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On Strongly WCG Banach Spaces

Georg Schliichtermann! and Robert F. Wheeler?

1 Math. Institut der Universitdt Miinchen, Theresienstr. 39, D-8000 Miinchen 2,
Federal Republic of Germany
2 Dept. of Mathematical Sciences, Northern Illinois University, DeKalb, IL 60115, USA

Let X be a Banach space with dual space X*, and let B and B* denote the
closed unit balls of X and X*, respectively. In this paper we investigate a
strengthened version of the familiar weakly compactly generated (WCG) proper-
ty for X.

The strong WCG (SWCG) property for X is the requirement that there exist
a weakly compact subset K of X such that for every weakly compact subset
L of X and £>0, there is a positive integer n with Lcn K +¢B. By comparison,
the usual WCG property is equivalent to the corresponding assertion for norm
compact L. The two notions are distinct: any SWCG space is both WCG and
weakly sequentially complete, so the space ¢, is not SWCG.

The space X is SWCG if and only if the topological space (B*, t) is (complete-
ly) metrizable, where t=1(X*, X) denotes the dual Mackey topology on X*.
It is then easy to see (directly or dually) that the SWCG property is enjoyed
by reflexive spaces, separable Schur spaces, the space of operators of trace class
on a separable Hilbert space, and L, (p), for u a o-finite measure. The SWCG
property is preserved by countable /,-sums, and by quotient maps which are
“weakly-compact covering”; thus, in particular, the space L;/H; is SWCG.
It is not, however, preserved by arbitrary quotients, nor by closed subspaces.

Using fundamental examples due to Batt and Hiermeyer [BH2] and Pisier
[Pi], we show that a separable, weakly sequentially complete space need not
be SWCG, and that the injective or projective tensor product of two SWCG
spaces need not be SWCG. We also present partial results on the important
open question of whether X SWCG implies that L, (u, X), the space of Bochner
integrable functions from a finite measure space to X, is also SWCG. The work
of [BH2] and its subsequent extensions [BS, Schl] have focused attention on
the topology o'=0o(L,(u, X), L, (p, X*)); it is strictly coarser than the usual
weak topology of L;(u, X) unless X* has the Radon-Nikodym property. It
is shown here that L, (u, X) is strongly o'-compactly generated if and only if
one of two alternatives holds: either X is reflexive, or X is SWCG and the
measure space is purely atomic.

The paper concludes with a list of open questions.
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1. Notation and Background

We use [Scha] as a basic reference for the theory of locally convex topological
vector spaces. Throughout, X is a Banach space over the real field, with closed
unit ball B (or B(X), if confusion might arise). The dual space X* is the space
of continuous linear functionals on X, and B* (or B(X*)) is its closed unit
ball. The notation (X, weak) refers to X with the weak topology o(X, X*);
(B, weak) is the closed unit ball with the relative weak topology. Similarly,
(X*, w¥) denotes X* with the weak* topology ¢(X*, X). The Mackey topology
7(X*, X) is the finest locally convex topology on X* whose dual space is X.
The Mackey-Arens Theorem [Scha, p. 131] characterizes t as the topology on
X* of uniform convergence on weakly compact, absolutely convex subsets of
X. Since the closed absolutely convex hull of a weakly compact subset of a
Banach space is still weakly compact [Scha, p. 189], we will usually omit the
“absolutely convex” stipulation in our discussion.

We recall some well-known facts about the Mackey topology and weakly
compact sets, with brief indication of proof.

1.1. Proposition. (X*, 7) is a complete locally convex space.

Proof. Applying Grothendieck’s Completeness Theorem [Scha, p. 149], let f
be a linear functional on X whose restriction to each weakly compact set is
weakly continuous. Then f is continuous on norm-null sequences, so fe X*. []

1.2. Proposition. Let (X,),.. be a family of Banach spaces. Let
X={xe[[X,: ) lx.| <00} be the l-sum of the spaces X, Then
(B(X™*), 1(X*, X)) can be identified with the topological product of the spaces
(B(X3), t(X3, X,)).

