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1. Introduction and Main Result

The penetrating work of W.G. Bade [1-3] into the theory of Boolean algebras
of projections in Banach spaces is by now well known; a comprehensive treat-
ment of these results can be found in [10], for example. In attempting to extend
Bade’s results (and the reflexivity result of T.A. Gillespie [11]) to the setting
of locally convex spaces many phenomena arise which cannot be overcome
in a routine manner by simply replacing norms with seminorms and then using
Banach space type arguments. Some of the earliest results for non-normable
spaces can be found in [13-15, 21, 22, 24, 25]. In recent years there has been
a revival of interest in this topic and most of Bade’s program has been successful-
ly extended to the setting of Boolean algebras of projections in locally convex
spaces; see [4-9, 16, 17, 23], for example.

However, one of Bade’s fundamental results, stating that the closed algebra
generated by a complete Boolean algebra in the uniform operator topology
is the same as the closed algebra that it generates in the weak operator topology,
has remained somewhat resistant in attempts to extend it to locally convex
spaces. Recently however, specific classes of Boolean algebras in non-normable
spaces were exhibited for which the analogue of Bade’s result is valid [18, 19].
Namely, for such Boolean algebras, the weakly closed algebra that they generate
coincides with the closed algebra generated with respect to the topology of
uniform convergence on bounded sets. However, such Boolean algebras are
somewhat special and the question remains of whether Bade’s result is valid
for all “reasonable” Boolean algebras of projections in a large class of locally
convex spaces? In this paper it is shown that this question has an affirmative
answer if we interpret “reasonable” to mean that the Boolean algebra is complete
and equicontinuous. The only restrictions on the locally convex space X in
which the projections act is that it be quasicomplete and that the space L(X)
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of all continuous linear operators from X into itself is sequentially complete
for the topology of pointwise convergence in X. These restrictions are very
mild in practice and include most spaces of interest.

It is time to be more precise. Let X be a locally convex space (always assumed
to be Hausdorff) with continuous dual space X'. Then L (X) and L,(X) denote
L(X) equipped with the topology p, of pointwise convergence in X and the
topology p, of uniform convergence on bounded sets in X, respectively. If X
is a Banach space, then p, is just the uniform operator topology. It will always
be assumed that X is quasicomplete and Ly(X) is sequentially complete. In
this case L,(X) is also sequentially complete [18; Lemma 2.3].

The concept of a Boolean algebra of projections is not a priori connected
with normability of the topology of the vector space on which the algebra
acts; the definition usually given in Banach spaces can be extended to locally
convex spaces in a straight-forward way. If &/ = L(X) is a Boolean algebra,
then (&), and (&), denote the closed algebra generated by .=/ in L,(X) and
L,(X), respectively. Since (/) is the closure in Ly(X) of the linear hull of
& (which is a convex subset of L(X)) it follows that (&), is also the closed
algebra generated by o/ with respect to the weak operator topology in L(X).
A Boolean algebra & = L(X) is called equicontinuous if it is an equicontinuous
subset of L(X). The notions of g-completeness and completeness of a Boolean
algebra &/ used by Bade [2] are topological and algebraic, and consequently
extend themselves immediately to the locally convex setting. Namely, o is com-
plete (g-complete) if it is complete (c-complete) as an abstract Boolean algebra
and if, for every set (sequence) {A4,} contained in <,

(Ae A (X)=N, A,(X) and (V, 4,)(X)=sp(U, 4.(X)),

the closed subspace of X generated by U, 4,(X). We can now formulate the
main result.

Theorem 1. Let X be a quasicomplete locally convex space such that Ly(X) is
sequentially complete. Let s/ < L(X) be a complete, equicontinuous Boolean alge-
bra. Then (), and {o ), are equal as linear subspaces of L(X) and, in particular,
(A, coincides with the closed algebra generated by o/ with respect to the weak
operator topology in L(X).

The standard argument used in Banach spaces [10; XVII Lemma 2.1] to
show that (&), is a full algebra (i.e. Te{=), invertible in L(X) implies that
T~ 'e{a),) does not apply in non-normable spaces. The reason is that the
set of invertible elements in L(X) may not be an open set with respect to p,.
For example, if X is the Fréchet space consisting of all sequences x=(x, x,, ...)
equipped with the topology of co-ordinatewise convergence and T,e L(X), n
=1,2,..., is the operator given by projecting onto the first n co-ordinates,
then none of the operators {T,} is invertible, yet {T,} converges in L,(X) to
the identity operator I (in X). Accordingly, the question of whether (), is
a full algebra cannot be resolved as simply as in the Banach space setting.
Nevertheless, as a consequence of Theorem 1 we have the following fact.
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Corollary 1. Let X be a quasicomplete locally convex space such that Ly(X) is
sequentially complete. If o = L(X) is a complete, equicontinuous Boolean algebra,
then { ), is a full subalgebra of L(X).

