

Werk

Titel: Formally real fields, pythagorean fields, C-fields and W-groups.

Autor: Minác, Ján; Spira, Michel

Jahr: 1990

PURL: https://resolver.sub.uni-goettingen.de/purl?266833020_0205|log61

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Formally real fields, pythagorean fields, C-fields and W-groups

Ján Mináč 1, * and Michel Spira 2, **

¹ Department of Mathematics, University of Western Ontario, Middlesex College, London, Ontario N6A 5B7, Canada

² Departamento de Matemática, Universidade Federal de Minas Gerais, Caixa Postal 702, 30161 Belo Horizonte MG, Brasil

Received February 2, 1989; in final form August 27, 1989

1 Introduction

This paper is a continuation of [MS], where W-groups were introduced. For the reader's convenience we recall in this section some of the concepts and notations used in this latter paper. If F is a field (always assumed to have characteristic not equal to 2) we define:

 $F^{(2)} :=$ compositum of all quadratic extensions of F.

 $F^{(3)}$:=compositum of all quadratic extensions K of $F^{(2)}$ such that K/F is Galois.

 $\mathcal{G}_F := \operatorname{Gal}(F^{(3)}/F).$

 $[\sigma]$:=the conjugacy class of $\sigma \in \mathscr{G}_F$.

 Φ_F :=the subgroup of \mathscr{G}_F topologically generated by the squares of elements of \mathscr{G}_F .

F(2):=the quadratic closure of F.

 $G_F := \operatorname{Gal}(F(2)/F)$.

s(F) :=the level of F.

u(F) := the u - invariant of F.

[a]:=the class of $a \in \dot{F}$ in \dot{F}/\dot{F}^2 .

 $X_F :=$ the set of orderings of F.

The group \mathscr{G}_F will be seen as a topological group with the usual pro-2-group topology. This group has very pleasant properties, among which we list $g^4 = 1$ for all $g \in \mathscr{G}_F$ and the fact that commutators are in the center. We take the commutator subgroup $[\mathscr{G}_F, \mathscr{G}_F]$ to be the topological closure of the abstract commutator subgroup of \mathscr{G}_F . Note that since $[x, y] = x^{-2}(xy^{-1})^2y^2$ for x, y in any group, it follows that $[\mathscr{G}_F, \mathscr{G}_F] \subset \Phi_F$.

^{*} Supported in part by the National Science Foundation and the Natural Sciences and Engineering Research Council of Canada

^{**} This article is a modified version of part of the second author's Ph.D. thesis, U.C. Berkeley, 1987

Note that $\Phi_F = \operatorname{Gal}(F^{(3)}/F^{(2)})$, and that $\mathscr{G}_F/\Phi_F \cong \operatorname{Gal}(F^{(2)}/F)$. A simple remark is that $\mathscr{G}_F/\Phi_F \cong \prod_{i \in I} \mathbb{Z}/2\mathbb{Z}$ if and only if $\dot{F}/\dot{F}^2 \cong \bigoplus_{i \in I} \mathbb{Z}/2\mathbb{Z}$; this follows from the

fact that $F^{(2)}$ is the composition of the quadratic extensions $F(\sqrt{a})$ where [a] ranges over a basis of \dot{F}/\dot{F}^2 .

All other notations and concepts used in this paper can be found in standard works in quadratic forms, e.g., [L1], [L2].

The importance of W-groups can be seen from the following theorem:

Theorem 1.1 ([MS]). Let F, L be fields; then

- 1. $WF \cong WL \Rightarrow \mathscr{G}_F \cong \mathscr{G}_L$.
- 2. If $\langle 1, 1 \rangle_F$ is universal assume also that s(F) = s(L). Then $\mathscr{G}_F \cong \mathscr{G}_L \Rightarrow WF \cong WL$.

This theorem shows that Witt ring invariants can be translated into group theoretic information and conversely; the aim of this paper is to present a few examples to illustrate this. We choose formally real fields and pythagorean fields (Sect. 2) and C-fields (Sect. 3) because in these cases it is particularly easy to translate field properties into Witt ring information (see [L1], [L2], [War]). We remark that the results in Sect. 2, which parallel the classical Artin-Schreier-Becker theory (see [Bec]), have led to the notion of a generalized ordering which is studied in [MM].

In [MS] it was shown that $F^{(3)}$ is the compositum of all extensions K of F such that Gal(K/F) is one of $\mathbb{Z}/2\mathbb{Z}$, $\mathbb{Z}/4\mathbb{Z}$ or \mathbb{D}_4 (here \mathbb{D}_4 denotes the usual dihedral group of order 8). The importance of $\mathbb{Z}/4\mathbb{Z}$ and \mathbb{D}_4 can easily be seen by theorems 1.3 and 1.6 below, which show that the splitting of quaternion algebras over F is precisely reflected in the Galois theory of F.

Definition 1.2. A Galois extension L of F is called a $\mathbb{Z}/4\mathbb{Z}$ -extension of F if $Gal(L/F) \cong \mathbb{Z}/4\mathbb{Z}$. If $a \in \dot{F} \setminus \dot{F}^2$ then by a $\mathbb{Z}/4\mathbb{Z}^a$ -extension of F we mean a $\mathbb{Z}/4\mathbb{Z}$ -extension K of F such that $K \supset F(\sqrt[]{a})$.

Theorem 1.3 ([L1] exercise VII.8). Let $a \in \dot{F} \setminus \dot{F}^2$. Then there exists a $\mathbb{Z}/4\mathbb{Z}^a$ -extension of F if and only if $\left(\frac{a,a}{F}\right) = 1$.

Definition 1.4. Two elements $a, b \in \dot{F}$ are called independent modulo squares if [a] and [b] are linearly independent in \dot{F}/\dot{F}^2 .

Definition 1.5. A Galois extension L of F is called a \mathbb{D}_4 -extension of F if $Gal(L/F) \cong \mathbb{D}_4$. If $a, b \in \dot{F}$ are independent modulo squares then by a $\mathbb{D}_4^{a,b}$ -extension of F we mean a \mathbb{D}_4 -extension K of F such that $K \supset F(\sqrt{a}, \sqrt{b})$ and $Gal(K/F(\sqrt{ab})) \cong \mathbb{Z}/4\mathbb{Z}$.

Theorem 1.6. ([F] (7.7)). Let $a, b \in \dot{F}$ be independent modulo squares. Then there exists a $\mathbb{D}_4^{a,b}$ -extension of F if and only if $\left(\frac{a,b}{F}\right)=1$.

2 Formally real fields and pythagorean fields

In this section we characterize formally real fields in terms of the existence of special involutions in their W-groups. We also explain how orderings arise

from the W-group and introduce the concept of relative real closure. We finish by characterizing pythagorean fields via their W-groups.