Proof. Since X* is the [ -sum of the spaces X}, the identification of the sets
B(X*) and [ [ B(X?}) is clear. Also, ©(X*, X) is evidently finer than [[7(X}, X,)
on B(X*). The converse can be established using the following: if H is a weakly
compact subset of X, and ¢>0, then there is a finite subset D of A such that
Y {llx,ll:ae A—D} <¢ for all xeH. The argument is like the usual “gliding
hump” proof of Schur’s Lemma for ;.

1.3. Grothendieck’s Criterion for Weak Compactness [D2, p. 227]. Let H be
a subset of a Banach space X such that for every ¢>0 there exists a weakly
compact subset K of X with Hc K+¢B. Then H is relatively weakly compact
in X.

2. Strongly Weakly Compactly Generated Spaces

The space (X *, 7) is not metrizable, except in the trivial case where X is reflexive.
However, the situation for (B*, 7) is much different. Since B* is absolutely convex,
it is a standard result that the topology t is metrizable if and only if the associated
uniformity on B* is metrizable. In view of 1.1, this means that (B*, 7) is metrizable
if and only if it is completely metrizable.

2.1. Theorem. The following conditions on X are equivalent: (a) (B*, 7) is (com-
pletely) metrizable; (b) there is a sequence (K,) of weakly compact (absolutely
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convex) subsets of X such that for every weakly compact subset L of X and
every £>0, there is a positive integer n such that Lc K, +¢B(X)={xeX:3yek,,
|x—yl e}; (c) there is a weakly compact (absolutely convex) subset K of X
such that for every weakly compact subset L of X and every e¢>0, there is a
positive integer n such that LcnK +¢B(X).

Proof. (a) = (b): Choose a sequence (K,) of weakly compact, absolutely convex
subsets of X such that (KN B*) is a neighborhood base at 0 for (B*, 7).

. 1
Given a weakly compact set L and O<e<1, let c=—, and choose n such
€

that (¢ L)° n B* > K° n B*. Then ((c L)° n B¥)° =(K? n B*)°, so ¢ L<((cL)°° u B)*°
< (K%°u B)°° c K, + B, since the last of these sets is closed and absolutely con-
vex. It follows that Lc K, +¢- B(X).

(b)=(c): Given (K,) as in (b), let p,=sup{lx|:xeK,}, and let K

=<3 2—"1—-x,,: x,,eK,,}. Now K is weakly closed, by a straightforward argu-
=1 'pn

ment, and an application of 1.3 shows it to be weakly compact. Since

K,=2"-p,-K, (c) now follows.

(c) => (a): d(x*, y*)=max {|x*(x)— y*(x)|: xeK} is a metric on X*, and the met-
ric topology 1’ is coarser than t. Let f,—f in (B*, v'). Given weakly compact

L and ¢>0, choose n so that LcnK+(£-)~B. Choose o, such that if a=aq,

then | f,(y)—f(y)|<e/2nV yeK. Then if xeL and yeK with ||x—ny||§§, we
have | f,(x)—f (x)| <e for all « = a,. Thus (f,) is T-convergent to f. []

We refer to any space X satisfying the conditions of 2.1 as strongly weakly
compactly generated (SWCG). The sets (K,) in (b) (resp. K in (c)) are called
strongly generating sets for X.

2.2. Remark. In 2.1 (b) and (c), it suffices to verify the condition for L a weakly
null sequence. In (c), for example suppose that Lis a weakly compact set such
that x,e L\ (n K + ¢ B) for each n. We may assume that the sequence (x,) converges

weakly to x,eL. Then (x,—x,) converges weakly to 0, so x,—xpemK +(—§-)B

for some m and all n. However, xoepK +(§) B for some p, and so x,e(m+p) K
+¢B for all n, a contradiction.

