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1 Introduction

In this paper, we consider a vertex-transitive graph G =(X, E), which is locally
finite, infinite and connected. We exclude multiple edges in E, while loops are
permitted. In particular, all vertices have the same finite degree (number of
neighbours), denoted by D. The vertex set X carries an integer-valued metric:
d(x, y) is the shortest length (number of edges) of a path in G which connects
x and y. An automorphism of G is a self-isometry of X with respect to this
metric. By AUT(G) we denote the full group of automorphisms of G. This
is a locally compact Hausdorff group with the topology of pointwise conver-
gence. A neighbourhood base of the identity is given by the family of all point-
wise stabilizers in AUT(G) of some finite set of vertices. These subgroups are
open compact, and AUT(G) is totally disconnected. For more details concerning
the topology of AUT(G), see e.g. Trofimov [Tr]; for integration on locally
compact groups, the reader is referred to the treatise by Hewitt and Ross [H-R].

Throughout this paper, I' will be a closed subgroup of AUT(G) which acts
transitively on X. We want to relate properties of I' with the norm (spectral
radius) [|2| on ¢%(X) of the “simple random walk” operator 2 of G. The
latter is given by

(1) 210=5 T S0)

y~x

where f is an arbitrary complex-valued function on X and ~ denotes the neigh-
bourhood relation in G. Note that | 2| <1 always.

If I' is a discrete group and G is its Cayley graph with respect to some
symmetric set of generators, then it is well known that I' is amenable if and
only if |2| =1, see Kesten [K2] and Day [Da]. We prove that in general,
|2||=1 if and only if I' is amenable and unimodular (Sect. 2, Theor. 1). Indeed,
we exhibit a right convolution operator #,, acting on L*(I") with respect to
left Haar measure, such that | 2| =|2|. Calculating |%4| in terms of a left
convolution operator involves the modular function of I We can then use the
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caracterization by Berg and Christensen [B-C] of amenable locally compact
groups in terms of norms of convolution operators to obtain our result.

Using Trofimov’s [Tr] combinatorial formula for the modular function and
the result of Woess [W2] on amenable group actions on infinite graphs, we
then prove that |2| <1 if G is vertex-transitive and has more than two ends
(Sect. 3, Theor. 2).

The spectral radius of 2 is related with the isoperimetric number of G,
see Dodziuk [Do], Biggs et al. [B-M-S] and Gerl [Ge]. Thus, our results bear
some analogy with those of Brooks [Br] relating amenability of the fundamental
group of a closed manifold with the spectrum of the Laplacian of the universal
cover.

Furthermore, we obtain estimates for the norms of more general transition
operators linked with the graphs structure (Sect. 4, Theor. 3 and Coroll. 3), and
we show that on a graph with | 2| <1, every irreducible, I-invariant random
walk is transient (Sect. 4, Coroll. 4). Finally, we give a number of examples
(Sect. 4), where our results allow explicit calculation of the norms.

2 Amenability and unimodularity

Recall that I' is called amenable, if there is a non-negative set function u, defined
on the family of all Borel sets of I such that (a) u(I' =1, (b) w is finitely additive
and (c) p is invariant under left action of I’ For all details concerning amenable
locally compact groups, cf. Pier [Pi].

The stabilizer in I' of a vertex x will be denoted by I,. We now fix, once
and for all, a “root” vertex oe X. The homogeneous space I'/T, is discrete and
can be identified with X by the mapping yI,—>yo (yel). In general, 2 cannot
be described as a left convolution operator of I' on I'/I,. However, I, is compact
open, and we can fix a left Haar measure dy on I' such that [dy=1. The

Hilbert space I*(I') is considered with respect to this measure. '

Now consider the modular function A of I Recall that 4 is a continuous
homomorphism of I' into the multiplicative group of positive real numbers,
determined by

|F(@da=A4(@y) | Fay)da
r r

where F varies in the space of compactly supported continuous functions on
I Implicit in [Tr], there is a combinatorial formula for 4. For the convenience
of the reader, we state it with a proof.