We will be working constantly with involutions of \mathscr{G}_{F} . To simplify notation, we will say that such an involution σ is

simple if $\sigma \in \Phi_F$ (note that every nonidentity element of Φ_F is a central involution);

real if σ is not simple and if the fixed field $F_{\sigma}^{(3)}$ of σ is formally real; nonreal if σ is not simple and not real.

Notice that if $\sigma \in \mathscr{G}_F$ and $\sigma \Phi_F$ contains an involution then every nonidentity element of $\sigma \Phi_F$ is an involution.

Theorem 2.7. Let F be a field. Then

- 1. If F is formally real then \mathcal{G}_F contains a real involution.
- 2. If \mathcal{G}_F contains a nonsimple involution then F is formally real.
- *Proof.* (1) Suppose that F is formally real and let $P \in X_F$. By [Bec] there exists an involution $\tilde{\sigma} \in G_F$ such that $\sqrt{-1}^{\tilde{\sigma}} = -\sqrt{-1}$ and $P = F(2)^{\tilde{\sigma}}_{\tilde{\sigma}} \cap \dot{F}$. Let $\sigma := \tilde{\sigma}|_{F^{(3)}}$. Then $\sigma^2 = 1$ and $\sqrt{-1}^{\sigma} = -\sqrt{-1}$, so $\sigma \notin \Phi_F$ and $F_{\sigma}^{(3)} = F(2)_{\tilde{\sigma}} \cap F^{(3)}$ is formally real. Therefore σ is a real involution. Note that $P = (F_{\sigma}^{(3)})^2 \cap \dot{F}$.

 (2) Let σ be a nonsimple involution in \mathscr{G}_F , and let b be any element of
- \dot{F} such that $(1/b)^{\sigma} = -1/b$. Note that such b exists because $\sigma \notin \Phi_F$.

Claim 1. b is not a sum of two squares.

Proof of claim. Suppose b is a sum of two squares. By Theorem 1.3 there exists a $\mathbb{Z}/4\mathbb{Z}^b$ -extension L of F. Let $\bar{\sigma} := \sigma|_L$; note that since L/F is Galois we have $\bar{\sigma} \in \text{Gal}(L/F)$. Write $\text{Gal}(L/F) = \langle \tau : \tau^4 = 1 \rangle$. Since $\sigma^2 = 1$ we have $\bar{\sigma} = 1$ or $\bar{\sigma} = \tau^2$. In either case we get $1/b = (1/b)^{\sigma}$, a contradiction.

Claim 2. If
$$\left(\frac{b,c}{F}\right) = 1$$
 then $(\sqrt{c})^{\sigma} = \sqrt{c}$.

Proof of claim. If $c \in \dot{F}^2$ the claim is clear, so we assume $c \notin \dot{F}^2$. If b and c are dependent modulo squares we get $1 = \left(\frac{b,c}{F}\right) \sim \left(\frac{b,b}{F}\right)$ and therefore b is a

sum of two squares, a contradiction. Hence b and c are independent modulo squares and by Theorem 1.6 there exists a $\mathbb{D}_{4}^{b,c}$ -extension L of F. Let $\bar{\sigma} := \sigma|_{L}$. Because $[F^{(3)}:F_{\sigma}^{(3)}]=2$ and $(\sqrt{b})^{\sigma}=-\sqrt{b}$ it follows that $[L:L_{\bar{\sigma}}]=2$. In such an extension only an element of order 4 can move both \sqrt{b} and \sqrt{c} , and hence $\sqrt{c} = (\sqrt{c})^{\bar{\sigma}} = (\sqrt{c})^{\sigma}$.

Claim 3.
$$(\sqrt{-1})^{\sigma} = -\sqrt{-1}$$
. In particular $\sqrt{-1} \notin F$.

Proof of claim. Since $\left(\frac{b,-b}{F}\right)=1$ it follows by claim 2 that $(\sqrt{-b})^{\sigma}=\sqrt{-b}$. But then $(\sqrt{-b})^{\sigma} = (\sqrt{-1})^{\sigma} (\sqrt{b})^{\sigma}$ implies that $-\sqrt{-1}^{\sigma} \sqrt{b} = \sqrt{-b}$ and therefore $\sqrt{-1}^{\sigma} = -\sqrt{-1}$. Now let $P := \{ p \in \dot{F} : (\sqrt{p})^{\sigma} = \sqrt{p} \}$. Note that $P = (F_{\sigma}^{(3)})^2 \cap \dot{F}$. It is clear that

- 1. $-1 \notin P$ (by claim 3); 2. $\dot{F}^2 \subset P$ and $P \in P \subset P$;
- 3. $P \cap -P = \emptyset$, and
- 4. $P \cup -P = \dot{F}$.

So all we need for P to be an ordering is $P+P \subset P$. Let $p \in P$. Then $(\sqrt{p})^{\sigma} = \sqrt{p}$ and since $(\sqrt{-1})^{\sigma} = -\sqrt{-1}$ we get $(\sqrt{-p})^{\sigma} = -\sqrt{-p}$. Now $(\sqrt{1+p}, -p) = 1$ and

by claim 2 we get $(\sqrt{1+p})^{\sigma} = \sqrt{1+p}$, i.e., $1+p \in P$. Therefore P is additively closed and we are done.

Remarks. (1) As it is clear from the proof above, if $L \subset F(2)$ is any Galois extension of F such that $F^{(3)} \subset L$ then Theorem 2.7 holds for Gal(L/F) instead of \mathscr{G}_F . As a matter of fact, this remark is valid for all the results in this section. What one really needs is to have all quadratic, $\mathbb{Z}/4\mathbb{Z}$ - and \mathbb{D}_4 -extensions of F available. $F^{(3)}$ is simply the smallest Galois extension of F inside F(2) for which our results hold.

(2) We showed above that if F is formally real then \mathscr{G}_F contains a real involution. In the next section we will show that nonreal involutions fail to exist if and only if F is superpythagorean.

Definition 2.8. The fixed field $F_{\sigma}^{(3)}$ of a nonsimple involution $\sigma \in \mathscr{G}_F$ will be called a relative real closure of F.

In the course of the proof of Theorem 2.7 we established the following correspondence between X_F and the set of nonsimple involutions of \mathscr{G}_F :

- 1. For each $P \in X_F$ there exists a real involution $\sigma \in \mathscr{G}_F$ such that P $=(F_{\sigma}^{(3)})^2 \cap \dot{F}$. Here we set $\sigma = \sigma_F$; this entails a slight abuse of notation since in general such σ is not uniquely determined (see Proposition 2.9).
- 2. Each nonsimple involution $\sigma \in \mathscr{G}_F$ determines $P \in X_F$ given by $P = (F_{\sigma}^{(3)})^2 \cap \dot{F}$. In this case we set $P = P_{\sigma}$; this is no abuse of notation since P_{σ} is uniquely determined by σ .