2.3. Examples of SWCG Spaces. (a) reflexive spaces; (b) separable Schur spaces.
Since weakly compact subsets of X are norm compact, the topologies 7, uniform
convergence on norm compact sets, and o(X*, X) coincide on B*. The latter
is compact metrizable for separable X. (c) the space X of operators of trace
class on a separable Hilbert space H. It is well-known that X* can be represented
as the space of all bounded operators on H. Akemann [Ak, Th. I1.7] showed
that 7(X*, X) coincides on B* with the strong* topology, generated by the
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semi-norms |a|l ,=[f(a*a+aa*)]"/?, f a positive operator of trace class. But
if H is separable, then the strong* topology on B* is metrizable [Tak, p. 71].
(d) L'(u), p a finite measure. Grothendieck [Gro, Sect. 1.3] proved that the
topology (L, L;) coincides with the topology of convergence in u-measure
(or the || ||;-topology) on B*. Using 1.2, this extends immediately to all o-finite
measures. []

The reader may wish to locate strongly generating sets for each of the SWCG
spaces mentioned above. In (d), a useful choice is K =closed unit ball of L, (u),
considered as a subset of L, (u). The proof of the next result is also left to
the reader.

2.4. Proposition. The following conditions on X are equivalent: (a) X is WCG;
(b) (B*, ) is submetrizable (i.e., admits a coarser metric topology); (c) there is
a weakly compact (absolutely convex) subset K of X such that for every norm
compact subset L of X and every ¢>0, there is a positive integer n such that
LcnK +¢B.

In the other direction, we could ask that X satisfy a stronger condition:
there is a weakly compact subset K of X and a sequence (x,) in X such that
for every weakly compact Land ¢>0, Lc{x,, ..., x,} + K+¢B for some n. Every
separable Schur space satisfies this condition (let (x,) be a dense sequence in
X, and let K ={0}). But there are no other spaces X : According to the definitions
there is for a given £¢>0 and for each meN an n(m)eN such that

1
ch{xl,...,x,,(,,,)}+K+§B. Select an m>=2 such that —Kc%B. Then
m

1 . ;
Kc—{xy, ..., Xym} +€B, and so K is norm compact. Hence X is a separable
m

Schur space.
The next result shows that the WCG and SWCG properties are not equiva-

lent.
2.5. Theorem. If X is SWCG, then X is WCG and weakly sequentially complete.

Proof. Let (x,) be a weak Cauchy sequence in X, and let K be a strongly
generating (weakly compact) subset of X. We use 1.3 to show that (x,) is relatively
weakly compact in X.

Suppose there is an ¢>0 such that: (1) for all meN, there is an n,elN
with x, ¢mK+e¢B. For neN and i=1, 2, define m;(n)=min{meN: x,emK
+(¢/i) B}. Clearly m,(n)=m,(n) for all n. Using (1), select a subsequence (x,,)
of (x,) such that for all k: (2) m(n,,)>(m,(n))>. Then (x,) is again a
weak-Cauchy sequence, and so there is an m, such that x, ,, —x, belongs

to my K +(¢/2) B for every k. Then (3) x,, €(3)m,(n) K +(§) B for all k, by defini-
tion of m,, so that
) o+ (., — X a1+ 1) K +(3) B ®)

Thus
X, E(My(m)+mo) K+eB  forall k. 4)
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Now (m,(n,)) forms by construction a strictly monotone increasing sequence.
Hence there is a ko such that x,, , ,€2m,(n,) K +¢&B for all k=k,. If k>2, then
also m,(n,)>2, and so m,(ny, ) <(m,(n,)? contradicting (2). Thus (1) must fail,
and now the relative weak compactness of (x,) follows from 1.3. [

A weakly sequentially complete, WCG (even separable) space need not be
SWCG, as the following example of Batt and Hiermeyer [BH2, pp. 417-419]
shows.

2.6. Example. A weakly sequentially complete and separable Banach space need
not be SWCG. Define C=U{0, 1}", the usual binary tree. For &, &'eC, say
E<¢ if £ is an initial portion of ¢. A totally ordered finite subset Q of C
is called a segment.

Let

X0={Z=(Z¢)¢ec; |lZ||=Sup(Z (Z|2§|)2)”2<00}
F QeF teQ

where the supremum is taken over all finite sets F of disjoint segments. Now
the desired space X is the closed linear space of the unit vectors {e:: £€C}
in X, where e;=(0,¢)¢cc- It is shown in [BH 2] that X has a monotone boun-
dedly complete unconditional basis. Consequently, X is a weakly sequentially
complete, separable dual space, and has the Radon-Nikodym property.