Lemma 1. If yeI and yo=x then A(y)=t(x), where

Proof. First observe that [,=y[,y™" so that A(y) [ da= [ da(=1). Now, (I),
I'x I,
=I,nI, and |I,0| is equal to the number of cosets in LALNT). Each of
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these cosets is compact open in I' In the same way, |I,x|=|I,/(I,NTI,)|, and
we obtain

ILx| | da=[da=40) [ da=AG)|Lol | da O
r, Iy

TonTy TonTx

By transitivity, for every neighbour u of 0 in X we can fix a y,el such
that y,0=u. We now define a function @ on I by

1
(21) ¢=E ZXroy,;l,

where x, denotes the indicator function of the set 4. Then & is continuous
with compact support S = U Iy, . With &, we associate the right convolution

operator #, on [*(I') defined by
2.2) Ro F())=Fx®d(y)= [ F(yo) ®(a"")da, FelI?(I).
r

Lemma 2. The support S of ® is a symmetric set which generates I' as a semigroup.

Proof. First of all, note that S={yeI'|yo~o}. In particular, S=S 1.

Now, we prove by induction on n=d(x, 0)2 1, that for every xe X\ {0} there
isa y,eS"(=S""), such that y,0=x.

1) For n=1, we have y,eS for every u~o.

2) n—>n+1.1f d(o, x)=n+1 then d(o, y)=n for some y~ x. By assumption,
yy0=y for some y,eS". But y, is a bijection from the neighbours of o onto
the neighbours of y. In particular, y,u=x for some u~o. We obtain y,
=7,7,€8"* ! and y,0=x.

Next, we show that I,=S2 If u~o then, as above, y,v=0 for some v~o.
Thus, y,7,€L, and =Ly, 'y, ' =S

Finally, if ye '\I,, then y " 'o=xo0,and yel,y; '< [ JS". O

n21
Next, we define the “averaging” operator &: I*(I') - ¢%(X) by
(2.3) SF(x)= | F(y,o0)da, Fel*(),
I,

where y, €T is such that y, 0 =x, for all xe X.
Lemma 3. ¥ F (x) does not depend on the particular choice of v,, and | &| <1.

Proof. If y' eI, y,, 0=x, then y; ! y'.€[,, and by left invariance of the Haar measure
we have

| Foi)da= | F(y,ys'via)da= | F(y,a)da
I, I, I,

Furthermore, as | da=1,

I

IFIZ< X (J IFG)lda)®*< Y, [ |F(y.0)*da
xeX I, xeX I,
=2 | IF@*da=|F|3,
xeX yxT,

so that |<| 1. O
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The operator & has a “quasi-inverse”:
(2.4) T f)=f(yo),yel, fe/*(X).
If we denote
(2.5) L2(I')={FeI?*(I')|F is constant on each y I, ye '},

then 7 maps #?(X) onto [2(I'). The following statements are obvious.

Lemma 4.(a) |7 || =1.
(b) ST f=f for every fef?*(X).
(c) TS F=F for every FeI%(I).

We now can relate the operators %, and 2

Proposition 1. (a) For every fe/*(X), T feI2(I),
(b) R T =2 and
©) RoT S =Ro.

Proof. Let yeTI, fe£?(X). Then

%ﬂ'f(v)=Iﬂ'f(va)d’(a")da—ﬁZ I Tfya)do

—5 > f f(vu)da—— Y [

u~o yuI, u~o

As above, y maps the neighbours of o bijectively to the neighbours of x=yo.
Thus, the last term is 2f(y 0), and

RoT [ (V)=2f (7 0).
This proves (a). Furthermore, if y, 0= x then

S ReTf (x)= | Pf(y.x0)da=2f (),

and we have obtained (b). We prove (c). First observe that 4(a)=1 for ael].
We calculate 7 FF(y)= | F(ya)do and

I,

RoT SF()=] [ FyPoa) P(B~")dadf= [ [F(yB)@@ph™ ") A(x)dBdo

r r, ro r

=[ [Fypo@p ") dpda
I, r

By definition, ®(« f~')=®(B~") for every Bel, ael,, and the last term is equal
to

[ JFGB) @B~ dBda= | Re F(y)da=R F(y). O
I, r I,

We can now prove the main result of this section.
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Theorem 1. (a) ||9’|| =|Zol,
1
b) 12| = < D Y T, and equality holds if and only if I is amenable,
t(u

u~o

(c) ||2||=1if and only if T is both amenable and unimodular.
Proof. (a) From Prop. 1(b), Lemma 3 and Lemma 4(a) we get

I2I=1Z1- 126l - 171 = | Rol.

