, by (3.24), we have

! [{@*)? + t*|w|?} dM

32n? 5

321712 [{16¢* + 4c|w|?}dM >0 .
M

0=c,(M)? =

But, this is a contradiction. Thus, we have finally
¢, (M)*>0.
Therefore, again, by Theorem 2.2, we have
3x(M) 2 c;(M)2>0.

The rest of Theorem B follows immediately from Theorem 3.4 and the well-
known classification of compact complex surfaces ([35, 37).
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