Note that if $P \in X_F$ then $P = P_{\sigma_P}$ and therefore the map {nonsimple involutions of \mathscr{G}_F $\to X_F$ described in (2) above is surjective. We now describe this map in more detail.

Proposition 2.9. 1. Let σ and τ be nonsimple involutions in \mathscr{G}_F . Then $P_{\sigma} = P_{\tau} \Leftrightarrow \sigma \Phi_F$

- 2. Let σ , τ be nonsimple conjugate involutions in \mathscr{G}_F . Then $P_{\sigma} = P_{\tau}$.
- 3. Let σ and τ be real involutions in \mathscr{G}_F . Then $P_{\sigma} = P_{\tau} \Leftrightarrow \sigma$ and τ are conjugate in \mathcal{G}_F .

<u>Proof.</u> (1) From the explicit description of P_{σ} and P_{τ} we see that $P_{\sigma} = P_{\tau} \Leftrightarrow (1/a)^{\sigma}$ $=(\sqrt{a})^{\tau} \text{ for all } a \in \dot{F}. \text{ This happens if and only if } \sigma|_{F^{(2)}} = \tau|_{F^{(2)}}, \text{ i.e.,}$ $\sigma \tau^{-1} \in \text{Gal}(F^{(3)}/F^{(2)}) = \Phi_F.$ (2) Write $\sigma = \gamma^{-1} \tau \gamma$. Then $\sigma = \tau \tau^{-1} \gamma^{-1} \tau \gamma = \tau [\tau, \gamma] \in \tau \Phi_F$, and therefore $P_{\sigma} = P_{\tau}$

- by (1).
- (3) If σ and τ are conjugate we have $P_{\sigma} = P_{\tau}$ by (2). Assume now that $P_{\sigma} = P_{\tau} =: P$. Let $\tilde{\sigma}$ and $\tilde{\tau}$ be involutions in G_F such that $F(2)_{\tilde{\sigma}}$ and $F(2)_{\tilde{\tau}}$ are euclidean closures of $F_{\sigma}^{(3)}$ and $F_{\tau}^{(3)}$, respectively. Note that $F(2)_{\tilde{\sigma}}$ and $F(2)_{\tilde{\tau}}$ are

both euclidean closures of F with respect to P. We have $\sigma = \tilde{\sigma}|_{F^{(3)}}$ and $\tau = \tilde{\tau}|_{F^{(3)}}$. It follows from [L1], Theorem VIII.2.8 that there is an order preserving Fisomorphism $\gamma': F(2)_{\tilde{\sigma}} \to F(2)_{\tilde{\tau}}$, which extends to an F-automorphism $\tilde{\gamma} \in G_F$. Then an easy computations shows that $\tilde{\gamma}\tilde{\tau}\tilde{\gamma}^{-1} = \tilde{\sigma}$. Setting $\gamma := \tilde{\gamma}|_{F(3)}$ we get $\gamma \tau \gamma^{-1}$

Corollary 2.10. Let F be a field. Then there exists a bijection between the set of orderings of F and the nontrivial cosets $\sigma\Phi_F$ where σ is an involution. This bijection is given by $P \mapsto \sigma_P \Phi_F$ and $\sigma \Phi_F \mapsto P_{\sigma}$.

Proof. This is a restatement of Proposition 2.9(1) and of previous remarks.

We finish this section with a characterization of pythagorean fields via their W-groups.

Theorem 2.11. The following conditions are equivalent:

- 1. F is pythagorean.
- 2. \mathcal{G}_F is generated by involutions.
- 3. $\Phi_F = [\mathscr{G}_F, \mathscr{G}_F].$

Proof. (1) \Rightarrow (2) Suppose F is pythagorean. If F is not formally real then F is quadratically closed and hence $\mathscr{G}_F = \{1\}$ is generated by the empty set of involutions. If F is formally real then F is the intersection of the family of its euclidean closures $\{F_i: i \in I\}$ ([Bec] Corollary 2 of Satz 10). Let $\tilde{\sigma}_i$ be the involution of G_F corresponding to F_i . Then G_F is generated by the $\tilde{\sigma}_i$'s and therefore \mathscr{G}_F is generated by the (real) involutions $\sigma_i := \tilde{\sigma}_i|_{F^{(3)}}$. (2) \Rightarrow (3) Let $\tau = \sigma_1 \ \sigma_2 \dots \sigma_n$ where the σ_i 's are involutions in \mathscr{G}_F . Then

$$\tau^2 = (\sigma_1 \ \sigma_2 \dots \sigma_n)(\sigma_1 \ \sigma_2 \dots \sigma_n).$$

In this expression we can move the rightmost σ_1 past all the σ_i 's to its left until it cancels out with the other σ_1 , at the price of introducing commutators. Since the commutators are in the center of \mathscr{G}_F we can move all of them to the right side of the expression and repeat the procedure with σ_2 , etc. In the end we are left with an expression for τ^2 as a product of commutators. This shows that the abstract subgroup generated by the squares is contained in the abstract commutator subgroup; since the reverse inclusion is always true we get equality. Taking closures finishes the argument.

(3) \Rightarrow (1) Suppose $\Phi_F = [\mathscr{G}_F, \mathscr{G}_F]$ and let $\Psi: \mathscr{G}_F \to \mathbb{Z}/4\mathbb{Z}$ be a homomorphism. Then Ψ factors through $\mathscr{G}_F/[\mathscr{G}_F,\mathscr{G}_F] = \mathscr{G}_F/\Phi_F$ which is elementary 2-abelian, and therefore Ψ cannot be onto. In other words F has no $\mathbb{Z}/4\mathbb{Z}$ -extensions and therefore F is pythagorean by Theorem 1.3.

3 C-fields and abelian W-groups

In this section we will characterize C-fields via their W-groups, and obtain all the abelian W-groups in the process. Recall that F is a C-field if $D_F \langle 1, a \rangle = \{[1], a \}$ [a] for all $a \in \dot{F} \setminus (\pm \dot{F}^2)$. It is well known that the possible values of the level of a C-field are 1, 2 and ∞ ([War] Proposition 1.1); our characterization distinguishes between these possibilities.