The following result is an analogue of the classical result of W. Bade [2;
Theorem 4.3] describing the uniformly closed algebra generated by a complete
Boolean algebra in terms of the invariance of certain closed subspaces of the
underlying Banach space.

Corollary 2. Let X be a quasicomplete locally convex space such that LX) is
sequentially complete. If o = L(X) is a complete, equicontinuous Boolean algebra,
then (s>, consists of precisely those continuous linear operators which leave
invariant each closed, sf-invariant subspace of X.

A Boolean algebra o/ = L(X) is said to be cyclic if there exists an element
xeX such that the linear span of {Ax; Ae.«/} is dense in X. For such Boolean
algebras Corollary 2 can be considerably strengthened; see [2; Theorem 4.2]
for the classical result in the Banach space setting.

Corollary 3. Let X be a quasicomplete locally convex space such that Ly(X) is
sequentially complete and let o/ =L(X) be a complete, equicontinuous Boolean
algebra which is cyclic. Then a continuous linear operator in X belongs to {s ),
if and only if it commutes with every element of <.

2. Preliminaries

The proof of Theorem 1 will be based on the theory of integration with respect
to spectral measures and so some further notation and definitions are needed.

An L (X)-valued operator measure is a g-additive map P: 2 — L (X) whose
domain X is a c-algebra of subsets of some set . We remark that P is o-additive
if and only if the complex-valued set function

(Px,x>: E-(P(E)x,x"), EeZ,

is g-additive for each xeX and x'eX’, [5; p. 140]. The measure P is said to
be equicontinuous if its range Z(P)= {P(E); E€ZX} is an equicontinuous subset
of L(X). If P(2)=1I and P(En F)=P(E) P(F), forevery E, FeX (i.e. P is multipla-
cative), then P is called a spectral measure.

Let P: £—L/(X) be a spectral measure. A complex-valued X-measurable
function f is said to be P-integrable if it is integrable with respect to each
complex measure {Px, x'», xeX and x’e X", and if there exists an element P(f)
= [ fdP in L(X) such that

Q

<P(f)x’ x)= jfd(PX, %0y
2

for each xe X and x’eX'. The indefinite integral of f with respect to P is then
given by

§ fdP=P(f) P(E)=P(E) P(f),

E
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for every EcX. This agrees with the usual definition of integration with respect
to arbitrary vector measures [12]; see [5; Proposition 1.2]. In this case a P-
integrable function f is P-null or equal to zero P-a.e. (cf. [12; Ch. IL, Section 2]
for the general definition) if and only if P(f)=0. The space of all P-integrable
functions is denoted by L(P). We note that if f and g are P-integrable functions,
then their pointwise product f'g is also P-integrable and

| fedP=P(f) P(g) P(E)=P(g) P(f) P(E), EeZ; 1)
E

see [5; Lemma 1.3]. It follows from the Orlicz-Pettis lemma that the indefinite
integral of fe L(P) is an L (X)-valued operator measure. Bounded Z-measurable
functions are always P-integrable [12; IT Lemma 3.1].

The topology of Ly(X) is determined by the seminorms

qr: T-max{q(Tx),xeF}, TeL(X),

where F is any finite subset of X and g any continuous seminorm in X. Each
such seminorm g induces a seminorm g(P) in L(P) by the formula

4r(P)(f)=sup{gr(| fdP); EeX}, feL(P). @

The locally convex topology t,(P) so defined in L(P) may not be Hausdorff.
The quotient space of L(P) with respect to the subspace of all P-null functions
is denoted by L (P). The resulting Hausdorff topology on L' (P) is again denoted
by 7,(P). It is clear from (2) that t(P) is the topology of uniform convergence
on X of indefinite integrals. For a more comprehensive treatment of the space
(L (P), t4(P)) we refer to [5; Section 1].

A spectral measure P: X — Ly(X) is called a closed measure if L!(P) is com-
plete with respect to 7,(P). Since Ly(X) is assumed to be sequentially complete
this agrees with the usual definition for vector measures [5; p. 139]. We remark
that an equicontinuous spectral measure P: X —Ly(X) is a closed measure if
and only if its range #(P) is a closed subset of L,(X), [16; Proposition 3].
In this case Z(P) is a complete Boolean algebra in L(X), [S; Section 2]. Further-
more, L!(P) is a complete, unital, commutative locally convex algebra with
respect to pointwise multiplication (of equivalence classes), [5; Proposition 1.4],
and the integration mapping

f=P(f)=[fdP, feL'(P), )
Q

is a bicontinuous isomorphism of the (complete) locally convex algebra L'(P)
onto the operator algebra (#(P)),, [S; Proposition 1.5]. In particular, {Z(P));
is a complete subspace of L(X).

