

Werk

Titel: A characterziation of IPn by vector bundles.

Autor: Peternell, Thomas

Jahr: 1990

PURL: https://resolver.sub.uni-goettingen.de/purl?266833020_0205 | log58

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

A characterization of \mathbb{P}_n by vector bundles

Thomas Peternell

Mathematisches Institut, Universität Bayreuth, Postfach 101251, D-8580 Bayreuth, Federal Republic of Germany

Received June 8, 1989; in final form February 1, 1990

1 Introduction

In this short note we want to give a characterization of the complex projective space via vector bundles which had been conjectured by Mukai [Kat].

Theorem. Let X be a compact complex manifold of dimension n, E an ample vector bundle on X of rank n+1 satisfying

$$c_1(E) = c_1(X)$$
.

Then $X \simeq \mathbb{P}_n$ and $E \simeq \mathcal{O}_{\mathbb{P}_n}(1)^{n+1}$.

Here $c_1(X)$ means the first Chern class of X i.e.: $c_1(X)$ is the anti-canonical class of X.

The theorem being "clear" for $n \le 2$, Mukai gave a proof in case n = 3.

For the general proof given here it is essential to examine carefully extremal rational curves (in the sense of Mori) on X and on the projectivized bundle $\mathbb{P}(E)$.

2 Proof of the theorem

We begin with the easy

Lemma 1. Let E be an ample vector bundle of rank n+1 on P_n . Assume $c_1(E) = c_1(\mathbb{P}_n)$. Then $E \simeq \mathcal{O}_{\mathbb{P}_n}(1)^{n+1}$.

Proof. Let $l \subset \mathbb{P}_n$ be a line. Then the condition on the Chern class and the ampleness of E imply

$$E|l \simeq \mathcal{O}_{\mathbf{P}_1}(1)^{n+1}$$

So the vector bundle

$$F = E \otimes \mathcal{O}_{\mathbf{P}}(-1)$$

is trivial on any line. Hence F is trivial [OSS, p. 51] and our claim follows.

488 T. Peternell

Now let X denote a compact manifold of dimension n and E an ample (n+1)bundle on X with $c_1(E) = c_1(X)$.

Then the anti-canonical bundle K_X^{-1} is ample, i.e. X is Fano. Our strategy is to look at the compact manifold

$$\mathbb{P}(E) \xrightarrow{\pi} X$$
.

(P is always taken in Grothendieck's sense).

 $\mathbb{P}(E)$ is a 2n-dimensional manifold with anti-canonical bundle

$$K_{\mathbf{P}(E)}^{-1} = \mathcal{O}_{\mathbf{P}(E)}(n+1)$$
.

This is an easy consequence of $c_1(E) = c_1(X)$.

E being ample, $\mathcal{O}_{\mathbf{P}(E)}(1)$ is ample and hence $\mathbf{P}(E)$ is a Fano manifold.

Lemma 2. $Pic(X) = \mathbb{Z}$

The proof of Lemma 2 relies on Mori theory. We refer for this to [Mo] and [KMM]. Some of the facts coming up in the proof are also important for our later considerations.

Proof. Since K_X is not nef, there is an extremal ray R on X, which is represented by an extremal rational curve C_0 satisfying

$$(*) 0 < (K_X^{-1} \cdot C_0) \le n+1$$

([Mo, 1.4]).

Since

$$c_1(E) = c_1(X)$$

and since clearly

$$(c_1(E)\cdot C_0)\geq n+1$$
,

we have

$$(K_X^{-1} \cdot C_0) = n + 1.$$

So in the notation of [Wi] R has length n+1. By (**) and [Wi, 2.4.1] we conclude $Pic(X) = \mathbb{Z}$.

On $\mathbb{P}(E)$, besides the extremal ray R_1 defining the projection π we have a second extremal ray R_2 since $K_{\mathbb{P}(E)}^{-1}$ is ample 0 and $b_2(\mathbb{P}(E)) \ge 2$ (see [Mo, 1.4]). R_2 defines a surjective morphism $\psi: \mathbb{P}(E) \to \hat{Z}$ to a normal projective variety Z. ψ has connected fibers and the following property:

(+) for any irreducible curve $C \subset X$, dim $\psi(C) = 0$ holds if and only if its class [C]belongs to R_2 (see [KMM, Io]).

Lemma 3. If dim Z < 2n, then $X \simeq \mathbb{P}_n$ (and $\mathbb{P}(E) \simeq \mathbb{P}_n \times \mathbb{P}_n$, $Z \simeq \mathbb{P}_n$).

Proof. Let F_s be a fiber of ψ . We first claim:

(1) $\pi | F_s$ is finite.

Assume to the contrary that π contracts a curve in F_s .

