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1 Introduction

This paper is a continuation of [MS], where W-groups were introduced. For
the reader’s convenience we recall in this section some of the concepts and
notations used in this latter paper. If F is a field (always assumed to have
characteristic not equal to 2) we define:

F® :=compositum of all quadratic extensions of F.

F®:=compositum of all quadratic extensions K of F® such that K/F is
Galois.

% +=Gal(F®/F).

[o]:=the conjugacy class of 6€%;.

@ :=the subgroup of % topologically generated by the squares of elements
of %..

F(2):=the quadratic closure of F.

Gr==Gal(F(2)/F).

s(F):=the level of F.

u(F):=the u-invariant of F.

[a]:=the class of aeF in F/F?.

X p=the set of orderings of F.

The group % will be seen as a topological group with the usual pro-2-group
topology. This group has very pleasant properties, among which we list g*=1
for all ge% and the fact that commutators are in the center. We take the
commutator subgroup [%, %] to be the topological closure of the abstract
commutator subgroup of %. Note that since [x, y]=x"2(xy !)?y? for x, y
in any group, it follows that [% %] = ®p.

* Supported in part by the National Science Foundation and the Natural Sciences and Engi-
neering Research Council of Canada
** This article is a modified version of part of the second author’s Ph.D. thesis, U.C. Berkeley,
1987
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Note that & =Gal(F¥/F?), and that ;/®,=~Gal(F'?/F). A simple remark

is that 9/@r=[]Z/2Z if and only if F/F?~@Z/2Z; this follows from the
iel iel

fact that F@ is the composition of the quadratic extensions F ([/;1) where [a]
ranges over a basis of F/F2.

All other notations and concepts used in this paper can be found in standard
works in quadratic forms, e.g., [L 1], [L2].

The importance of W-groups can be seen from the following theorem:

Theorem 1.1 ((MS]). Let F, L be fields; then
1. WF2WlL=%=>9%,.
2. If <1, 1)y is universal assume also that s(F)=s(L). Then 9, >~%,= WF ~ WL.

This theorem shows that Witt ring invariants can be translated into group
theoretic information and conversely; the aim of this paper is to present a
few examples to illustrate this. We choose formally real fields and pythagorean
fields (Sect. 2) and C-fields (Sect. 3) because in these cases it is particularly easy
to translate field properties into Witt ring information (see [L 1], [L2], [War]).
We remark that the results in Sect. 2, which parallel the classical Artin-Schreier-
Becker theory (see [Bec]), have led to the notion of a generalized ordering
which is studied in [MM].

In [MS] it was shown that F® is the compositum of all extensions K of
F such that Gal(K/F) is one of Z/2Z, Z/AZ or D, (here ID, denotes the usual
dihedral group of order 8). The importance of Z/4Z and DD, can easily be
seen by theorems 1.3 and 1.6 below, which show that the splitting of quaternion
algebras over F is precisely reflected in the Galois theory of F.

Definition 1.2. A Galois extension L of F is called a Z/4Z-extension of F if
Gal(L/F)=Z/AZ. If ac F\F? then by a Z/AZ -extension of F we mean a Z/4Z-
extension K of F such that K> F (]/;).

Theorem 1.3 ([L1] exercise VIL8). Let ac F\ F2. Then there exists a Z/AZ°-
extension of F if and only if(%)= 1.

Definition 1.4. Two elements a, be F are called independent modulo squares if
[a] and [b] are linearly independent in F/F2.

Definition 1.5. A Galois extension L of F is called a D,-extension of F if
Gal(L/F)x=D,. If a, beF are independent modulo squares then by a ID%®-
extension of F we mean a ID,-extension K of F such that K> F ([/;, 1/5) and
Gal(K/F(}/ab)=Z/4Z.

Theorem 1.6. ([F] (7.7)). Let a, beF be independent modulo squares. Then there
a,b

exists a D -extension of F if and only if (T)= 1.
2 Formally real fields and pythagorean fields

In this section we characterize formally real fields in terms of the existence
of special involutions in their W-groups. We also explain how orderings arise
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from the W-group and introduce the concept of relative real closure. We finish
by characterizing pythagorean fields via their W-groups.