Let P: X —L,(X) be a spectral measure. A X-measurable function f is said
to be P-essentially bounded if

| flp=inf{sup{| f(W); weE}; E€Z, P(E)=1I}
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is finite. The space of (equivalence classes of) P-essentially bounded functions
is denoted by L*(P); it is a Banach algebra with respect to the norm [*|p.
If feL*(P), then it follows from the o-additivity of P that there is a set EeX
with P(E)=1 such that

|fle= 1l x£llo =sup{|f W)l; we E}.

This observation together with [25; Proposition 2.1] and [12; IT Lemma 3.1]
imply the following result.

Lemma 1. Let P: X — L,(X) be an equicontinuous spectral measure. Then

{[ fdP, feL*(P),| flp=1} 4
2

is an equicontinuous subset of L(X).
As an immediate consequence we have the following lemma.

Lemma 2. Let X be a quasicomplete locally convex space such that Ly(X) is
sequentially complete. Let P: X— Ly(X) be an equicontinuous spectral measure.
If f is a P-integrable function, then

{ [ gdP; g is Z-measurable and |g| | f|, P-a. e.} 5)
Q

is an equicontinuous subset of L(X).

Proof. If g is a Z-measurable function satisfying |g|<|f|, P-a. e., then g is also
P-integrable [12; II Theorem 3.1]. Furthermore, g= f+(g/f) where f is P-inte-
grable and |g/f |p<1. It follows from (1) that

§ gdP=(] fdP)-(] (g/f)dP).
o 2 2

Accordingly, the set (5) is contained in
{P(f) P(h); he L*(P), |h|p=1}

and so (5) is equicontinuous (by Lemma 1). []

The topology of L,(X) is generated by seminorms of the form

qp: T—sup{q(Tx);xeB}, TeL(X) 6)
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where B is a bounded subset of X and g is a continuous seminorm in X.
So, if fe L*(P), then

gp([ fdP)=sup{q((| fdP)x); xe B}
¢ (7]
=|flpsup{q(( [ (f/|f|p)dP)x;xeB}
Q

<|flpsup{q(({ hdP)x); xeB, he L*(P), |h|p<1}.
[?]

Since B is a bounded set and (4) is an equicontinuous subset of L(X) it follows
that
(g, B, P)=sup{q(( | hdP) x;xeB,he L (P),|h|p <1}
2

is finite. Accordingly, for every continuous seminorm gz of the form (6) there
is a constant a(g, B, P) such that

qs([ fdP)<a(q, B, P)|flp. feL*(P).
Q2

So, we have established the following result.

Lemma 3. Let P: ¥ — LX) be an equicontinuous spectral measure. Then the
restriction of the integration map (3) to L (P) is continuous mapping from (L* (P),
|*|p) into L,(X).

3. Proof of Theorem 1

The containment (¢ >, =<7 ), is clear since p, is a stronger topology than
Ps-

So, it suffices to establish the reverse inclusion. Just as in the Banach space
situation, a o-complete or complete, equicontinuous Boolean algebra may be
realized as the range of an L(X)-valued spectral measure (for example, on the
Baire or Borel sets of its Stone space [25; Proposition 1.3]). So, let P: ¥ — L (X)
be any spectral measure such that £(P)=./. Since &/ is a closed set in L (X),
[5; Proposition 4.2], it follows from earlier remarks that P is a closed, equicontin-
uous measure and hence the integration map (3) maps L'(P) onto {.&/),
=<{AR(P)),. Accordingly, if Te{s/),, then there exists a P-integrable function
f such that T= [ fdP.

Q

Define disjoint sets 6,(f)={weQ; n*<|f(w)|<(n+1)?}, for each n=0, 1, ...
If o,= Y Kk*xs.()> then |@,(w)|Z|f(w)|, for each weQ and every n=0,1, ...
k=0

Since | f| is P-integrable [12; II Lemma 2.1], Lemma 2 implies that the sequence

Qn= I (pndP= Z kzP(ak(f))’ n=0, 1: G330 (7)
n k=0
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is equicontinuous. Accordingly, the sequence of consecutive differences

Qn_Qn—l=n2P(5n(f))a n=192a “ees (8)

is also equicontinuous in L(X).
Fix a seminorm g generating the topology of L,(X); see (6). The equicontin-
uity of the sequence of operators (8) guarantees that

o

B(f)= | ["*P6.(/)](B)
=0

n

is a bounded set in X. Accordingly,

as(PG, () =n"2qs(n* PG, (/N =n"*B(B. 1, 9). ©)

for every n=1, 2, ..., where

B(B, £, q)=sup{q(x); xe B(f)} < 0.