On the other hand, by Lemma 4(c) and Prop. 1(a) we have 7 S RoT =Ry
Hence, using Prop. 1(b), (c) we see that

f«@y=g-y.%09‘y=g°g~y=%¢.

Hence, %4 < (2|, and we have equality.
(b) Let

(2.6) (=201 467"

Routine calculations (as for instance in [H-R, §20]) show that |Ze| =|%l,
where .%; is the left convolution operator Fi— & % F on L*(I'). We calculate

@7) [80)dy=5 T | —dy=p T —

r u~o yuI, I/ A( ugo t(u) '

as A(y)=t(u) on y,I, by Lemma 1.

Let 1 denote the unit element of I (the identity mapping on X). First suppose
that 1esupp(®)=S=S"". This is the case if and only if G has a loop at each
vertex. Then, by Lemma 2, the hypotheses of [B-C, Theor. 1] are satisfied, and
I' is amenable if and only if

| Zll= [ P(y)dy

Thus, (a) and (2.7) yield the required formula in the presence of loops. Otherwise,
we may add a loop at each vertex to obtain a new graph G’ with the same
group of automorphisms. Its simple random walk operator is

) 1 D
g’—D+IJ+D+1g,’

where . is the identity operator. As £ is self-adjoint, we obtain

1 D

28 121=p51+ D+t

121l.

According to (2.1) and (2.6), we get associated convolution operators %4 and
% with the same norm as #'. Now, t(o)=1 by Lemma 1, so that

5 1
29 &()d (1+ ).
) [80dr=55 ZW

u~o
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Again by [B-C, Theor. 1], I' is amenable if and only if 1% ll= | &'(y) dy. Equat-
r

ing (2.8) and (2.9), we see that (b) is also true in the absence of loops.
(c) In general, it is known (see [H-R, 20.14]) that LI <[ B(y)dy.
r

Claim 1. | d(y)dy<1, and equality holds if and only if I' is unimodular.
r

Proof of Claim 1. Consider S=supp(®). By Lemma 1, we have

(2.10) D= [ dy=[dy=Y [46:Y)tnt)dy=Y —
S-1 S

u~o I u~o t(u) ‘

On the other hand, from the Cauchy-Schwarz inequality and (2.10) we get

(2.11) j@(y)dy=% Yy —=<
r

1 L(ZL)”2=1
u~o l/t(—u)zl/ﬁ u~o t(u) ’

and equality holds if and only if (¢(u)),., is a constant vector: t(u)=C>0 for
every u~o. From Lemma 2 we know that y,y,eI, for some u, v~o. Hence,
1=A4(y,7,)=t(u) t(v)=C? and C=1. Again by Lemma 2, I must be unimodular
(4=1) in this case. Combining these considerations with (2.11), we see that
Claim 1 is true.

Now (a) and Claim 1 yield (c). [

3 Amenability and ends

In this Section, we combine Theorem 1 with the results of [W2] concerning
the action of an amenable group of automorphisms on the space of ends of
G. We give a brief description of the latter, see Freudenthal [Fr], Halin [H1]
and Jung [J1].

An infinite path is a one-sided infinite sequence of successively adjacent ver-
tices without repetitions. Two such paths are equivalent if, for every finite U c X,
they can be connected by some finite path in G\U. An end is an equivalence
class of infinite paths; the space of ends is denoted by Q. It is known that
an infinite, connected, vertex-transitive graph has one, two or infinitely many
ends [H2], [Fr]. If Uc X is finite and B is the set of vertices of a component
of G\U, then we add to B all ends which have a representative infinite path
with all vertices in B. Thus, we obtain a set C c(X\U)uQ. If ze(X\U)u Q,
then it lies in exactly one such set C, denoted by C(U, z) (the component of
z after removing U). If Z' is another element of (X \U)uQand C(U, z2)%C(U, z'),
then we say that U separates z and z'. Varying U (finite) and z, the sets C(U, z)
constitute a basis of a topology which makes G=XuQ a compact Hausdorff
space.