We will be working constantly with involutions of %.. To simplify notation,
we will say that such an involution o is

simple if ce @ (note that every nonidentity element of @ is a central involu-
tion);

real if o is not simple and if the fixed field F{® of ¢ is formally real;

nonreal if ¢ is not simple and not real.

Notice that if 6e% and 0@, contains an involution then every nonidentity
element of 0@y is an involution.

Theorem 2.7. Let F be a field. Then

1. If F is formally real then % contains a real involution.
2. If % contains a nonsimple involution then F is formally real.

Proof. (1) Suppose that F is formally real and let Pe X . By [Bec] there exists
an involution 6€ Gy such that |/ —1°= —]/—1 and P=F(2)2n F. Let 0:=6| .

Then ¢*=1 and |/ —1°=—]/—1, so 6¢®; and F¥=F(2),nF? is formally
real. Therefore o is a real involution. Note that P=(F®)*n F.
(2) Let 0 be a nonsimple involution in %, and let b be any element of

F such that (]/E)"= —[/l;. Note that such b exists because o ¢ @p.
Claim 1. b is not a sum of two squares.
Proof of claim. Suppose b is a sum of two squares. By Theorem 1.3 there exists

a Z/4Zb-extension L of F. Let 6:=a|, ; note that since L/F is Galois we have
GeGal(L/F). Write Gal(L/F)=<{z: t*=1). Since ¢*=1 we have 6=1 or 6=12.

In either case we get ﬂ =(]/l;)", a contradiction.

. b, c .
Claim 2. If (—F—) =1 then ()/c)’=}/c.

Proof of claim. If ceF? the claim is clear, so we assume c¢F2 If b and ¢

are dependent modulo squares we get 1=(b1,:c)~(b}:b) and therefore b is a

sum of two squares, a contradiction. Hence b and ¢ are independent modulo
squares and by Theorem 1.6 there exists a ID%*-extension L of F. Let 6:=a],.

Because [F®:F®]=2 and ([/B)": —[/l; it follows that [L:L,]=2. In such an
extension only an element of order 4 can move both [/B and ]/¢, and hence

Ve=(/or=()/or.
Claim 3. ()/ —1)°= —]/ — 1. In particular |/ —1¢F.
Proof of claim. Since (b’ ; b)=l it follows by claim 2 that (|/ —b)"=|/ —b.

But then (I/Tb)" = (V?l)” ([/l;)" implies that — F“]/B = [/Tb and therefore
-1

T
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Now let P:={peF": (l/;)“=l/;)}. Note that P=(F®)2n F. It is clear that
1. —1¢P (by claim 3);
2. F’cPand P. PcP;
3. Pn—P=0,and
4. Pu—P=F.

So all we need for P to be an ordering is P+ P P. Let peP. Then (]/1;)"=[/;)
and since (J/ —1)’= =V —1weget(/—py= =)/ —p. Now (ly)::l and

by claim 2 we get (V' 1+pr= |/1+p,ie., 14 peP. Therefore P is additively closed
and we are done. []

Remarks. (1) As it is clear from the proof above, if L F (2) is any Galois extension
of F such that F®¥ <L then Theorem 2.7 holds for Gal(L/F) instead of %..
As a matter of fact, this remark is valid for all the results in this section. What
one really needs is to have all quadratic, Z/4Z- and ID,-extensions of F available.
F® is simply the smallest Galois extension of F inside F (2) for which our
results hold.

(2) We showed above that if F is formally real then % contains a real
involution. In the next section we will show that nonreal involutions fail to
exist if and only if F is superpythagorean.

Definition 2.8. The fixed field F\> of a nonsimple involution o€%, will be called
a relative real closure of F.

In the course of the proof of Theorem 2.7 we established the following corre-
spondence between X and the set of nonsimple involutions of Y

1. For each PeX, there exists a real involution 0€% such that P
=(F®)2F. Here we set 0 =0p; this entails a slight abuse of notation since
in general such ¢ is not uniquely determined (see Proposition 2.9).

2. Each nonsimple involution ¢€% determines PeX r given by P
=(F;¥)> N F. In this case we set P=P,; this is no abuse of notation since P,
is uniquely determined by o.

Note that if Pe X then P= P,  and therefore the map {nonsimple involutions
of %} — X described in (2) above is surjective. We now describe this map
in more detail.

Proposition 2.9. 1. Let ¢ and t be nonsimple involutions in Gy. Then P,= P<>o®p
= T¢F .