We have used here the fact that

[n* P(3,()1(B)=B(/),

for every n=0, 1, ... Defining the (disjoint) unions
E= () 6.)=wemSIf ), n=01, ..,
k=n
it follows from (9) and the ¢-additivity of P in Ly(X) that
atPE0=a( £ PO T a0

<Y qe(PG(HNZBB, fa) X k2,
k=n k=n
for every xeB and every n=1, 2, ... That is,
as(P(E)SBB.fia) L k7% n=L12, ..,
k=n

which shows that gz(P(E,)—0 as n—oo. Since gp is an arbitrary seminorm
determining the topology p, it follows that P(E,)—0 in L,(X). Hence, if H,
=Q\E,, for each n=1, 2, ..., then P(H,)—I in L,(X) and so TP(H,)-T in
L,(X). But, (1) implies

TP(H,)=({ fdP) P(H,)= | (f tn,) dP,
Q 2
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for every n=1, 2, ..., which shows that there exist bounded, X-measurable func-
tions fxy,,n=1,2, ..., (necessarily P-integrable [12; II Lemma 3.1]) such that
[ (fxm,) dP > Tin Ly(X).

2

So, it remains to show that I gdP belongs to (<), whenever g is a bounded,
2

Z-measurable function. But, in this case there exist Z-simple functions, say {g,},
such that g,—g in L*(P). Since P(g,)e{),, for every n=1,2, ..., it is clear
from Lemma 3 that P(g)= | gdP belongs to (.o ).

Q2

This completes the proof of Theorem 1. [

Proof of Corollary 1. This follows immediately from Theorem 1, the fact that
the integration map (3) is an isomorphism of L'(P) onto {s# ), and [17; Lem-
ma 3]. O

Proof of Corollary 2. This is a direct consequence of Theorem 1 and the Bade
reflexivity theorem for locally convex spaces [5; Theorem 3.1]. [0

Proof of Corollary 3. This follows from Theorem 1 and [18; Theorem 5.4] which
states that Corollary 3 is valid with (/) replacing {.«/ >, in its formulation. []

4, Concluding Remarks

(1) If X is a Banach space, then in the notation of the proof of Theorem 1
it was shown that P(E,)—0 with respect to the uniform operator topology,
where E,={weQ; n*<|f(w)|}, for each n=0, 1, ... Accordingly, there exists N
such that P(E,)=0 for all n>N and hence f is bounded P-a. e. This gives
a direct proof of the well known fact [10; XVIII Theorem 2.11(c)] that the
only P-integrable functions in a Banach space are the P-essentially bounded
ones.

(2) For Fréchet spaces the equicontinuity hypothesis in the statement of
Theorem 1 can be omitted; it follows from the completeness of the Boolean
algebra, [25; Proposition 1.2].

(3) A somewhat simpler proof of Theorem 1 (based on the methods of [18])
is available for spaces X with the property that bounded sets are precompact;
see [20]. Such spaces include all Montel spaces and Schwartz spaces (and hence,
all nuclear spaces.)

(4) If the space X is barrelled, then the equicontinuity of the operators {Q,}
in (7) follows directly (rather than appealing to Lemma 2) from the observation

that ¢= Y n?y, (f) is P-integrable (as |@|<|f| pointwise on ). Indeed, the
n=0

p,-countable additivity of the indefinite integral of ¢ with respect to P implies

that the series

[pdP=Y n?P@,(f)
(7] n=0
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converges (unconditionally) in Ly(X) and hence, in particular, its sequence of
partial sums Q,,n=0, 1, ... (cf. (7)) is convergent in Ly(X). The barrelledness
of X then ensures the equicontinuity of {Q,}. For barrelled spaces X we note
that quasicompleteness of X implies the quasicompleteness of Ly(X).

