

Werk

Titel: Distinguished Köthe Spaces.

Autor: Vogt, Dietmar

Jahr: 1989

PURL: https://resolver.sub.uni-goettingen.de/purl?266833020_0202|log12

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

© Springer-Verlag 1989

Distinguished Köthe Spaces

Dietmar Vogt

Bergische Universität, Gesamthochschule Wuppertal, Fachbereich Mathematik, Gaußstrasse 20, D-5600 Wuppertal 1, Federal Republic of Germany

In [1] (cf. [2]) Bierstedt and Bonet gave a characterization of distinguished Köthe sequence spaces by means of a condition (D) for the defining matrix. This was done in the framework of a general theory involving S. Heinrich's density condition [4]. In the present note we give a direct and completely elementary characterization and derive a scheme for constructing counterexamples, which is used in [6]. It is, in fact, a generalization of the well known counterexample of Köthe and Grothendieck (see [5], § 31, 7).

We use standard terminology and notation from [5]. $A = (a_{j,k})_{j,k \in \mathbb{N}}$ always denotes an infinite matrix with

$$0 \le a_{j,k} \le a_{j,k+1}$$
, $\sup_{k} a_{j,k} > 0$ for j and k .

We put

$$\lambda(A) = \{ \xi = (\xi_1, \xi_2, \ldots) : \|\xi\|_k = \sum_j |\xi_j| a_{j,k} < +\infty \text{ for all } k \}.$$

Equipped with the seminorms $\| \|_k$, k=1, 2, ..., this is a Fréchet space. We use the following result of Bierstedt, Meise and Summers [3].

1. Lemma. $\lambda(A)$ has a fundamental system of bounded subsets of the form

$$B = \{x \in \lambda(A): \sum_{j} |x_{j}| \lambda_{j} \leq 1\}$$

where $\lambda_j = \sup_k \frac{a_{j,k}}{C_k}$ for some sequence of positive numbers C_k . (B is said to be of standard form).

Let E be a Fréchet space, $\| \|_2 \le \| \|_2 \le \dots$ a fundamental system of seminorms, $U_k = \{x: \|x\|_k \le 1\}$, E'_k the Banach space generated by the polar set U_k^0 of U_k . Then E is distinguished (cf. [5], § 29, 4(3)), if the strong dual E'_b is bornological, i.e. the inductive limit of the E'_k . Hence we have

2. Lemma. E is distinguished if and only if for every sequence $\lambda_k > 0$ there is a bounded set $B \subset E$ such that $B^0 \subset \bigcap_{k=1}^{\infty} \lambda_k U_k^0$.

Here Γ denotes the absolutely convex hull.

3. Theorem. $\lambda(A)$ is distinguished if and only if for every sequence $D_k > 0$ there is a sequence $C_k > 0$ such that for every C > 0 and $n \in \mathbb{N}$ there exists $m \in \mathbb{N}$ with

$$\min \left\{ C a_{j,n}, \sup_{k} \frac{a_{j,k}}{C_k} \right\} \leq \sup_{k=1,\dots,m} \frac{a_{j,k}}{D_k}$$

for all j.

Proof. Let $\lambda(A)$ be distinguished and $D_k > 0$, $k \in \mathbb{N}$ be given. For $\lambda_k = \frac{1}{D_k}$ we choose B according to Lemma 2 which may be assumed of standard form. This yields a sequence $C_k > 0$. For any C > 0, $n \in \mathbb{N}$ we denote by ξ_j the left hand side of the inequality to be proved. Since obviously $\xi = (\xi_j)_j \in B^0$ there exist $\xi^{(k)}$, $k = 1, \ldots, m$, $\xi^{(k)} \in \frac{1}{D_k} U_k^0$ and numbers ε_k , $k = 1, \ldots, m$, such that

$$\sum_{k=1}^{m} |\varepsilon_k| \le 1 \quad \text{and} \quad \xi = \sum_{k} \varepsilon_k \, \xi^{(k)}.$$

Therefore

$$\xi_j \leq \sum_{k=1}^m |\varepsilon_k| \frac{a_{j,k}}{D_k} \leq \sup_{k=1,\dots,m} \frac{a_{j,k}}{D_k}$$

which proves the inequality.