For every end w, one can find a sequence {U,} of finite subsets of X, such
that

(3.1) CU,-, w)2U,uC(U,, w) foreveryn.
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In this case, {C(U,, )} is a neighbourhood base at , and {U,} is called contract-
ing towards w. In particular, with respect to the reference vertex o we can
define

(3.2 B,={xeX|d(x,0)<n}, S,=B,\B,_,,
and
D,(w)=C(B,-,,w)nS,, n=l.

Then {D,(w)} has property (3.1). In the sequel, regardless of the topology of
G, by a connected subset of G we mean a set whose intersection with X induces
a connected subgraph of G. The proof of the following Lemma is essentially
due to Jung [J2]. Recall that ' < AUT(G) is always assumed to act transitively
on X.

Lemma 5. If U <X is finite and disconnects G into at least two infinite connected
components C;, i=0, ..., k(k=1), then for every i there is a 6=o0;€I" such that
oc(UuC)cC;.

Proof. Choose a finite connected set V= U. By transitivity, we can find ael’
such that C;oaV>oaU and aVnV=g. As V is connected, there is some i’
such that « C;, > Vo U.

Case 1. If i’ +i, then we must have a(U u C;)= C;, and we may choose o =a.

Case 2. If i'=i, then C;ca(UuC)) for some j=+i. As above, we can find Ber,
such that f¥V=C;\V, and fC;o2VUC;oUuUC; for some j. If /=i then we
may choose o=p""'. If j/+i then f(UuC)cC;caC;, and we may choose o
= '8 O

An automorphism as given by Lemma 5 is called a shift [W2]; {¢"U} and
{o7"U} are contracting towards two ends w,, ®,, respectively, which are the
unique ends fixed by o (see [H2]).

Proposition 2. Let I'<AUT(G) be closed and act vertex-transitively. If G has
more than two (=infinitely many) ends, then I' is amenable if and only if it
fixes a unique end.

Proof. If I fixes the end w, then by Lemma 5 there must be a shift cel” with
respect to some finite U = X, such that {¢" U} is contracting towards w, compare
with [W2]. Thus, in the terminology of [W2], @ has finite diameter bounded
by diam(U). Hence, I' is amenable by [W 2, Theor. 2 and Coroll. 2].

Conversely, if I' is amenable, then by [W2, Theor. 1 and Coroll. 1] it fixes
a finite set of vertices, an end or a pair of ends. As I' acts transitively on
X, the first case is impossible. We show that it is also impossible that I' fixes
a pair of ends. As G has more than two ends, we can find a finite Uc X,
such that G\ U has infinite components C;, i=0, ..., k, with k>2. By Lemma 5,
o(Uu Cy)=C, for some shift eI, and {¢"U} is contracting towards some end
wo€C, which is fixed by . On the other hand, we must have UuC;caC;
for some i+0. Without loss of generality, we assume i=1, so that ¢~ “shifts
into” C, and fixes an end w,€C,. In the same way, there is a shift teI" which
fixes an w,eC, and some other end in Q\C,. From [H2, Theor. 9] we know
that a shift cannot fix more than two ends. In particular, ¢ does not fix w,
and 7 does not fix at least one of w,, w,. Thus I' cannot fix a set of two
ends. [
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Before we prove the main result of this Section, we need two more technical
preliminaries. The first one is probably well known, but we could not find
it stated explicitly.

Lemma 6. Let G be vertex-transitive, r20. If G\B, has more than two infinite
components and C is one of them, then

lim [S,NCy|=oo0.

n—oo

Proof. Let C;, ieI=/{0, ..., k} (k=2) be the infinite components of G\B,. For
every iel, we choose a ;€ AUT(G) such that y,0€C,, d(o, y;0)=2r+ 1. Then,
by connectedness, there must be i’e! such that ;! B, C,.. Hence

Cioyi(B,v U C)).