There exist uncountably many copies of the [*-unit vector basis in X.
To see this let 6(0)=1, O(1)=0 and define for x=(x,)e{0, 1}¥, & (x)=(x,),
& (x)=(0xy, x3), ..., £4(x)=(0x4, ..., 0X,_1, X,), .... Then (¢,(x)),n 1 @ sSequence
of pairwise incomparable elements in C. The map x+>(e,(x))eCN is injective
and ¢;(x) and ¢;(x) are comparable iff i =j. Thus for x€{0, 1}™ and (a,) a sequence
of scalars

)2)1/2

m

m
Z By Op,x, 2

n=1
2)1/2

=sgp(2 (Z

QeF \eQ
m

i=1

an ee,.(xj
1

n=

m
a, 5en(x),e.(x)
n=1

m 1/2
={ ¥}, a,f) .
=1

Thus for all xe {0, 1}¥, (e,,x)nen is relatively weakly compact in X.

Now suppose X is SWCG, and choose a weakly compact absolutely convex
set K such that for all xe{0, 1}", {e,,; neIN} cm(x) K + 4 B for a suitable posi-
tive integer m(x). Then there is an meN and an uncountable subset D<= {0, 1}¥
such that

U {€eny; neN} cmK + 1 B.

xeD

By induction, select a totally ordered sequence {§,; ke N} c U {e.(x); neN}. It

xeD

is easy to see that (e )N is 1-equivalent to the /;-unit vector basis. For keN
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choose y,e4B so that e, —y,emK. We show that (e;, —y)ien is equivalent
to the [,-vector basis, yielding a contradiction. Indeed for a sequence (a,)yen
of scalars we have

n

Z ak(ezk‘J’k)

k=1

=)

i=1

n

Z ay (ezk — V) (&)

k=1

A Vi (5i)>

)

1

n

Z a yi (&)

k=1

n
Y Gl s,

2 Z lae| — Z Zlak.))k(gi)l

k=1 k=1 i=1

]

n n
2 Y lal— Y lallnlzi Y lal. O
1 k=1 k=1

k

We see from 2.5 that the SWCG property need not be preserved by quotient
maps (co is a quotient of [;). However, if a quotient map g: X — X/Y has the
additional property that every weakly compact subset of X/Y is the image under
g of a weakly compact subset of X, then it is easy to see (directly or dually)
that the SWCG property passes from X to X/Y. For example, the space L;/H,
is such that a quotient image of L, [Pe, Th. 7.1]. This extends the well-known
result that L,/H, is weakly sequentially complete.

2.7. Theorem. Let Y be a reflexive subspace of X. Then X is SWCG if and
only if X]Y is SWCG.

Proof. We first observe that g: X — X/Y is “weakly-compact covering” in the
sense of the discussion above. Let Lc X/Y be weakly compact. For each zeL,
choose xeq ™! (z) with ||x|| < ||z]| +1, and let T denote the set of these x’s.

We prove that T is relatively weakly compact in X. Let (x,) be a sequence
in T. We may assume that (q(x,)) converges weakly to g(x,), for some x,eT.
It now suffices to prove that the weak*-closure of {x,} in X** is a subset
of X. If F is a member of this weak*-closure, then g**(F)=q(x,), so F
—xq€ker(qg**)=Y (since Y is reflexive). Thus Fex,+ Yc X.

It follows easily from this that X SWCG implies X/Y SWCG. Conversely,
let K be a weakly compact absolutely convex subset of X/Y which is strongly
generating, and choose a weakly compact absolutely convex subset Q of X
with q(Q)=K, using the construction above. Then P=0+ B(Y) is still weakly
compact and absolutely convex, with g(P)=K. Let Lc X be weakly compact,

and let ¢>0. Choose a positive integer n such that q(L)cnK+(§) B(X/Y).