(5) It was remarked earlier that under the hypotheses of Theorem 1 the
algebra (&), (equal to {Z(P)),) is actually a complete subspace of L(X). Since
L,(X) has a basis of neighbourhoods of zero consisting of p,-closed sets it follows
that (&7, is a complete subspace of L,(X); see Proposition 5.2 of [18]. Actually,
if p is the topology in L(X) of uniform convergence on any saturated family
of bounded, closed, convex and balanced subsets of X, then p,<p=p, and
p has a neighbourhood basis at zero consisting of p,-closed sets. It follows
that (=), is a complete subspace of L,(X). Furthermore, Theorem 1 implies
that (.o )y=<{ A ), =< )} as linear subspaces of L(X) and it follows from Corol-
lary 1 that (/) is a full subalgebra of L(X).

(6) Let o/ be a Boolean algebra as in Theorem 1 and let P: T —>Ly(X) be
any closed, equicontinuous spectral measure such that #(P)=./. Each semi-
norm ¢, (c.f. (6)) determining the topology of L,(X) induces a seminorm gg(P)
on the P-integrable functions by

q5(P) (f)=sup{qs(| fdP);E€Z}, feL'(P).

This induces a locally convex Hausdorff topology in L} (P) which we denote
by 7,(P). It is clear that 7,(P) is stronger than 1,(P). An examination of the
proof of Lemma 4.2 in [18] shows that the calculations made there guarantee
the existence of another bounded set B in X such that

qs([ fdP)<qs(P)(f)<as([ fdP),
Q 2

for every feL'(P); this is valid without the additional assumption on P made
in [18]. Accordingly, the integration map (3) is a bicontinuous isomorphism
of (L}(P), t,(P)) onto its range in L,(X), namely the linear subspace ().
But, by Theorem 1 this is precisely {/};. So, we have established the following
representation theorem.

Theorem 2. Let X be a quasicomplete locally convex space such that Ly(X) is
sequentially complete. Let o/ < L(X) be a complete, equicontinuous Boolean alge-
bra of projections. Then {2 ), is isomorphic to the complete, commutative, unital,
locally convex algebra (L*(P), 1, (P)) of (equivalence classes of ) P-integrable func-
tions for any spectral measure P such that Z(P)= .

(7) Recall that a subset U of a topological space (Y, 1) is sequentially dense
if, for every yeY, there is a sequence {u,} €U which t-converges to }. If X
is non-normable, then in general {s¢), is not metrizable with respect to p,
and so its topology is not given by a countable family of seminorms. Neverthe-

less, an examination of the proof of Theorem 1 shows that { [ hdP; heL”(P)}
Q

is sequentially dense in {2,. Combining this observation with Lemma 3 it
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follows that, for any Te {(s#),, there exists a countable subset G(T) of the linear
span sp(#), of ./, with the property that for any p,-neighbourhood of zero,
say V, there is SeG(T) such that (S—T)eV. It cannot be concluded in general
that sp(«) is sequentially dense in {./),. This is in contrast to the sequential
density of sp(#/) in {&),; see [5; Proposition 1.5] and [12; II Lemma 3.1].
However, there are examples where sp(</) is sequentially dense in {o),. Of
course, if X is a Banach space, then L,(X) is also a Banach space and so
() is just the sequential closure of sp(/). For examples in non-normable
spaces X, let &/ be boundedly o-complete [18; Section 5]. Then sp(.) is known
to be sequentially dense in (.7 ),; see Theorem 5.1 (and its proof) in [18]. By
Theorem 2 these comments can be translated into a statement about the sequen-
tial density of L*(P) in (L'(P), 1,(P)) and a similar statement (as for sp(=))
concerning the density of the Z-simple functions with respect to t,(P) is valid.
(8) It is known [6; Section 2] that (L' (P), t,(P)) has the structure of a Dede-
kind complete, complex Riesz space and 7,(P) has the Lebesgue property (i.e.
if {f,} =L'(P) is downwards filtering to O in the order sense, then f,—0 with
respect to t,(P)). It is essential here that P is s-additive with respect to p;.
The same order applies in L' (P) considered with respect to the topology 7, (P).
If o/ is boundedly o-complete, then P is o-additive with respect to t,(P)
and P is a closed measure with respect to 7 (P) if and only if it is a closed
measure with respect to 7,(P), [18; Corollary 6.3.1]. Accordingly, in this case
(L' (P), 1,(P)) also has the structure of a Dedekind complete, complex Riesz
space with Lebesgue topology. However, for general ./ the order structure of
(L' (P), t,(P)) cannot be expected to have such strong topological properties.
Indeed, if X is a Banach space, then L' (P) consists of the P-essentially bounded
functions and 7,(P) is equivalent to the norm topology |*|p. In this case Theo-
rem 2 is the classical representation of the uniformly closed algebra generated
by &/ as an L*-space which, except in trivial cases, does not have the Lebesgue

property.
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