JjFU

Thus, for n23r+2, C;nS, has at least k elements. Now, associating as above
J with j for every jel,

Yi CjD)’i (B, U C)),

c*j

and for n25r+3, C;n S, has at least k? elements. Repeating this process, we
see that for n=r+1+m(2r+1), C;n S, has at least k™ elements. []

Lemma 7. Let G have more than one end. If I' acts transitively on X and fixes
an end w, then there is an increasing sequence (n,) of positive integers, such
that

diam(D, (w))<M < .
Proof. Let r be such that B, disconnects G into at least two infinite components,

and let C,=C(B,, w). By Lemma 5 we can find a shift o€ such that {6"B,} >
is contracting towards w. In particular, d(o, 6" 0) is increasing. We set

n,=d(o,cmo)+r+1, m2=1.

Then B, _>0¢™B, so that C(B, _;,w)cC(6™B, w). As ¢ fixes w,
C(o™ B,, w)=0" C,. In particular, o™ B, separates o from D, (w). In other words,
if xe D, (w), then there is yeo™ B, on some shortest path from o to x, and

nm=d(0, X)=d(0, ,V)‘f‘d(Ya x);d(o, 0""0)—"‘*“1(% x)'
Hence,
d(x,c™0)<d(x, y)+r=<n,—d(o,c™0)+2r=3r+1,

and diam(D, (w))SM=6r+2. []

Indeed, Lemma 7 applies to every end in an arbitrary (locally finite) graph
which is “hyperbolic” in the terminology of [W 2].

Theorem 2. If G is a vertex-transitive graph with more than two (=infinitely
many) ends, then | 2| <1.

Proof. Let I'= AUT(G). We show that if I' is amenable, then it must be unimodu-
lar.
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Indeed, suppose that I' is amenable. Then it fixes a unique end w by Prop. 2.
We fix r=1 as in Lemma 6 and write C,=C(B,, w). For every yeX, we fix
y,€l with p,0=y.

Claim 2. If n=1 and yeS,\C,, then d(o, y,v) <2 r for some veD,(w).

Proof of Claim 2. If n<r then this is obvious. So assume n>r.

We first show that y,D,(w)n(B,uCy)+@. Observe that D,(w) separates
o from w, so that y,D,(w) separates y from y,w=w. Assume that the above
intersection is void. Then y and o can be connected in G\y,D,(w) by a path
of length n. On the other hand, oeB,uC, and weC,, so that y and w are
in the same component of G\y, D,(w), a contradiction.

Now, if y,D,(w) " B,# &, then Claim 2 is true. Otherwise, y,ve C, for some
veD,(w). However, B, separates y from y,v, so that there is some weB, on
a shortest path between the two, and

n=d(o, v)=d(y, y,v)=d(y, w)+d(w, y,v).

But d(y, w)=n—r, and thus d(w, y,v) <r. This proves Claim 2.

Now set R=2r+M, M as in Lemma 7, and K=|B,,|. Choose n=n,>r
according to Lemma 7, large enough such that

1S\ Col>K?,

which is possible by Lemma 6.

If yeS,\C,, then by Claim 2,

7y 'oeA={xeS,|d(x, D,(w)=2r}.

As diam(D,(w)) £ M, there are at most K elements in 4, and there must be
an xe A such that

B={yeS,\Coly, ' 0=x}
has at least K + 1 elements. If y, weB, then y,,7, ' y=w and y,,y, ' 0=o0. Thus
[LylzK+1.

On the other hand, I,=y,I,y,; ", and |I0|=|I,x|. Now, every ael, permutes

the infinite components of G\B,_, and fixes w, so that aD,(w)=D,(w). Thus
axeA if xe A and ael,. We get that

By Lemma 1, I is nonunimodular. [J

4 Applications, extensions and examples

As in the preceding sections, I' is a closed group of automorphisms of G which
acts transitively on the vertex set X of G. We recall the definition of the isoperi-
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metric number i(G) of G, see [Do, B-M-S and Ge]. If U < X, then the boundary
0U is the set of all vertices in U which have a neighbour in X\ U, and

(4.1) i(G)=inf{|le]JI|’UcX, ﬁnite}.