2. Let o, © be nonsimple conjugate involutions in 4. Then P,= P.

3. Let o and t be real involutions in %;. Then F,=F.<>0 and t are conjugate
in%.

Proof. (1) From the explicit description of P, and P. we see that P= R"(l/‘;)d
=(]/c_1)t for all aeF. This happens if and only if o|pa=1|p2, ie.,
o1 'eGal(F®/FP)=o,.

(2) Writeo=y"'7y. Theno=t1" 'y~ 'ty =1[1, y]€t®;, and therefore B=P
by (1).

(3) If o and 7 are conjugate we have P,=P, by (2). Assume now that
F,=F=:P. Let ¢ and 7 be involutions in G, such that F (2); and F(2), are
euclidean closures of F{* and F), respectively. Note that F(2), and F (2), are
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both euclidean closures of F with respect to P. We have 6 =&|p, and 7= 7| p).
It follows from [L1], Theorem VIIL.2.8 that there is an order preserving F-
isomorphism y': F(2); = F(2),, which extends to an F-automorphism € G. Then
an easy computations shows that §7§~'=4. Setting y:=7|rs we get yry~?
=0. [

Corollary 2.10. Let F be a field. Then there exists a bijection between the set
of orderings of F and the nontrivial cosets @ where o is an involution. This
bijection is given by P+ op @ and 6 P P,.

Proof. This is a restatement of Proposition 2.9(1) and of previous remarks. []

We finish this section with a characterization of pythagorean fields via their
W-groups.

Theorem 2.11. The following conditions are equivalent :
1. F is pythagorean.
2. % is generated by involutions.
3. Pp=[%, 9]

Proof. (1)=>(2) Suppose F is pythagorean. If F is not formally real then F is
quadratically closed and hence %= {1} is generated by the empty set of involu-
tions. If F is formally real then F is the intersection of the family of its euclidean
closures {F;:: iel} ([Bec] Corollary 2 of Satz 10). Let &; be the involution of
Gr corresponding to F,. Then Gy is generated by the 6,’s and therefore % is
generated by the (real) involutions a;:=6;|pq).

(2)=(3) Let t=0, 0,...0, where the ¢;’s are involutions in %.. Then

12=(0,0,...0,)(0, 0,...0,).

In this expression we can move the rightmost o, past all the o;s to its left
until it cancels out with the other o, at the price of introducing commutators.
Since the commutators are in the center of % we can move all of them to
the right side of the expression and repeat the procedure with o, etc. In the
end we are left with an expression for 2 as a product of commutators. This
shows that the abstract subgroup generated by the squares is contained in the
abstract commutator subgroup; since the reverse inclusion is always true we
get equality. Taking closures finishes the argument.

(3)=>(1) Suppose ®r=[%, %] and let ¥: 4. —Z/4Z be a homomorphism.
Then ¥ factors through %/[%, %] =%/®r which is elementary 2-abelian, and
therefore ¥ cannot be onto. In other words F has no Z/4Z-extensions and
therefore F is pythagorean by Theorem 1.3.

3 C-fields and abelian W-groups

In this section we will characterize C-fields via their W-groups, and obtain all
the abelian W-groups in the process. Recall that F is a C-field if D¢<1, a) = {[1],
[a]} for all ae F\(+ F?). It is well known that the possible values of the level
of a C-field are 1, 2 and oo ([War] Proposition 1.1); our characterization dis-
tinguishes between these possibilities.
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We will also characterize superpythagorean fields (i.e., C-fields of level o0)
as fields having the largest possible “number” of relative real closures (see Defini-
tion 2.8); these closures will be described at the end of the section. We recall
that a field F is euclidean if F is formally real and F/F*={[1], [—1]}; note
that F is euclidean if and only if F is superpythagorean and |F/F?|=2.

Throughout this section we will let I denote an arbitrary set of indices

with I|>1. If aeF, by % we will always mean a fixed choice of fourth root
of a inside some algebraic closure of F. We give Z/2Z and Z/AZ the discrete
topology and [ [ Z/2Z and [ Z/4Z the product topology.
iel iel
We begin by classifying the abelian W-groups; we look at the small ones
in the next theorem, and finish with Theorem 3.13.

Theorem 3.12. Let F be a field. Then

1. % ={1}<F is quadratically closed <> WF ~Z/2Z.