Because of (+), all curves on F_s are homologous (up to positive multiples). We conclude that π contracts all curves in F_s , hence dim $\pi(F_s) = 0$. So $F_s \subset \pi^{-1}(x) \simeq \mathbb{P}_n$ for some $x \in X$.

So
$$F_a \subseteq \pi^{-1}(x) \simeq \mathbb{P}_x$$
 for some $x \in X$.

Consequently $\psi|\pi^{-1}(x)$ has some positive-dimensional fiber. This is only possible if $\psi(\pi^{-1}(x))$ is a point. Hence $F_s = \pi^{-1}(x)$. But the extremal rays R_1 and R_2 are different, contradiction!

So $\pi|F_s$ is finite for all $s \in \mathbb{Z}$. In particular dim $F_s \leq n$.

Take s general so that F_s is smooth. F_s is a Fano manifold since we have by the adjunction formula

$$K_{F_s}^{-1} \cong \mathcal{O}_{\mathbf{P}(E)}(n+1)|F_s|.$$

This formula also shows that F_s has index $\geq (n+1)$. Recall that the index of a Fano manifold X is the biggest $r \in \mathbb{N}$ such that there is some $L \in \text{Pic}(X)$ with $L^r = K_X$.

Since the index of a Fano manifold is always bounded by dim + 1, we conclude that index $(F_s) = n + 1$ and the Kobayashi-Ochiai theorem [KO] says that $F_s \simeq \mathbb{P}_n$.

By (1) we obtain a finite surjective map $\mathbb{P}_n \to X$. Then $X \simeq \mathbb{P}_n$ by a theorem of Lazarsfeld [La].

What remains to treat is the case where dim Z=2n, i.e. ψ is a modification. Of course this case must be excluded.

We will use the following generalization of a theorem of Ionescu [Io] communicated to me by J. Wisniewski:

Lemma 4 (Wisniewski). Let X be a projective manifold with extremal ray R. Let

$$l(R) = \min \{K_X^{-1} \cdot C | C \text{ a rational curve in } R\}$$

be the length of R. Let A = union of all curves in R.

Assume that the contraction of R has a non-trivial fiber of dimension $\leq d$. Then:

$$\dim A \ge \dim X + l(R) - d - 1$$
.

Remark. Ionescu's result is $\dim A \ge 1/2$ ($\dim X + 1(R) - 1$), not involving d; Wisniewski's proof is to look carefully to Ionescu's method.

Lemma 5. ψ is not a modification.

Proof. We apply Lemma 4 to the extremal ray R_2 on the projective 2n – fold $\mathbb{P}(E)$. In order to compute $l(R_2)$, take an extremal curve l belonging to R_2 .

Since $K_{\mathbb{P}(E)}^{-1} = \mathcal{O}_{\mathbb{P}(E)}(n+1)$, we have

$$(K_{\mathbb{P}(E)}^{-1} \cdot l) = m(n+1), \quad m \in \mathbb{N}.$$

On the other hand

$$(K_{\mathbf{P}(E)}^{-1} \cdot l) \leq \dim \mathbf{P}(E) + 1 = 2n + 1,$$

l being extremal. Hence m=1 and $l(R_2)=n+1$.

By the same arguments as in Lemma 3, every fiber of ψ has dimension $\leq n$. So we can apply Lemma 4 with d=n to obtain:

$$\dim A \ge \dim \mathbb{P}(E)$$
, i.e. $A = \mathbb{P}(E)$.

and ψ cannot be a modification.

490 T. Peternell

References

[La] Lazarsfeld, R.: Some applications of the theory of positive vector bundles. (Lect. Notes Math., vol. 1092, pp. 29-61). Berlin Heidelberg New York: Springer 1984

- [Io] Ionescu, P.: Generalized adjunction and applications. Math. Proc. Camb. Philos. Soc. 9, 452–472 (1986)
- [Kat] Birational geometry of algebraic varities-open problems. Report on a conference in Katata, August 1988 (Org.: Miyaoka, Mori, Mukai, Kollár)
- [KMM] Kawamata, Y., Matsuda, K., Matsuki, K.: Introduction to the minimal model problem. Adv. Stud. Math. 10, 283-360 (1987)
- [Mo] Mori, S.: Threefolds whose canonical bundles are not numerically effective. Ann. Math. 116, 133-176 (1982)
- [OSS] Okonek, C., Schneider, M., Spindler, H.: Vector bundles on complex projective spaces. Basel: Birkhäuser 1980
- [Wi] Wiśniewski, J.A.: Length of extremal rays and generalized adjunction. Math. Z. 200, 409-427 (1989)
- [KO] Kobayashi, S., Ochiai, T.: Characterizations of complex projective spaces and hyperquadrics. J. Math. Kyoto Univ. 13, 31-47 (1973)
- [Mo] Mori, S.: Projective manifolds with ample tangent bundles Ann. Math. 110, 593-606 (1979)