In [B-M-S] and [Ge] it is shown that i(G)=0 if and only if |2|| =1.
Corollary 1. i(G)=0 if and only if T is both amenable and unimodular.
Another consequence of Theorem 1 is the following.

Corollary 2. If some vertex-transitive closed group of automorphisms of G is amen-
able and unimodular, then this is true for every such group.

The examples below show that Corollary 2 does not remain true if of the
assumptions we drop either amenability or unimodularity. Note that .# — 2
may be considered as the discrete Laplacian of G. In view of this observation,
compare Corollaries 1 and 2 with the results of [Br] concerning Riemannian
manifolds.

Instead of the “simple random walk” operator 2 defined in (1.1), we may
consider more generally a transition operator 2, given by a matrix (q(x, y)), yex
with the following properties:

(i) stochasticity: q(x, y)=0 and Y q(x, y)=1 for every xe X,

y
(i) I'-invariance: q(y x, y y)=q(x, y) for every x, yeX, yel,
(iil) symmetry: q(x, y)=4q(y, x) for every x, ye X, and
(iv) irreducibility: If x ~ y then g™ (x, y)> 0 for some n>0.
Here, g™ (x, y) is the (x, y)-entry of the nth matrix power of 2. The action
of 2 is given by

(4.2) 2f()=2axNf0), fet*G).

The following result is proved along the same lines as Theorem 1.
Theorem 3. Let I' SAUT(G) be closed and vertex-transitive, and let 2 satisfy
properties (i) through (iv). Then

nﬂgzi%ggL

The first inequality is an equality if and only if T is amenable, and the second
one is an equality if and only if I is unimodular.

Proof. For every u with q(o, u)>0, fix y,€I" such that yu0=u. Asin (2.1), associate
with 2 a function @ on I by

43) ®=Y4(0, 1) 11,z 1.

Then, using properties (i)(iv), one verifies that D(y~')=&(y) for every yel,
that supp(®) generates I" as a semigroup, and that Lemma 4 and Prop. 1 remain
valid with 2 in the place of 2 As in (2.7) we associate & with @. In this setting,
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[B-C, Theor. 1] still applies; in the case when g(x, x)=0 for some (=all) x,
we may consider 2'=af+(1—a)2, 0<a<1, and use the same argument as
before. Identity (2.10) has to be replaced by

44) 1= oG ) dy=[ og)dy=y 129
r I u [(u)

Finally,

[80)dy=3 L0 <3 g0, w2 (Z 2. "))”2=1
r u

Ve~ -t

by (4.4), and equality holds if and only if I is unimodular. []
If 2 has only properties (i) and (ii), then still something can be said.

Corollary 3. If I is amenable and 2 is stochastic and I'-invariant, then

213 429

< Vi

Proof. If @ is associated with 2 as in (4.3), then we still have |2||=%,l. If
I' is amenable then we can use a result of Leptin [Le] (see also [Pi, Coroll. 9.7])
to infer that

%ol = | B)dy=Y, 124
r u )/ t(u)

Indeed, for Corollary 3 it suffices in (i) to have g(x, y)=0 and Y q(x, y)=c>0
for every xe X. Furthermore, with obvious modifications the results also apply
to the norm of 2 as an operator on £7(X), 1 <p < co.

Corollary 4. If i(G)>0, then every transition operator 2 with properties (i), (i)
and (iv) gives rise to a transient random walk.

Proof. We have to show that ) ¢™(o, 0) is finite. If & is defined as in (4.3)

then Prop. 1 may be applied with 2 in the place of 2 Now, if F, GeI3(I),
then it is easy to see that (¥F, ¥G)=(F, G), where the inner product is taken
in #%(X) and I*(I), respectively. Hence, if ™ denotes the nth convolution power
of @, then one calculates

(4.5) q"(x, y)=<{2"6,, 6> ={RT 0,,T 0,)
=[ [ 'y, 9 pdadp.
r, I,

If we define pu(dy)=®(y~')dy, then u is a probability measure on I By (iv),
the support of u generates I' as a semigroup, and if u™ denotes its nth convolu-
tion power, then (4.5) yields g™ (o, 0)= u™(I}).

