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1. Introduction

Let f: M"—IR¥ be an isometric immersion of an n-dimensional connected Rie-
mannian manifold into N-dimensional Euclidean space. At each point xe M,
we define the first normal space Ny(x) to be the subspace of the normal space
T.M* spanned by the vector valued second fundamental form a: T M x T M
—T,M*. It is a standard fact that if the subspaces N; form a k-dimensional
subbundle on an open and connected subset UcM which is parallel in the
connection induced on the normal bundle, then f(U) has substantial codimen-
sion k ie., f(U) is contained in some affine (n+k)-dimensional subspace but
not in one of lower dimension.

Isometric immersions satisfying dim N, =1 have been considered by several
authors. From a local point of view by Griffone-Morvan (see Theor.2 and
Prop. 2 of [G-M]) and from a global point of view by Rodriguez-Tribuzy [R-T]
and Dajczer-Rodriguez [D-R]. Locally, it holds that N, is parallel unless there
exists an open subset where the index of relative nullity satisfies v=n— 1. Recall
that v(x)=dim 4 (x), where

A(x)={XeT,M:a(X,Y)=0VYeT,M},

and that on any open subset where v is constant, the leaves of the integrable
distribution x+ 4 (x) are part of affine totally geodesic v-dimensional subspaces.
In particular, v=n—1 implies that the manifold is flat and ruled by totally
geodesic hyperplanes.

In this paper we deal with the local theory of isometric immersions with
nonparallel first normal spaces of higher dimension. As an application of our
general results we obtain the following improvement of Theorem 4 of [G-M].

Theorem 1. Let f: M" — RY be an isometric immersion with dim N, =2 everywhere.
Then M contains an open and dense subset M' such that

where U, , U,, U, are three open subsets satisfying:
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1) The connected components of U, have substantial codimension equal to 2.

2) f(U,) is foliated by totally geodesic (n —2)-dimensional affine subspaces.

3) For each connected component U, of U, there exists an open subset V,
of R"*! and isometric immersions g,: U, »R"*' h 20 Va—= RN, both with 1-dimen-
sional first normal spaces such that g,(U,)< V; and flu,=h,og;.

Examples of submanifolds of type 2, ie., submanifolds satisfying v=n—2
and nonparallel N, can be obtained as follows.

Example 1. Let f,: N"—R"** be a 1-parameter family of non-congruent isomet-
ric hypersurfaces with v=n—2. Such deformable submanifolds have been classi-
fied by Sbrana [Sb] and Cartan [Ca]. For My F U, the isometric immersion

1 l n n n
I:F‘l'”2=17"5fltl@—l/'5fuz:N“’]R HC‘D]R +1=R2n+2

has nonparallel 2-dimensional first normal space and v=n—2.

Example 2. There are many ruled Euclidean submanifolds with v=n—2 and
dim N, =2, whose substantial codimension can be arbitrary (see Sect. 2 of [D-
GJ). Moreover, it is shown in [D-G] that if M is complete and f is real analytic
then either M"=M?>xR""3 and f=f, xid splits with f1(M?3) unbounded or
f is ruled by complete affine subspaces.

2. The Results

We say that an isometric immersion f: M" >R is regular if the first normal
spaces form a normal subbundle which splits as the orthogonal sum of two
subbundles
N,=T®S,
where we define
S(x)=Span{Im ¢,: Vne Ni-}.

Here ¢,: T.M - N, (x) is the linear map defined by ¢,Z=(V;n)y,, where v+
denotes the normal connection and ( )n, indicates taking the N,-component.
Observe that S=0 iff N, is parallel.

Let ar and ag denote the T and S components of the second fundamental
form a, respectively. At each point xe M, let 4%(x) be the kernel of g i.c.,

A*(x)={YeT,M:a5(Y, Z)=0VZe T, M),

and let v*(x) =dim 4°(x). Observe that 4°= 4, and thus v*=v, whenever T= {0}.
Let us denote by A, the tangent valued second fundamental form in the
normal direction §.
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Proposition 2. Let f: M"— RN be a regular isometric immersion. For any ne Ni
we have

i) () Ker A;=Ker¢,,

delmon
ii) {Fierg, Im,, T>=0.
Proof. i) Since A, =0, we get from the Codazzi equation that

Ad,nx Y=A¢"yX,

and the result follows easily.
ii) From the Ricci equation and 4,=0, we have

RYZ, Y)n=V; Vi'n—V Vz n—Vzyn=0 (1)
for any Y, Ze TM. Now let YeKer ¢,, (€ T. Then
Fiznm € =<¢,[Z,Y], &) =0, )
Vi Vin, &5 =Z<$, Y,&> — <9, Y. V7 {5 =0, 3)
since V- e N, . Using (1), (2) and (3), we obtain that
W ¢, Z, 8> =% Vi'n, &5 =0,
for all Ze TM. This concludes the proof.

and

Remark. The local conclusion for the case dim N, =1 presented in the Introduc-
tion follows easily from part i) of the above Proposition.