2. =227 or Z)AZ<>|F/F?|=2.

3. 4=Z/2Z<F is euclidean < WF~Z. .

4. G =Z/AZ<F is not formally real,|F/F?|=2; and u(F)=2< WFx
Z2Z[Z2Z] or WF ~Z/AZ.

Proof. (1) %= {1} <> F has no proper quadratic extensions, and the result follows.

(2 If 4=Z)2Z or Z/AZ then F has a unique quadratic extension, ie.,
|F/F?|=2. Conversely, if |F/F?|=2 then [F®:F]=2; the square class exact
sequence ([L1] Theorem VIIL3.4) shows that [F®/(F®)2|<2 and therefore
[F®:FP]<2. Hence [F®:F]<4, ic. |%]|<4. Since F has a unique quadratic
extension we cannot have % ~Z/2Z ® Z/2Z and the result follows since %, + {1}
by (1).

(3) Suppose that F is euclidean. Then F/F?={[1],[—1]} and F(QQ=F(/-1)
([L 1] exercise VILS5). In particular Gp=Z/2Z and therefore %, ~7Z/27Z.

Conversely, assume % ~7Z/27Z. Then |F/F?|=2, and F is pythagorean be-
cause F has no Z/4Z-extensions. Since F is not quadratically closed it follows
that F is formally real, and therefore F is euclidean.

Finally, the fact that F is euclidean if and only if WF=~Z is well known
([L3], Example 1.12).

(4) If %, =Z/4Z then |F/F?|=2 by (2) above. If F (1/21) is the unique quadratic
extension of F then a is a sum of two squares and if follows immediately that
F is not formally real and u(F)=2. These conditions in turn imply that
WF=Z2Z[Z/2Z] or Z/4Z by [L1] Theorem I1.3.5. Finally, if WF is of one
of those forms, we compute IF~Z/2Z and I*F={0}, so |F/F?|=2. Then %
=Z/AZ follows by (2) and (3). O
Theorem 3.13. Assume F/F>~PZ/2Z and |I|>2. Then the Jollowing conditions
are equivalent : iel

1. %=[]Z/AZ.

iel

2. % is abelian.

3. Fisa C+field and s(F)=1.
Proof. (1)=>(2). Trivial.

(2)=>(3) Since % is abelian we see that F has no ID,-extensions. In particular,
F has no D} ~“-extensions and therefore s(F)=1. Moreover by Theorem 1.6
we see that F is a C-field.



Formally real fields, pythagorean fields, C-fields and W-groups 525
(3)=(1) Let {[a;]: ieI} be a basis of F/F2.
Claim 1. A basis of F?/(F®)? is {[|/a;]: iel}.

Proof of claim. It is enough to show that given a finite family {[a,], ..., [a,]}
of [a]’s, a basis of K,/K? is {[]/ai-]: 1isn}u{la;]: j*1,...,n} where

K,=F(/a,, ...,)/a,).

So let K;:==F (1/(1/,, — Va/i) and consider the tower of quadratic extensions
FcK,c..cK,. Since F is a C-field it follows by the square class exact
sequence ([L1] Theorem VII.3.4; see also [Ber], Corollary 1.12) that a basis
for K,/K?% is {[}/a,], [a]: i+ 1}. Now all K;’s are C-fields ((War] Corollary 2.8).
In particular K, is a C-field and the same reasoning as above shows that a

basis of K,/K? is {[[/ai], _[]/_5;], [a]: i%1, 2}. Iteration of this procedure
yields the required basis of K, /K?.

Claim 2. FO=F(}/a;: iel).

4
Proof of claim. By the definition of F® we know that F (]/a/i)cF‘” for all
iel. On the other hand F® is a compositum of some quadratic extensions

of F® which by claim 1 are of the form F(4|/a,-,...a,-") for some iy, ...,i,el.
The claim follows.

This explicit description of F® allows us to use abelian Kummer theory
([AT], Sect. 1) to conclude that 4. ~[] Z/4Z. More precisely, % is generated

by the set {t;: ieI} where et

T 41/?1‘1/5 if i=j,
1/;,. if ij. O

Corollary 3.14. Let F be a formally real field. Then F has a unique relative real
closure <>F is euclidean. In this case F is its own unique real closure.