By Corollary 1, I' is nonamenable or nonunimodular. Thus, I’ is a transient
group, see Guivarc’h, Keane and Roynette [G-K-R, Theor. 47 and Theor. 51].
In particular, as I, is compact, ) u™(I}) is finite. []
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We now turn our attention to graphs with infinitely many ends. Note that
Corollary 2 applies in this case, by Theorem 2. If G is the Cayley graph of
a finitely generated group I, then by definition the ends of I' are the ends
of G. (This is independent of the particular choice of the — locally finite — Cayley
graph, see [Fr] and Stallings [St].) A discrete group is of course unimodular,
and it is amusing to point out that Theorems 1 and 2 may be used to obtain
the following corollary.

Corollary 5. Every finitely generated group with infinitely many ends is nonamen-
able.

This is of course well known. Indeed, it is enough to detect a free subgroup
on two generators in I'; compare with [St] or with the graph-theoretical
approach to Stallings’ structure theorem by Dunwoody [Du].

It will be of interest to describe in detail those graphs G with infinitely
many ends which admit an amenable vertex-transitive group I' < AUT(G). Note
that such a group cannot be discrete and must have very big (uncountable)
vertex stabilizers, compare with [H2] and [T1]. This could also be interpreted
as having a rich “radial” structure. Our feeling is that such a graph should
be a “layer” of finitely many distance-regular graphs (see Ivanov [Iv]), compare
with the examples given below. In particular, G should be tree-like in the sense
of Woess [W1].

Example 1. The homogeneous tree.

We consider G=T=T,, the homogeneous tree of degree D=r+1, r>2. For
many details concerning the geometry of T, see Cartier [C1]. On one hand,
T admits the vertex-transitive action of a discrete group (the free product of
r+1 copies of the two-element group), which is unimodular and nonamenable.

On the other hand, fix some end @ of T, and consider the group I'=T(w)
of all automorphisms of T which fix w. This group has been studied in detail
bey Nebbia [Ne]; it is amenable and nonunimodular. The end @ induces a
partial ordering in the vertex set X of T if x, yeX then we write x> y if
y lies on the unique infinite path which represents w and starts at x. Observe
that ye AUT(T) is in I' if and only if it preserves this ordering. Furthermore,
for every xe X and neN,, there is a unique we X such that x>w and d(x, w)=n;
we write w=x—n. Finally, the ordering is directed: every pair x, y€X has
an infimum c(x, y) (the confluent of x and y with respect to w). The horocycle
of x with respect to w is the set

H(X, a)): {yEXId(xa C)=d(y, C), C=C(X, y)}
With respect to the “root” vertex o, the horocycles are given by
(4.6) H,(w)={xeX|d(x,c)—d(o, c)=m, c=c(o, x)}, meZ.

The geometry of the horocycles is of interest in the study of radial harmonic
analysis on T, see e.g. Cartier [C2] and Betori, Faraut and Pagliacci [ B-F-P].

Lemma 8. If A is the modular function of I'=T'(w), yeI and yoeH,, (w), then
A(y)=r".
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Proof. If x, yeX and y=x—n, neN,, then I,x={x'|y=x"—n}, which has r"
elements, while I y={y}. This shows that t(x)=r" if xeH,(w) and x>0 or
0>x. Now let xe H,,(w) be incomparable with o. Set ¢=c(x, 0), "’ =d(x, c¢) and
n"=d(o, c). Then n', n">0, c=x—n'=0—n" and I,c=TI,c={c}. Hence I}x
={x'eX|c=x"—n"=c(o, x')}, which has (r—1)r"~! elements. In the same way,
|Lo|=(r—1)r"" "' Thus, t(x)=r""""=¢" [

As an application, we can easily calculate the norm of the simple random
walk operator: there are r neighbours of o in H,(w), one is in H_,(w), and

by Theorem 1,
12| = ! (,.L_H.lﬂ):ﬂﬁ_
r r+1

r+1 l/

This is of course well known and can be obtained in a much more elementary
way, see e.g. Kesten [K1].