Corollary 3. For a regular isometric immersion f: M"—RY it holds that
i) 4°(x)= () Kerg,,
neN;
ii) S is parallel in R¥ along A°,
iii) T is parallel in TM* along A°.

Proof. i) Trivial from part i) of the Proposition.

ii) First observe that from part i) we have that Ni, and thus N, is parallel
in TM* along 4°. Therefore, for any Yed4®, €S, we obtain from the Gauss
formula and part ii) of the Proposition that

Vya= —A‘; Y+ Vyléz VyléeN‘ (@) TJ‘=S,
where ¥ denotes the standard connection in IR¥. This proves ii).
iii) By ii) this is equivalent to N, being parallel in TM* along 4°.

Theorem 4. Let f: M" - IRY be a regular isometric immersion with dim T=t and
v*=k, everywhere. Then A° is integrable and each leaf of A°® is locally substantial
in codimension less or equal than t.

Proof. Let Y, Ye A°. For any neNj by the Ricci equation
Vi Vi n—W Vit n— Vg, nn=0.
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Since N{ is parallel in the normal connection along 4°, it follows that ¥} y,neNi-.
Therefore ¢, [ Y, Y]=0 for all ne Ni- and thus [ Y, Y]e 4° by part i) of Corollary 3.
So 4° is integrable.

Along a fixed leaf L of 4° consider the orthogonal splitting TM = TL® TL*
and the subbundle t=TL'*@®T Clearly t contains the first normal space of
L as a submanifold of R". Furthermore, t is parallel in the normal connection
of L. In fact, for any Ye TL, X e TL* and e T, we have

RX+)=RX+a(}, X)— A4, Y+ R (e TMODT,

since as(Y, X)=0, and K Ee T by part iii) of Corollary 3.
Now let U < M be an open subset where the subspaces

R(x)=Span {(¥;0),:V3€S, Ze TM}
verify that dim R (x)=constant for all xeU.
Claim. The distribution xe L U+ R(x) is normal to L and parallel in R¥.
To prove the claim first observe that for any YeTL, Ze TM and d€S, we have
0, YD=L—A,Z+V}5,Yy=—<(Z, 4,Y)=0,

which implies that R is normal to L. It remains to show that % (7, 0).€ R (x).
We compute

B F0=PF(— A, Z+V+0)
= R A Z—a(Y, A,Z)— Ags, Y+ T V1S, @

On the other hand, by Codazzi’s equation we have
WA;Z=A, VYZ"'Av;aZ"AaVzY—Av;aY, (5
and from Ricci’s equation, we get
(Y, 4,Z)=RH(Y, 2)6 =V 6— Vi -6 — Vs 1. (6)
Putting together (4), (5) and (6), we obtain

G 6=—A4,[Y,Z]1+ VE#.zlé—Avwz'*'Vzl B0

=Py 6+ P, G, ™
But o _
e (7%0). =Wy 76— 7y (7,6 — (7, 0),).

Since 7,6 —(¥,0).eS®N i, and S®N{, is parallel in RY along TL, we have
that Z(%Zé—( 29))€S® Ny Using (7), and that % (7,0),e TMD T, we get

Ve (%0),= (% |725)TM$T=(V[Y,215+ V. % Oruer
=(7[Y,Z]6)r+(z Vl’la)n

since W d€S. This proves the claim.



Euclidean Submanifolds with Nonparallel Normal Space 555

Next we argue that R(x) is orthogonal to the first normal space of L in
RM. In fact, for any Y, Ye TL we have using (7) that

R Y, Vp8>=Y <Y, %6) <Y, % 7,6) =0.

Finally we show that dim R>dim TL*. To see this just observe that for
6eS, we have
(%8)= — A Z+(VO)r,
and that
TL=Span{A;Z:¥deS, Ze TM}.

Given a point xyeL there exists a neighboorhod V of x, in L where dim R
>dim R(x,) and thus V reduces codimension by at least dim R(x,)=dim TL*.
So V<L has substantial codimension <dim 7 —dim T, which concludes the
proof.

Remark. For T={0} the above Theorem follows from the result on the relative
nullity distribution described in the Introduction.

Corollary 5. Let f: M"—>IRY be a regular isometric immersion with dimS=1
and dim T'=t. Then there exists a foliation of M by hypersurfaces each of which
has substantial codimension at most t.

Proof. Using Proposition 2 it is easy to see that v*=n—1 and dimR=1 every-
where.

Proposition 6. Let f: M"—»RX be a regular isometric immersion with dim S=2.
Then v*=n—2.