Proof. Suppose first that F is euclidean. Then F(2)=F(}/ —1)=F® and it follows
immediately that F is its own unique relative real closure. Conversely, suppose
F has a unique relative real closure, and let ¢ be a real involution in %. Since
distinct elements of o®, give rise to distinct relative real closures of F we see
that @, ={1}. Therefore % is a group of exponent 2; in particular % is abelian.
Perusing our list of abelian W-groups and noticing that %= {1} because |F/F?|
=2, we see that we must have 4.=7Z/2Z, and therefore F is euclidean. []

We now make a comment which will be used in the next two theorems.
Let F be a field and M a (possibly infinite) Galois extension of F. Suppose
K and L are two subfields of M, linearly disjoint over F and such that L
is Galois over F and M =KL. Then Gal(M/L)<Gal(M/F) and we can write
Gal(M/F)=Gal(M/L)><Gal(M/K). It follows that the Krull topology of
Gal(M/F) is exactly the product of the Krull topologies of Gal(M/L) and
Gal(M/K) ([A] Theorem 4 Chap. 6).
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Theorem 3.15. A field F is a C-field with F/F>~((DZ/2Z)® Z/2Z and s(F)=2
iel
if and only if G=([|Z/AZ)<Z/AZ where the action of a generator o of the
iel
outer Z/4Z on 1| | Z/AZ is given by ¢~ ‘1o =13.

iel

Proof. Suppose first that % is as given in the hypothesis. For simplicity, write
A=|]Z/AZ and B:=Z/4Z = {o); we may then assume that %= 4><B.

iel
Claim 1. F is not formally real.

Proof of claim. By Theorem 2.7 it is enough to show that all involutions of
% are simple. So let te 4 and ¢'t, 0<i<3, be an involution. Then
1=(0"“L’)2=O’2i(0'_i'l'0'i)‘[=0'2i‘l'l+3i
S0
1= o.2i= ‘El +3t
and therefore i {0, 2}. Both possibilities imply 7%= 1; since all elements of order
2in A are squares it follows that o'te @, and we are done with the claim.

Clalm 2. [gp, gp]=A2.
Proof of claim. Since %/A*~([[Z/2Z)xZ/4Z is abelian we see that

iel
[%,%]<A? For the reverse inclusion, notice that for ted we have
o~ 'to=1*and hence 12 =7, ¢].

Claim 3. Every Z/4Z-extension of F contains |/ —1. In particular, Dz<1, 1)
={[1], [—1]}.

Proof of claim. First notice that Z/4Z-extensions of F do exist, e.g., take the
fixed field of A. Now let L be a Z/4Z-extension of F, and let ~ denote the
restriction homomorphism ¥, —Z/4Z =~ Gal(L/F). Since Z/4Z is abelian, ~ fac-
tors through %/[%, %1=(][Z/2Z) x B. 1t follows that B=Z/4Z and that
iel

Ae{0, 2} cZ/AZ. Hence the intermediate quadratic extension F (]/c;) of L is
uniquely determined as the fixed field of A4 x B2, and therefore De<1, 1)={[1],
[a]} by Theorem 1.3.

It remains to show that [a]=[—1]; for that it is enough to show that
s(F)=2, since then [—1]4[1] and —1eD;<1, 1). First note that we cannot have
s(F)=1. Indeed, if so, then (1,1) is universal and therefore F/F*=D.(1,1>=
{[1], [a]}. Hence |F/F* =2 and therefore % is abelian by Theorem 3.12(2), a
contradiction.

Now let beDg<1, 1, 1, 1). Since Dp<1, 1)={[1], [a]} we see that we have
either beDp{1,1) or beDp(1, a) or beD;{a, ay=aDp{1, 1>=D{1, 1>. In
any case we have beDy{1, 1, 1), which shows that s(F)<4. Since s(F) cannot
be 3 and we already know that s(F)=1, we must have S(F)=2. We then get
[a]=[—1] and we are done with the claim.

Claim 4. F is a C-field.
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Proof of claim. Let ae F\(+F?) and let beDr{l, —a); we want to show that
[b]e{[1], [—al}. Assume [b]+[1]. We have [b]=*[a], since aeDp1, —a)
would imply that a is a sum of two squares, i, [a]=[+1], a contradiction
by the choice of a. Hence a and b are independent modulo squares, and since

(a, b)= 1 there exists a ID§"-extension K of F by Theorem 1.6.