We will also characterize superpythagorean fields (i.e., C-fields of level ∞) as fields having the largest possible "number" of relative real closures (see Definition 2.8); these closures will be described at the end of the section. We recall that a field F is euclidean if F is formally real and $F/F^2 = \{[1], [-1]\}$; note that F is euclidean if and only if F is superpythagorean and $F/F^2 = \{[1], [-1]\}$; note

Throughout this section we will let I denote an arbitrary set of indices with $|I| \ge 1$. If $a \in F$, by $\sqrt[4]{a}$ we will always mean a fixed choice of fourth root of a inside some algebraic closure of F. We give $\mathbb{Z}/2\mathbb{Z}$ and $\mathbb{Z}/4\mathbb{Z}$ the discrete topology and $\prod_{i \in I} \mathbb{Z}/2\mathbb{Z}$ and $\prod_{i \in I} \mathbb{Z}/4\mathbb{Z}$ the product topology.

We begin by classifying the abelian W-groups; we look at the small ones in the next theorem, and finish with Theorem 3.13.

Theorem 3.12. Let F be a field. Then

- 1. $\mathscr{G}_F = \{1\} \Leftrightarrow F \text{ is quadratically closed} \Leftrightarrow WF \cong \mathbb{Z}/2\mathbb{Z}.$
- 2. $\mathscr{G}_{\mathbf{F}} = \mathbb{Z}/2\mathbb{Z}$ or $\mathbb{Z}/4\mathbb{Z} \Leftrightarrow |\dot{F}/\dot{F}^2| = 2$.
- 3. $\mathscr{G}_F \cong \mathbb{Z}/2\mathbb{Z} \Leftrightarrow F$ is euclidean $\Leftrightarrow WF \cong \mathbb{Z}$.
- 4. $\mathscr{G}_F \cong \mathbb{Z}/4\mathbb{Z} \Leftrightarrow F$ is not formally real, $|\dot{F}/\dot{F}^2| = 2$; and $u(F) = 2 \Leftrightarrow WF \cong \mathbb{Z}/2\mathbb{Z}[\mathbb{Z}/2\mathbb{Z}]$ or $WF \cong \mathbb{Z}/4\mathbb{Z}$.
- *Proof.* (1) $\mathscr{G}_F = \{1\} \Leftrightarrow F$ has no proper quadratic extensions, and the result follows.
- (2) If $\mathscr{G}_F = \mathbb{Z}/2\mathbb{Z}$ or $\mathbb{Z}/4\mathbb{Z}$ then F has a unique quadratic extension, i.e., $|\dot{F}/\dot{F}^2| = 2$. Conversely, if $|\dot{F}/\dot{F}^2| = 2$ then $[F^{(2)}:F] = 2$; the square class exact sequence ([L1] Theorem VII.3.4) shows that $[\dot{F}^{(2)}/(\dot{F}^{(2)})^2] \leq 2$ and therefore $[F^{(3)}:F^{(2)}] \leq 2$. Hence $[F^{(3)}:F] \leq 4$, i.e., $|\mathscr{G}_F| \leq 4$. Since F has a unique quadratic extension we cannot have $\mathscr{G}_F \cong \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ and the result follows since $\mathscr{G}_F \neq \{1\}$ by (1).
- (3) Suppose that F is euclidean. Then $\dot{F}/\dot{F}^2 = \{[1], [-1]\}$ and $F(2) = F(\sqrt{-1})$ ([L1] exercise VII.5). In particular $G_F \cong \mathbb{Z}/2\mathbb{Z}$ and therefore $\mathscr{G}_F \cong \mathbb{Z}/2\mathbb{Z}$.

Conversely, assume $\mathscr{G}_F \cong \mathbb{Z}/2\mathbb{Z}$. Then $|\dot{F}/\dot{F}^2| = 2$, and F is pythagorean because F has no $\mathbb{Z}/4\mathbb{Z}$ -extensions. Since F is not quadratically closed it follows that F is formally real, and therefore F is euclidean.

Finally, the fact that F is euclidean if and only if $WF \cong Z$ is well known ([L3], Example 1.12).

(4) If $\mathscr{G}_F = \mathbb{Z}/4\mathbb{Z}$ then $|\dot{F}/\dot{F}^2| = 2$ by (2) above. If $F(\sqrt[]{a})$ is the unique quadratic extension of F then a is a sum of two squares and if follows immediately that F is not formally real and u(F) = 2. These conditions in turn imply that $WF \cong \mathbb{Z}/2\mathbb{Z}[\mathbb{Z}/2\mathbb{Z}]$ or $\mathbb{Z}/4\mathbb{Z}$ by [L1] Theorem II.3.5. Finally, if WF is of one of those forms, we compute $IF \cong \mathbb{Z}/2\mathbb{Z}$ and $I^2F = \{0\}$, so $|\dot{F}/\dot{F}^2| = 2$. Then $\mathscr{G}_F = \mathbb{Z}/4\mathbb{Z}$ follows by (2) and (3). \square

Theorem 3.13. Assume $\dot{F}/\dot{F}^2 \cong \bigoplus_{i \in I} \mathbb{Z}/2\mathbb{Z}$ and $|I| \geq 2$. Then the following conditions are equivalent:

- 1. $\mathscr{G}_F \cong \prod_{i \in I} \mathbb{Z}/4\mathbb{Z}$.
- 2. \mathcal{G}_F is abelian.
- 3. F is a C-field and s(F) = 1.

Proof. (1) \Rightarrow (2). Trivial.

 $(2)\Rightarrow(3)$ Since \mathscr{G}_F is abelian we see that F has no \mathbb{D}_4 -extensions. In particular, F has no $\mathbb{D}_4^{a,-a}$ -extensions and therefore s(F)=1. Moreover by Theorem 1.6 we see that F is a C-field.

(3) \Rightarrow (1) Let $\{ \lceil a_i \rceil : i \in I \}$ be a basis of \dot{F}/\dot{F}^2 .

Claim 1. A basis of $\dot{F}^{(2)}/(\dot{F}^{(2)})^2$ is $\{[\sqrt{a_i}]: i \in I\}$.

Proof of claim. It is enough to show that given a finite family $\{[a_1], \ldots, [a_n]\}$ of $[a_i]$'s, a basis of K_n/K_n^2 is $\{[\sqrt{a_i}]: 1 \le i \le n\} \cup \{[a_j]: j \ne 1, \ldots, n\}$ where $K_n := F(\sqrt{a_1}, \ldots, \sqrt{a_n})$.

So let $K_i := F(\sqrt{a_1}, ..., \sqrt{a_i})$ and consider the tower of quadratic extensions $F \subset K_1 \subset ... \subset K_n$. Since F is a C-field it follows by the square class exact sequence ([L1] Theorem VII.3.4; see also [Ber], Corollary 1.12) that a basis for K_1/K_1^2 is $\{[\sqrt{a_1}], [a_i]: i \neq 1\}$. Now all K_i 's are C-fields ([War] Corollary 2.8). In particular K_1 is a C-field and the same reasoning as above shows that a basis of K_2/K_2^2 is $\{[\sqrt{a_1}], [\sqrt{a_2}], [a_i]: i \neq 1, 2\}$. Iteration of this procedure yields the required basis of K_n/K_n^2 .