Proof. 1t is easy to see that there exists neNj such that Im¢,=S$, and the
result follows from Part i) of Proposition 2.

Remark. It can be shown by similar arguments that if dim S =3, then v*Zn—3.

Theorem 7. Let f: M" — IR¥ be a regular isometric immersion of a simply connected
Riemannian manifold with dim S=1, and dim T=t. Then there exists an isometric
immersion g: M"—IR"** such that locally f=hog, where h: UcR"*'>RY is
an isometric immersion with 1-dimensional first normal space everywhere.

Proof. We define a 1-parameter family of bilinear forms «*: TM x TM — Tj* M,
and a l-parameter family of bundle connections ¥+ on T} M compatible with
the metric for each 1€[0, 1] as follows

1) a*=ar®Aag, (®)
2) 1) Vll|T=V_L|Ta
ii) Pt*5=AV*+éfordeS, &)

iii) l7l'l|1vf= VllNJ;'

It is a long but straightforward computation to verify that for each A€[0, 1],
the above Riemannian data on T,M L verifies the Gauss, Codazzi and Ricci
equations. This verification depends strongly on the fact that v*=n—1. Since
M is simply connected there exists a 1-parameter family of isometric immersions
g,: M" > RY varying smoothly with 1 (see [W], p. 298) such that g,=f and
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a 1-parameter family of bundle isomorphisms ¢, : Ty M* - T, M* along g, pre-
serving the metric, the second fundamental form o » and the bundle connection
V% Now we take g= 8o- From (8) we have that T is the first normal space
of g, and from (9) that T is parallel in the normal connection. This implies
that g has substantial codimension .

Let c: [a, b] > M be a unit speed curve orthogonal to 4°. Notice that the
distribution 4° is independent of ie(0, 1]. For each 1€(0, 1] we consider the
(n+ 1)-dimensional ruled submanifold F, of R" along g, (c([a, b])) (maybe with
singularities) where the ruling through the point g, (c(s)) is the (n+¢— 1)-dimen-
sional affine subspace (g D5 (4°(c(s))@ ¢, T(c(s)), which by the proofs of Theo-
rem 4 and Corollary 5, contains the leaf of A° through g, (c(s)).

Let X(s)=c'(s) and S =Span {5}. Then

R¥(c(s)=Span {(Fy $,9)..}.

(Ve ¢,0)a= —<44,: X, X)(8) X + (V¢ ¢,6)$,T
='1(*<A6XaX>(g/1)*X+¢,1(Vxl5)T)-

But

Therefore, for each i€(0, 1], the one dimensional subbundle R* is independent
of 4 up to ¢;. So the same holds for his orthogonal complement Z* in t*
Let Y;(s), ..., Yi(s) and y(s), ..., Y+,—4—1(s) be orthonormal bases for T Land
Z(c(s))=Z"(c(s)), respectively. We also consider the map ¥*: T —1* defined by

Yru+0)=(g)u+9¢,0,

for ueTL, 6 T. Now we parametrize F;, 4€(0, 1] by the map X,: [a, b] x R
xR"**7¥~1 , RN defined by

X).(sa tla seey tk) Hys --~’l‘ln+g—k—l)
n+k+t—1

k
=8.(c(s) + (8 {‘: LY+t Y wvis).

i=1

Claim. All maps X, induce the same metric.

It is easy to see that to prove the claim it is sufficient to show that
is independent of A up to ¢,. Let Y=Yt; Y, 7= u;7;- Then

X A
S A=@K+ Tk Y+ baah (X, V)+ By gy,

But o*(X, Y)=a4(X, Y) since YeTL. Also Ve y*ye TM® ¢, T because for any
(eSON;
ey P & =Yty By &) =0,

Let y=u+0 with ue TL* and 6T, Then

ety =82 () + 502 (X, ) — (8), AL o X + * F¢30
Now ¥V, y*ye TM@®T,, implies that

Gty =(g:)y Vau+d* ar(X, u)—(g,), Ao X + A (V£ 0),,
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which proves the claim.

It follows from the claim that the induced metric is flat because for the
limit A=0 what we get with X is just a local parametrization of the (n+1)-
dimensional affine subspace which contains substantially the immersion g. To
conclude the proof of the theorem we define h=X, and observe that any flat
ruled Euclidean submanifold verifies dimN;<1. Since dimN,=1 along
f(c([a, b)), the result follows.

Proof of Theorem 1. Let Uc M be the open subset of points where N, is not
parallel. Define U, =M — U. Now let V < U be the open subset where v<n—2
and set U,=U — V. Since dim S=1 on V by Proposition 6, it follows from Theo-
rem 7 that there exists an open and dense subset Uy< ¥V whose components
we may assume to be simply connected, where the claim of the theorem holds.
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