F

Let ~: % — Gal(K/F)=ID, denote the restriction homomorphism. Since ID,
is nonabelian 4 and B cannot commute elementwise, and therefore there must
exist te 4 such that [, 7]+ 1. Because D, is generated by any noncommuting
pair of its elements, we have ID,= (g, 7). The relation in % gives 6 '76=1°;
in particular the order of 7 is 4 because [, 7]+1, and so & is a noncentral
involution in ID,. Now let ¢ be any element of A4; from [z, e]=1 we get
[7, €1=1 and therefore we must have e (%), i.e., A= (7).

Carrying this information back to K we see that (J/ab)”= —]/ab and that
(J/ab)’=]/ab for all te A. Since (}/ab)”*=)/ab it follows that |/ab is fixed by
A x B* and therefore [ab]=[—1] by claim 3, implying that [b]=[—a]. This
finishes the proof of the “if” part of the theorem.

We now prove the “only if” part. Suppose that F is a C-field with s(F)=2
and F/F?=(DZ2Z)®Z/2Z. Let {[—1], [a;]: icI} be a basis of F/F2. Since

iel
s(F)=2 there exists a Z/4Z '-extension L of F. We have L=F (]/;1) where
YeF(]/ —1) is such that [Ny =1,r(y)]=[—1] by Theorem 1.3. It then follows
as in the proof of Theorem 3.13 that

L {[y], [a]: iel} is a basis of F(}/ —1)/(F()/— 1);
2. {[)/y1, [a;]: i€l} is a basis of L/i?;
3. {[¥], [)/a: iel} is a basis of F@)/(F2)?

4 4 .
and therefore F¥=F (V, l/;.-i iel)=L( [/;,-): iel). From (2) above and abelian
Kummer theory it follows that 4:=Gal(F®/L)={x;: iel) =[] Z/4Z where

iel
4
4 ]/ _1 ai if l= j
(ﬂ)ti: 4 l/‘ !
Va; if i%j
and the t;’s act trivially on |/ —1 and [/y for all jel.
Now write B::Gal(F“”/F(%: iel))={o)=7Z/4Z. We then have

V/-1=-)-1,
(Var=Va,
V=)

Finally, notice that for each iel the extension F;:=F (-1, “i/-a-,-) is a
D -extension of F, and that F® is the compositum of L and all the F’s. The
descriptions of ¢ and of the ;s show that the equation ¢~ '7;0 =13 holds when
restricted to L and the Fs, and hence ¢ 'r,0=1} in %. Since L and



528 J. Minag, M. Spira

F (‘i/;i: iel) are linearly disjoint over F we see that Y
=A>aB=([| Z/4Z)y~Z/4Z; the comments preceding this theorem show that
iel

this isomorphism is indeed a homeomorphism. []

Theorem 3.16. For a field F the following statements are equivalent :
1. Fis superpythagorean and F/F*~((D Z2Z) ® Z)2 Z.
2. %=([]Z/AZ)<Z/2Z where the KEc;ction of a generator oeZ/2Z on
te| | Z/4Z 'i.EsIgiven byo l1ro=13
leBI % contains a nonsimple involution, %/Pr=([|Z)2Z)x Z/2Z and every

nonsimple involution of % is real. e

Proof. (1)=>(2) Same as in the proof of the corresponding fact in Theorem 3.15.

4
Here we get F¥=F(/—1, 1/;,4 iel) where {[—1], [a,]: iel} is a basis of
F/F?. Also %.={a, 1;: i€l>, where o 'to=1},1,t;=1;7, for all i, jel and

(1) —1r=~)~-1
Vayr=Va
(/ —15=)/-1

(T/Ei)‘f= l/?14 a, if i=j
Va; if ;.

(2)=(3) Let A:=[]|Z/AZ and B:=Z/2Z={c¢); we can then assume %,
iel
=A>aB. Since 0" 'to=1> and &, is contained in the center of %, we see that
o is a nonsimple involution. Since /A’ =([]Z/2Z)x Z/2Z is elementary 2-
iel

abelian we see that @, c 42. The reverse inclusion is obvious, so we get &, = A2
This gives us the required expression for %,/®;; in order to finish the proof
we only have to show that all nonsimple involutions of % are real.