Claim 2.
$$F^{(3)} = F(\sqrt[4]{a_i}: i \in I)$$
.

Proof of claim. By the definition of $F^{(3)}$ we know that $F(\sqrt[4]{a_i}) \subset F^{(3)}$ for all $i \in I$. On the other hand $F^{(3)}$ is a compositum of some quadratic extensions of $F^{(2)}$ which by claim 1 are of the form $F(\sqrt[4]{a_{i_1} \dots a_{i_n}})$ for some $i_1, \dots, i_n \in I$. The claim follows.

This explicit description of $F^{(3)}$ allows us to use abelian Kummer theory ([AT], Sect. 1) to conclude that $\mathscr{G}_F \cong \prod_{i \in I} \mathbb{Z}/4\mathbb{Z}$. More precisely, \mathscr{G}_F is generated by the set $\{\tau_i \colon i \in I\}$ where

$$\sqrt[4]{a_i^{\tau_j}} = \begin{cases} \sqrt{-1} \sqrt[4]{a_i} & \text{if } i = j, \\ \sqrt[4]{a_i} & \text{if } i \neq j. \quad \Box \end{cases}$$

Corollary 3.14. Let F be a formally real field. Then F has a unique relative real closure $\Leftrightarrow F$ is euclidean. In this case F is its own unique real closure.

Proof. Suppose first that F is euclidean. Then $F(2) = F(\sqrt{-1}) = F^{(3)}$ and it follows immediately that F is its own unique relative real closure. Conversely, suppose F has a unique relative real closure, and let σ be a real involution in \mathscr{G}_F . Since distinct elements of $\sigma \Phi_F$ give rise to distinct relative real closures of F we see that $\Phi_F = \{1\}$. Therefore \mathscr{G}_F is a group of exponent 2; in particular \mathscr{G}_F is abelian. Perusing our list of abelian W-groups and noticing that $\mathscr{G}_F \neq \{1\}$ because $|\dot{F}/\dot{F}^2| \geq 2$, we see that we must have $\mathscr{G}_F = \mathbb{Z}/2\mathbb{Z}$, and therefore F is euclidean. \square

We now make a comment which will be used in the next two theorems. Let F be a field and M a (possibly infinite) Galois extension of F. Suppose K and L are two subfields of M, linearly disjoint over F and such that L is Galois over F and M = KL. Then $\operatorname{Gal}(M/L) \lhd \operatorname{Gal}(M/F)$ and we can write $\operatorname{Gal}(M/F) = \operatorname{Gal}(M/L) \lhd \operatorname{Gal}(M/K)$. It follows that the Krull topology of $\operatorname{Gal}(M/F)$ is exactly the product of the Krull topologies of $\operatorname{Gal}(M/L)$ and $\operatorname{Gal}(M/K)$ ([A] Theorem 4 Chap. 6).

Theorem 3.15. A field F is a C-field with $\dot{F}/\dot{F}^2 \cong (\bigoplus_{i \in I} \mathbb{Z}/2\mathbb{Z}) \oplus \mathbb{Z}/2\mathbb{Z}$ and s(F) = 2 if and only if $\mathscr{G}_F \cong (\prod_{i \in I} \mathbb{Z}/4\mathbb{Z}) \bowtie \mathbb{Z}/4\mathbb{Z}$ where the action of a generator σ of the outer $\mathbb{Z}/4\mathbb{Z}$ on $\tau \in \prod_{i \in I} \mathbb{Z}/4\mathbb{Z}$ is given by $\sigma^{-1} \tau \sigma = \tau^3$.

Proof. Suppose first that \mathscr{G}_F is as given in the hypothesis. For simplicity, write $A := \prod_{i \in I} \mathbb{Z}/4\mathbb{Z}$ and $B := \mathbb{Z}/4\mathbb{Z} = \langle \sigma \rangle$; we may then assume that $\mathscr{G}_F = A \rtimes B$.

Claim 1. F is not formally real.

Proof of claim. By Theorem 2.7 it is enough to show that all involutions of \mathscr{G}_F are simple. So let $\tau \in A$ and $\sigma^i \tau$, $0 \le i \le 3$, be an involution. Then

$$1 = (\sigma^i \tau)^2 = \sigma^{2i} (\sigma^{-i} \tau \sigma^i) \tau = \sigma^{2i} \tau^{1+3i}$$

SO

$$1 = \sigma^{2i} = \tau^{1+3i}$$

and therefore $i \in \{0, 2\}$. Both possibilities imply $\tau^2 = 1$; since all elements of order 2 in A are squares it follows that $\sigma^i \tau \in \Phi_F$ and we are done with the claim.

Claim 2. $[\mathcal{G}_F, \mathcal{G}_F] = A^2$.

Proof of claim. Since $\mathscr{G}_F/A^2 \cong (\prod_{i \in I} \mathbb{Z}/2\mathbb{Z}) \times \mathbb{Z}/4\mathbb{Z}$ is abelian we see that $[\mathscr{G}_F, \mathscr{G}_F] \subset A^2$. For the reverse inclusion, notice that for $\tau \in A$ we have $\sigma^{-1} \tau \sigma = \tau^3$ and hence $\tau^2 = [\tau, \sigma]$.

Claim 3. Every $\mathbb{Z}/4\mathbb{Z}$ -extension of F contains $\sqrt{-1}$. In particular, $D_F\langle 1, 1 \rangle = \{[1], [-1]\}.$

Proof of claim. First notice that $\mathbb{Z}/4\mathbb{Z}$ -extensions of F do exist, e.g., take the fixed field of A. Now let L be a $\mathbb{Z}/4\mathbb{Z}$ -extension of F, and let \bar{C} denote the restriction homomorphism $\mathscr{G}_F \to \mathbb{Z}/4\mathbb{Z} \cong \mathrm{Gal}(L/F)$. Since $\mathbb{Z}/4\mathbb{Z}$ is abelian, \bar{C} factors through $\mathscr{G}_F/[\mathscr{G}_F, \mathscr{G}_F] \cong (\prod_{i \in I} \mathbb{Z}/2\mathbb{Z}) \times B$. It follows that $\bar{B} = \mathbb{Z}/4\mathbb{Z}$ and that

 $\overline{A} \in \{0, 2\} \subset \mathbb{Z}/4\mathbb{Z}$. Hence the intermediate quadratic extension $F(\sqrt{a})$ of L is uniquely determined as the fixed field of $A \times B^2$, and therefore $D_F \langle 1, 1 \rangle = \{[1], [a]\}$ by Theorem 1.3.