To prove the converse, we assume $\lambda_k > 0$, $k \in \mathbb{N}$, to be given and put $D_k = \frac{2^k}{\lambda_k}$. The condition gives a sequence C_k which defines a bounded set B in standard form. Let $\xi \in B^0$. Then there is C and n such that $|\xi_j| \leq \text{left}$ hand side of the inequality for all j. Hence for some $m \in \mathbb{N}$ we have

$$|\xi_j| \le \sup_{k=1,\ldots,m} \frac{a_{j,k}}{D_k}$$
 for all j .

For every j we determine k = k(j) such that

$$\frac{a_{j,k(j)}}{D_{k(j)}} = \sup_{k=1,\ldots,m} \frac{a_{j,k}}{D_k}$$

and put $\xi_j^{(k)} = \xi_j$ if k = k(j), $\xi_j^{(k)} = 0$ otherwise. Then $2^k \xi^{(k)} \in \lambda_k U_k^0$ and

$$\xi = \sum_{k=1}^{m} \xi^{(k)} = \sum_{k=1}^{m} 2^{-k} (2^{k} \xi^{(k)}) \in \prod_{k=1}^{\infty} \lambda_{k} U_{k}^{0}.$$

- **4.** Corollary. Let $A = (a_{i,j:k})$ be a doubly indexed Köthe matrix such that
 - (1) $a_{i,i:k} = a_{i,i:1}$ for $k \leq i$,

(2)
$$\lim_{j} \frac{a_{m,j;m}}{a_{m,j;m+1}} = 0.$$

Then the doubly indexed Köthe space $\lambda(A)$ is not distinguished.

Proof. Assuming $\lambda(A)$ distinguished we apply Theorem 3 to $D_k=1$ for all k and obtain $C_k>0$, $k=1, 2, \ldots$ We put C=2, n=1 and obtain m such that

$$\min\left\{2a_{i,j;1},\sup_{k}\frac{a_{i,j;k}}{C_{k}}\right\} \leq a_{i,j;m}$$

for all i, j. We choose i = m and get by use of (1)

$$\frac{a_{m,j;m+1}}{C_{m+1}} \leq \sup_{k} \frac{a_{m,j;k}}{C_k} \leq a_{m,j;m}$$

for all j, which contradicts (2).

Example:

$$a_{i,j;k} = \begin{cases} j^i & \text{for } k \leq i \\ j^k & \text{for } k > i. \end{cases}$$

In this case $\lambda(A)$ is not distinguished, whereas

$$a_{i,j;k}^2 \leq a_{i,j;k-1} a_{i,j;k+1}$$

i.e. A is of type (d_1) , or $\lambda(A)$ has property (DN). So $\lambda(A)$ is center of a normal scale, contained in some $\Lambda^{\infty}(M, a)$ (see [7]) and, since its bidual has also (DN), $\lambda(A)''$ admits a continuous norm (cf. [6]).

Clearly the Köthe-Grothendieck example (see [5], § 31,7) is also contained in Corollary 4.

Note added in proof. Conditions in the same spirit as our condition in 3. Theorem are used in: Bastin, F.: On bornological spaces $C\bar{V}(X)$. Arch. Math. (to appear)

References

1. Bierstedt, K.D., Bonet, J.: Stefan Heinrich's density condition for Fréchet spaces and the characterization of the distinguished Köthe echelon spaces. Math. Nachr. 135, 149-180 (1988)

- 2. Bierstedt, K.D., Bonet, J.: La condition de densité et les espaces échelonnés distingués. C.R. Acad. Sci, Paris, Ser. I 303, 459-462 (1986)
- Bierstedt, K.D., Meise, R.G., Summers, W.H.: Köthe sets and Köthe sequence spaces, pp. 27-91 in: Functional analysis, holomorphy and approximation theory. Math. Studies 71. Amsterdam: North-Holland 1982
- 4. Heinrich, S.: Ultrapowers of locally convex spaces and applications I. Math. Nachr. 118, 285-315 (1984)
- 5. Köthe, G.: Topologische lineare Räume I. Berlin Göttingen Heidelberg: Springer 1960
- Terzioglu, T., Vogt, D.: A Köthe space which has a continuous norm but whose bidual does not. Arch. Math. (to appear)
- 7. Vogt, D.: On two classes of (F)-spaces. Arch. Math. 45, 255-266 (1985)

Received July 11, 1988