Observe that the only transition operators 2 which satisfy (i), (ii) and (i)
with respect to I'=I'(w) are the radial ones: ¢(x, y) depends only on d(x, y).
The norms of these operators have been computed by Sawyer [Sa] and Cohen
[Co]; for their harmonic analysis, see Figa-Talamanca and Picardello [F-P].
It is enough to know the norms of the operators 2,, n> 1, defined by

18,1, d(x, y)=n,
0, otherwise,

@7 4l y)={

where S, is as in (3.2). From Corollary 3 and Lemma 8 we obtain

l; Y, |Hu(@)nS,|r ™2,

A s,

(4.8) 21l =

The simple combinatorial task to count the points in H,,(w)NS, is left to the
reader. Other operators whose norms can be calculated in application of Corol-

: . 1
lary 3 are for example #f (x)=f(x—1) and its left inverse #'f (x)=7 Y f):
they have norms [ﬂ and 1 /lﬂ, respectively. [J

y—1=x

Let G be a graph with infinitely many ends, which admits a vertex-transitive,
closed group I' that fixes an end w. Let t be the function on X which corresponds
to the modular function of A according to Lemma 1. Then Lemma 8 suggests
to define the horocycles with respect to w as those sets of vertices x, where
t(x) is constant.

In Example 1, it is not the whole automorphism group of the tree which
is amenable. Based on a suggestion of W. Imrich and the example in [Tr],
we now exhibit an example of an infinite, vertex-transitive graph with infinitely
many ends, such that AUT(G) is amenable.

Example 2. Let T=(X, E) be the homogeneous tree as above, w an end of T
and I'=I'(w) its stabilizer in AUT(T). Consider the partial ordering induced
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Fig. 1

by w. We define a new graph G=(X, E) with the same vertex set and edge
set E= EUE', where

4.9) E'={[x—-2,x]|xeX}.

Clearly, G has the same space of ends as T. Call black edges the edges in E
and red edges those in E’, see Fig. 1.

Lemma 9. AUT(G)=T.

Proof. Clearly, I < AUT(G) (as it preserves the ordering).

Let ye AUT(G). A red edge is member of exactly one triangle in G, while
a black edge is a side of r+1 triangles. Hence, y must send red edges to red
edges and black edges to black edges. In particular, y€AUT(T). Consider an
edge [x—1,x] in E. Suppose that y reverses its order with respect to w:
Y(x—1)=y,yx=y—1.Let A={veX|v—1=x}. Then yA={w~y—1|w+y},and
there must be ved such that yo=w+y—2, ie. w—1 =y—1. But then
x—1=v—2, and the image of the red edge [x—1, v] is [y, w]. As neither y=w—2
nor w=y—2, we have a contradiction. Thus, y preserves the ordering of X
with respect to w, and is contained in I’ []

The graph G has several interesting features. First of all, the red edges span
two disjoint homogeneous trees with degree 1 +72, so that G is a layer of three
homogeneous trees. Secondly, AUT(G) is nonunimodular, and no discrete group
can act vertex-transitively on G. In particular, G is not a Cayley graph. [

In general, it is an interesting question, how far from a Cayley graph an
arbitrary vertex-transitive graph can be. Trofimov [T1] has shown that such
a graph is very close to the Cayley graph of a nilpotent group, if it has polynomial
growth: in this case, G admits an imprimitivity system with finite blocks with
respect to AUT(G), such that the image of AUT(G) on the factor graph is
nilpotent-by-finite and has finite vertex stabilizers on the latter. The graph of
Example 2 shows that in general, one cannot find a vertex-transitive group
I'= AUT(G) and a corresponding imprimitivity system with finite blocks, such
that the image of I' on the factor graph is finitely generated and has finite
vertex-stabilizers. Hence, we conclude with a problem.
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Question. Is there an infinite, connected, locally finite graph, which is vertex-
transitive but not quasi-isometric (in the sense of Gromov [Gr]) with a Cayley
graph of some finitely generated group?
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