It remains to show that [a] = [-1]; for that it is enough to show that s(F) = 2, since then $[-1] \neq [1]$ and $-1 \in D_F \langle 1, 1 \rangle$. First note that we cannot have s(F) = 1. Indeed, if so, then $\langle 1, 1 \rangle$ is universal and therefore $\dot{F}/\dot{F}^2 = D_F \langle 1, 1 \rangle = \{[1], [a]\}$. Hence $|\dot{F}/\dot{F}^2| = 2$ and therefore \mathscr{G}_F is abelian by Theorem 3.12(2), a contradiction.

Now let $b \in D_F \langle 1, 1, 1, 1, 1 \rangle$. Since $D_F \langle 1, 1 \rangle = \{[1], [a]\}$ we see that we have either $b \in D_F \langle 1, 1 \rangle$ or $b \in D_F \langle 1, a \rangle$ or $b \in D_F \langle a, a \rangle = aD_F \langle 1, 1 \rangle = D_F \langle 1, 1 \rangle$. In any case we have $b \in D_F \langle 1, 1, 1 \rangle$, which shows that s(F) < 4. Since s(F) cannot be 3 and we already know that $s(F) \neq 1$, we must have s(F) = 2. We then get [a] = [-1] and we are done with the claim.

Claim 4. F is a C-field.

Proof of claim. Let $a \in \dot{F} \setminus (\pm \dot{F}^2)$ and let $b \in D_F \langle 1, -a \rangle$; we want to show that $[b] \in \{[1], [-a]\}$. Assume $[b] \neq [1]$. We have $[b] \neq [a]$, since $a \in D_F \langle 1, -a \rangle$ would imply that a is a sum of two squares, i.e., $[a] = [\pm 1]$, a contradiction by the choice of a. Hence a and b are independent modulo squares, and since $\left(\frac{a,b}{F}\right) = 1$ there exists a $\mathbb{D}_4^{a,b}$ -extension K of F by Theorem 1.6.

Let $\overline{}: \mathscr{G}_F \to \operatorname{Gal}(K/F) \cong \mathbb{D}_4$ denote the restriction homomorphism. Since \mathbb{D}_4 is nonabelian \bar{A} and \bar{B} cannot commute elementwise, and therefore there must exist $\tau \in A$ such that $[\bar{\sigma}, \bar{\tau}] \neq 1$. Because \mathbb{D}_4 is generated by any noncommuting pair of its elements, we have $\mathbb{D}_4 = \langle \bar{\sigma}, \bar{\tau} \rangle$. The relation in \mathscr{G}_F gives $\bar{\sigma}^{-1} \bar{\tau} \bar{\sigma} = \bar{\tau}^3$; in particular the order of $\bar{\tau}$ is 4 because $[\bar{\sigma}, \bar{\tau}] + 1$, and so $\bar{\sigma}$ is a noncentral involution in \mathbb{D}_4 . Now let ε be any element of A; from $[\tau, \varepsilon] = 1$ we get $[\bar{\tau}, \bar{\varepsilon}] = 1$ and therefore we must have $\bar{\varepsilon} \in \langle \bar{\tau} \rangle$, i.e., $\bar{A} \subset \langle \bar{\tau} \rangle$.

Carrying this information back to K we see that $(\sqrt{ab})^{\sigma} = -\sqrt{ab}$ and that Surrying this information back to K we see that $(\sqrt{ab})^a = \sqrt{ab}$ and that $(\sqrt{ab})^a = \sqrt{ab}$ for all $\tau \in A$. Since $(\sqrt{ab})^{\sigma^2} = \sqrt{ab}$ it follows that \sqrt{ab} is fixed by $A \times B^2$ and therefore [ab] = [-1] by claim 3, implying that [b] = [-a]. This finishes the proof of the "if" part of the theorem.

We now prove the "only if" part. Suppose that F is a C-field with s(F) = 2 and $\dot{F}/\dot{F}^2 \cong (\bigoplus \mathbb{Z}/2\mathbb{Z}) \oplus \mathbb{Z}/2\mathbb{Z}$. Let $\{[-1], [a_i]: i \in I\}$ be a basis of \dot{F}/\dot{F}^2 . Since

s(F) = 2 there exists a $\mathbb{Z}/4\mathbb{Z}^{-1}$ -extension L of F. We have $L = F(\sqrt{y})$ where $y \in F(\sqrt{-1})$ is such that $[N_{F(\sqrt{-1})/F}(y)] = [-1]$ by Theorem 1.3. It then follows as in the proof of Theorem 3.13 that

- 1. $\{[y], [a_i]: i \in I\}$ is a basis of $F(\sqrt{-1})/(F(\sqrt{-1}))^2$;
- 2. $\{[\sqrt{y}], [\underline{a_i}]: i \in I\}$ is a basis of \dot{L}/\dot{L}^2 ;
- 3. $\{[y], []/a_i]: i \in I\}$ is a basis of $\dot{F}^{(2)}/(\dot{F}^{(2)})^2$

and therefore $F^{(3)} = F(\sqrt{y}, \sqrt[4]{a_i}: i \in I) = L(\sqrt[4]{a_i}): i \in I)$. From (2) above and abelian Kummer theory it follows that $A := \operatorname{Gal}(F^{(3)}/L) = \langle \tau_i : i \in I \rangle \cong \prod_{i \in I} \mathbb{Z}/4\mathbb{Z}$ where

$$(\sqrt[4]{a_i})^{\mathfrak{r}_j} = \begin{cases} \sqrt{-1} \sqrt[4]{a_i} & \text{if } i = j \\ \sqrt[4]{a_i} & \text{if } i \neq j \end{cases}$$

and the τ_i 's act trivially on $\sqrt{-1}$ and \sqrt{y} for all $j \in I$.

Now write $B := \operatorname{Gal}(F^{(3)}/F(\sqrt[4]{a_i}: i \in I)) = \langle \sigma \rangle \cong \mathbb{Z}/4\mathbb{Z}$. We then have

$$(\sqrt{-1})^{\sigma} = -\sqrt{-1},$$

$$(\sqrt[4]{a_i})^{\sigma} = \sqrt[4]{a_i},$$

$$(\sqrt{y})^{\sigma} = \sqrt{y^{\sigma}}.$$

Finally, notice that for each $i \in I$ the extension $F_i := F(\sqrt{-1}, \sqrt[4]{a_i})$ is a \mathbb{D}_4 -extension of F, and that $F^{(3)}$ is the compositum of L and all the F_i 's. The descriptions of σ and of the τ_i 's show that the equation $\sigma^{-1}\tau_i\sigma = \tau_i^3$ holds when restricted to L and the F_j 's, and hence $\sigma^{-1}\tau_i\sigma = \tau_i^3$ in \mathscr{G}_F . Since L and

 $F(\sqrt[4]{a_i}: i \in I)$ are linearly disjoint over F we see that $\mathscr{G}_F = A \bowtie B \cong (\prod_{i=1}^{m} \mathbb{Z}/4\mathbb{Z}) \bowtie \mathbb{Z}/4\mathbb{Z}$; the comments preceding this theorem show that this isomorphism is indeed a homeomorphism.