So let 6 be a nonsimple involution. Any element in 0®P; can be written
as 0t® for some ted; since 6¢ A we have 6 't5=1> and therefore d12
=181~ '€[4]. This shows that 0@p<[0] and therefore &,=[4], and hence
0 is real. We remark that the set of nonsimple involutions of % is precisely
cgA.

(3)=>(1) The existence of a nonsimple involution means that F is formally
real (Theorem 2.7), and the expression for %;/®, gives F/F?~(PZ27)® Z/2 .

So all we have to show is that F is a C-field. e

Let 6,6 % be any nonsimple involution. Since every nonsimple involution
is real, 6, @r=[0,].* This shows that @r=[b0, %]; in particular ®p=[%,,
%] and therefore F is pythagorean by Theorem 2.11.

* (See Prop. 2.9.)
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Now let a¢(+F?) and let beD; (1, —a)\F?; we want to show that [b]=
[—a]. We have [b]#+[a], for otherwise aeD;(1, —a) and this would imply
that aeDp<1, 1>=F?, a contradiction. So a and b are independent modulo
squares and hence there exists a D -extension L of F. Suppose now [b] <[ —a].
Since F is pythagorean it follows that ab is not a totally negative element
of F and therefore there exists an ordering Pe X, such that abeP. Using the
results in Sect. 5 we can write P= B, for some nonsimple involution s %;.

Let ~: % — Gal(L/F)=ID, denote the restriction map. Then & fixes 1/ch;
since & has order <2 we see that J is in the center of ID,. Reading the equation
®p=[9, %] in D, we conclude that ID, is a group of exponent 2, a contradiction.
Therefore [b] =[ —a] and we are done.

Corollary 3.17. Let F be a field. Then every relative real closure of F is formally
real <> F is superpythagorean.

Proof. The case |_F /F?24 is simply a restatement of (1)<>(3) in Theorem 3.16,
and the case |F/F?|=2is Corollary 3.14. [J

Let P be an ordering of a superpythagorean field F; we will now describe
the set of relative real closures of F with respect to P. If [F/F?|=2 then F
is euclidean, P is the unique ordering of F and F is its own unique relative
real closure, as we have already seen. Suppose now |F/F?|>4 and let g be
a real involution of % such that P=P,. Fix a basis {[— 1], [a,]: i€l} of F/F>
with g;e P. We can then construct %= (o, 1;: ie])> = A><B as in Theorem 3.16.
We saw that here ®p= A2, and it follows that the set of relative real closures
of F with respect to P is exactly {F{3: te A}. Fix te4 and let S<1I be defined
by

4 o
@ (/ay = 41/5 if ieS
~Va; if i¢s.

Then it is easily seen, using (1), that

3) FA=F()/a,,)/=1}/a)

where ieS and jeI\S. Conversely, given a subset S <1 we define e 4 by

(/=1r=)/~1

4 op s
(%)r= V;i ) if ie§
V=1Va if igs.

It is then clear that (2) holds, and that F{J) is given by (3). We have then
proved the following result:

Corollary 3.18. Let F be a superpythagorean field, {[—1], [a;]: ieI} a basis of
F/F?* (where this time we allow I=0) and ¢ a nonsimple involution in %.. Then
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the set of real closures of F with respect to B is in a 1—1 correspondence with
the subsets S < I. This correspondence is given b y

S F(J/a,)/~1}/a)
for ieS,jel\S.

The computation of the relative real closures in the last corollary can be
carried on in a more general way, as follows. We let %-=<o0, 1;: ie])=A><B
be as above but now choose an arbitrary basis {[—11, [b]: iel} of F/F2
Fix 1€ A, and write =/ UB U¥ U D where

Vb if iess
s |=Vb if i
(/)= .
—11/b, if ic®
—V/=1Vb: if ieD
Nowwrited=d1u.d2,%=ﬂlu.@2,‘€=(€lu‘62and9=@1u@2where

4
4, b; if iee/ VB, LVE, LD
(I/Ex)t — l{— 1 1 1 1
/b if et B, UE,0,.
We leave it to the reader to check that

4 4 4 4
ER=F(/b, )/ ~1)/b;,(1+)/ =) Vbe, (1 =)/ =1) V/b)
where ieof | UB,, jed, U B, ke€ LD, and le¥, U D, .
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