Theorem 3.16. For a field F the following statements are equivalent:

- 1. F is superpythagorean and $\dot{F}/\dot{F}^2 \cong \bigoplus_{i \in I} \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$. 2. $\mathscr{G}_F \cong (\prod_{i \in I} \mathbb{Z}/4\mathbb{Z}) \bowtie \mathbb{Z}/2\mathbb{Z}$ where the action of a generator $\sigma \in \mathbb{Z}/2\mathbb{Z}$ on $\tau \in \prod_{i \in I} \mathbb{Z}/4\mathbb{Z}$ is given by $\sigma^{-1} \tau \sigma = \tau^3$.
- 3. \mathscr{G}_F contains a nonsimple involution, $\mathscr{G}_F/\Phi_F \cong (\prod_{i \in I} \mathbb{Z}/2\mathbb{Z}) \times \mathbb{Z}/2\mathbb{Z}$ and every nonsimple involution of \mathcal{G}_F is real.

Proof. (1)⇒(2) Same as in the proof of the corresponding fact in Theorem 3.15. Here we get $F^{(3)} = F(\sqrt{-1}, \sqrt[4]{a_i}$: $i \in I$) where $\{[-1], [a_i]: i \in I\}$ is a basis of \dot{F}/\dot{F}^2 . Also $\mathscr{G}_F = \langle \sigma, \tau_i : i \in I \rangle$, where $\sigma^{-1}\tau_i \sigma = \tau_i^3, \tau_i \tau_j = \tau_j \tau_i$ for all $i, j \in I$ and

(1)
$$(\sqrt{-1})^{\sigma} = -\sqrt{-1}$$

$$(\sqrt[4]{a_i})^{\sigma} = \sqrt[4]{a_i}$$

$$(\sqrt{-1})^{\mathfrak{r}_i} = \sqrt{-1}$$

$$(\sqrt[4]{a_i})^{\mathfrak{r}_j} = \begin{cases} \sqrt{-1}\sqrt[4]{a_i} & \text{if } i = j \\ \sqrt[4]{a_i} & \text{if } i \neq j. \end{cases}$$

(2) \Rightarrow (3) Let $A := \prod_{i \in \mathbb{Z}} \mathbb{Z}/4\mathbb{Z}$ and $B := \mathbb{Z}/2\mathbb{Z} = \langle \sigma \rangle$; we can then assume \mathscr{G}_F

 $=A \bowtie B$. Since $\sigma^{-1} \tau \sigma = \tau^3$ and Φ_F is contained in the center of \mathscr{G}_F we see that σ is a nonsimple involution. Since $\mathscr{G}_F/A^2 \cong (\prod \mathbb{Z}/2\mathbb{Z}) \times \mathbb{Z}/2\mathbb{Z}$ is elementary 2-

abelian we see that $\Phi_F \subset A^2$. The reverse inclusion is obvious, so we get $\Phi_F = A^2$. This gives us the required expression for \mathscr{G}_F/Φ_F ; in order to finish the proof we only have to show that all nonsimple involutions of \mathcal{G}_F are real.

So let δ be a nonsimple involution. Any element in $\delta \Phi_F$ can be written as $\delta \tau^2$ for some $\tau \in A$; since $\delta \notin A$ we have $\delta^{-1} \tau \delta = \tau^3$ and therefore $\delta \tau^2 = \tau \delta \tau^{-1} \in [\delta]$. This shows that $\delta \Phi_F \subset [\delta]$ and therefore $\delta \Phi_F = [\delta]$, and hence δ is real. We remark that the set of nonsimple involutions of \mathscr{G}_F is precisely

(3) \Rightarrow (1) The existence of a nonsimple involution means that F is formally real (Theorem 2.7), and the expression for \mathscr{G}_F/Φ_F gives $\dot{F}/\dot{F}^2 \cong (\bigoplus_{i \in I} \mathbb{Z}/2\mathbb{Z}) \oplus \mathbb{Z}/2\mathbb{Z}$. So all we have to show is that F is a C-field.

Let $\delta_0 \in \mathcal{G}_F$ be any nonsimple involution. Since every nonsimple involution is real, $\delta_0 \Phi_F = [\delta_0]$.* This shows that $\Phi_F = [\delta_0, \mathcal{G}_F]$; in particular $\Phi_F = [\mathcal{G}_F, \mathcal{G}_F]$ and therefore F is pythagorean by Theorem 2.11.

^{* (}See Prop. 2.9.)

Now let $a\notin (\pm \dot{F}^2)$ and let $b\in D_F\langle 1, -a\rangle \backslash \dot{F}^2$; we want to show that [b]=[-a]. We have [b]+[a], for otherwise $a\in D_F\langle 1, -a\rangle$ and this would imply that $a\in D_F\langle 1, 1\rangle = \dot{F}^2$, a contradiction. So a and b are independent modulo squares and hence there exists a $\mathbb{D}_4^{a,b}$ -extension L of F. Suppose now [b]+[-a]. Since F is pythagorean it follows that ab is not a totally negative element of F and therefore there exists an ordering $P\in X_F$ such that $ab\in P$. Using the results in Sect. 5 we can write $P=P_\delta$ for some nonsimple involution $\delta\in \mathscr{G}_F$.

Let $\bar{b} : \mathcal{G}_F \to \operatorname{Gal}(L/F) \cong \mathbb{D}_4$ denote the restriction map. Then \bar{b} fixes \sqrt{ab} ; since \bar{b} has order ≤ 2 we see that \bar{b} is in the center of \mathbb{D}_4 . Reading the equation $\Phi_F = [\bar{b}, \mathcal{G}_F]$ in \mathbb{D}_4 we conclude that \mathbb{D}_4 is a group of exponent 2, a contradiction. Therefore [b] = [-a] and we are done.

Corollary 3.17. Let F be a field. Then every relative real closure of F is formally real $\Leftrightarrow F$ is superpythagorean.

Proof. The case $|\dot{F}/\dot{F}^2| \ge 4$ is simply a restatement of (1) \Leftrightarrow (3) in Theorem 3.16, and the case $|\dot{F}/\dot{F}^2| = 2$ is Corollary 3.14. \square

Let P be an ordering of a superpythagorean field F; we will now describe the set of relative real closures of F with respect to P. If $|\dot{F}/\dot{F}^2|=2$ then F is euclidean, P is the unique ordering of F and F is its own unique relative real closure, as we have already seen. Suppose now $|\dot{F}/\dot{F}^2| \ge 4$ and let σ be a real involution of \mathscr{G}_F such that $P=P_\sigma$. Fix a basis $\{[-1], [a_i]: i\in I\}$ of \dot{F}/\dot{F}^2 with $a_i\in P$. We can then construct $\mathscr{G}_F=\langle\sigma,\tau_i:i\in I\rangle=A\bowtie B$ as in Theorem 3.16. We saw that here $\Phi_F=A^2$, and it follows that the set of relative real closures of F with respect to P is exactly $\{F_{\sigma\tau^2}^{(3)}:\tau\in A\}$. Fix $\tau\in A$ and let $S\subset I$ be defined by

(2)
$$(\sqrt[4]{a_i})^{r^2} = \begin{cases} \sqrt[4]{a_i} & \text{if } i \in S \\ -\sqrt[4]{a_i} & \text{if } i \notin S. \end{cases}$$

Then it is easily seen, using (1), that

(3)
$$F_{\sigma t^2}^{(3)} = F(\sqrt[4]{a_i}, \sqrt{-1}\sqrt[4]{a_j})$$

where $i \in S$ and $j \in I \setminus S$. Conversely, given a subset $S \subset I$ we define $\tau \in A$ by

$$(\sqrt{-1})^{\mathsf{r}} = \sqrt{-1}$$

$$(\sqrt[4]{a_i})^{\mathsf{r}} = \begin{cases} \sqrt[4]{a_i} & \text{if } i \in S \\ \sqrt{-1} \sqrt[4]{a_i} & \text{if } i \notin S. \end{cases}$$

It is then clear that (2) holds, and that $F_{\sigma\tau^2}^{(3)}$ is given by (3). We have then proved the following result:

Corollary 3.18. Let F be a superpythagorean field, $\{[-1], [a_i]: i \in I\}$ a basis of \dot{F}/\dot{F}^2 (where this time we allow $I = \emptyset$) and σ a nonsimple involution in \mathscr{G}_F . Then

the set of real closures of F with respect to P_{σ} is in a 1-1 correspondence with the subsets $S \subset I$. This correspondence is given by

$$S \mapsto F(\sqrt[4]{a_i}, \sqrt{-1}\sqrt[4]{a_i})$$

for $i \in S$, $j \in I \setminus S$.

The computation of the relative real closures in the last corollary can be carried on in a more general way, as follows. We let $\mathscr{G}_F = \langle \sigma, \tau_i : i \in I \rangle = A \rtimes B$ be as above but now choose an arbitrary basis $\{[-1], [b_i]: i \in I\}$ of F/F^2 . Fix $\tau \in A$, and write $I = \mathscr{A} \cup \mathscr{B} \cup \mathscr{C} \cup \mathscr{D}$ where

$$(\sqrt[4]{b_i})^{\sigma} = \begin{cases} \sqrt[4]{b_i} & \text{if } i \in \mathcal{A} \\ -\sqrt[4]{b_i} & \text{if } i \in \mathcal{B} \\ \sqrt{-1}\sqrt[4]{b_i} & \text{if } i \in \mathcal{C} \\ -\sqrt{-1}\sqrt[4]{b_i} & \text{if } i \in \mathcal{D} \end{cases}$$

Now write $\mathscr{A} = \mathscr{A}_1 \cup \mathscr{A}_2$, $\mathscr{B} = \mathscr{B}_1 \cup \mathscr{B}_2$, $\mathscr{C} = \mathscr{C}_1 \cup \mathscr{C}_2$ and $\mathscr{D} = \mathscr{D}_1 \cup \mathscr{D}_2$ where

$$(\sqrt[4]{b_i})^{\mathsf{r}^2} = \left\{ \begin{array}{ll} \sqrt[4]{b_i} & \text{if } i \in \mathscr{A}_1 \cup \mathscr{B}_1 \cup \mathscr{C}_1 \cup \mathscr{D}_1 \\ -\sqrt[4]{b_i} & \text{if } i \in \mathscr{A}_2 \cup \mathscr{B}_2 \cup \mathscr{C}_2 \cup \mathscr{D}_2. \end{array} \right.$$

We leave it to the reader to check that

$$F_{\sigma\tau^2}^{(3)} \! = \! F(\sqrt[4]{b_i}, \sqrt{-1}\sqrt[4]{b_j}, (1+\sqrt{-1})\sqrt[4]{b_k}, (1-\sqrt{-1})\sqrt[4]{b_l})$$

where $i \in \mathcal{A}_1 \cup \mathcal{B}_2, j \in \mathcal{A}_2 \cup \mathcal{B}_1, k \in \mathcal{C}_1 \cup \mathcal{D}_2$ and $l \in \mathcal{C}_2 \cup \mathcal{D}_1$.

Acknowledgements. Professor T.Y. Lam made a large number of comments which improved the exposition beyond what the authors could possibly do by themselves. We are very indebted to him.

References

- [A] Artin, E.: Algebraic numbers and algebraic functions. New York: Gordon and Breach 1967
- [AT] Artin, E., Tate, J.: Class field theory. New York: Benjamin 1967
- [Bec] Becker, E.: Euklidische Körper und euklidische Hüllen von Körpern. J. Reine Angew. Math. 268/269, 41-52 (1974)
- [Ber] Berman, L.: The Kaplansky radical and values of binary quadratic forms. Ph.D. thesis, Berkeley 1979
- [EL] Elman, R., Lam, T.Y.: Quadratic forms over formally real fields and pythagorean fields. Am. J. Math. 94, 1155-1194 (1972)
- [F] Fröhlich, A.: Orthogonal representations of Galois groups, Stiefel-Whitney classes and Hasse-Witt invariants. J. Reine Angew. Math. 360, 84–123 (1985)
- [L1] Lam, T.Y.: The algebraic theory of quadratic forms. Reading, Mass.: Benjamin/ Addison-Wesley 1973
- [L2] Lam, T.Y.: Orderings, valuations and quadratic forms. Conf. Board of the Mathematical Sciences. Am. Math. Soc., vol. 52, 1983
- [L3] Lam, T.Y.: Ten lectures in quadratic forms over fields. Queen's Pap. Pure Appl. Math. 46, 1-102 (1977)
- [MM] Mináč, J., Mahé, L.: Generalized orderings and W-groups (in preparation)
- [MS] Mináč, J., Spira, M.: Witt rings and Galois groups (in preparation)
- [War] Ware, R.: When are Witt rings group rings? II. Pac. J. Math. 76, 541-564 (1978)