Choose m such that m=sup || x| +n sup | x|| +¢. Note that m=n, since B(Y)<P.
xeP

xeL
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Fix xeL, and choose weQ, zee-B(X) with g(x)=nq(w)+q(z). Then
x—nw—zeY, and |x—nw—z||<m. Hence xenQ+mB(Y)+&eB(X)c
mP +¢B(X). This proves that P is strongly generating for X. []

2.8. Remark. It is well-known that the analogue of 2.7 is true for WCG spaces.
It is also true that if X/Y is separable, then X is WCG if Y is WCG [Li,
p. 24]. This is far from true for SWCG spaces (X =c¢y, Y={0}). The SWCG
property is also not preserved by closed subspaces, since there is a non-WCG
subspace of an L, (u) space [R2].

2.9. Proposition. Let X be the l-sum of a sequence of spaces (X,). Then X is
SWCG if and only if each X, is SWCG.

Proof. Since a countable product of topological spaces is metrizable if and only
if each factor is metrizable, this follows immediately from 1.2.

2.10. Proposition. If X contains no isomorphic copy of |y, then X is SWCG if
and only if X is reflexive.

Proof. This is an immediate application of 2.5 and the Rosenthal /; Theorem
[R1]. O

There is a superficial resemblance between the class of SWCG spaces and
the class of spaces having Pelczynski’s property (V*) (see [Sa]). Indeed every
L (u) space has (V*), and every space with (V*) is weakly sequentially complete.
However, the two notions are unrelated. Indeed the Batt-Hiermeyer space is
a Banach lattice not containing c,, so it has property (V*) [Sa, p. 208] without
being SWCG. Conversely, Bourgain and Delbaen [BD] gave an example of
a separable Schur space (hence SWCG) which has been shown to fail (V*)
[Sa, pp. 209-210].

It can be shown that the Banach space X, constructed by Azimi and Hagler
[AH], a separable non-Schur space which contains /, hereditarily, is SWCG.
We omit the details.

2.11. Example. The tensor product of two SWCG spaces need not be SWCG.
Pisier [Pi, Sect. 4] described a separable weakly sequentially complete Banach
space Z such that the completed tensor product of L,/H, and Z, for any tensor
norm between the injective and projective norms, contains an isomorphic copy
of ¢y, and hence is not weakly sequentially complete.

We observed above that, L,/H, is SWCG; now we show the same for Z.
Here is a construction for Z: let E=L, ®1,, with ||(f, x)|=|f1;+ x| ,, and
consider the bounded linear operator P: H, — I, given by P(h)=(h(3"), where
h(i) is the ith Fourier coefficient of he H,. Let N={(h, —P(h)): heH,}, a closed
subspace of E, and let Z=E/N. Denote the quotient map from E onto E/N
by =,.

Define u: L, - Z by u(f)=m,(f,0) and j: I, > Z by j(x)=m, (0, x). According
to [Pi, Th. 2.2], j is an isometry of I, onto j(l;)=Y<Z. Let q: L, »L,/H,
and ©,: Z— Z/Y be quotient maps. Define I: Z/Y— L,/H, by I((m°7,)(f, X))
=gq(f). This is well-defined, for if (f, x), (g, t)e E and have the same image under
n,om,,thenn, (f—g, x—t)=mn, (0, s) for some sel,. Thus f—geH,, so q(f)=q(g).
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/\;

L—2 7

The diagram

q 2

L,/H,

Z/Y

commutes, since any feL, satisfies Tom,ou(f)=1(nyon,)(f, 0)=q(f). Thus I
is surjective, and it is also an isometry: if fe L,, xel,, then

l(ryom)(f; )| =inf{[ms (£ x)+ 7 (0, )| : tel,}
=inf{||ln, (£ s)ll: sely}
=inf{| f+h|,+lls—P(h)|,:sel,, heH,}
=inf{| f+h|,:heH,} (since P has dense range)

=llg(NI.
This implies that Z/Y is SWCG; and since Y is reflexive, Z is SWCG by 2.7.

3. The Space L, (u, X)

Let (S, Z, u) be a finite measure space, and let L,(u, X) denote the Banach
space of (equivalence classes of) Bochner integrable functions from S into X.
Diestel [D 1] and Talagrand [Tal] have shown that if X is WCG (resp., weakly
sequentially complete), then L, (1, X) enjoys the same property. Thus it is natural
to inquire if the SWCG property passes from X to L,(u, X). This does hold
if X is reflexive, since B(L, (4, X)) is weakly compact [DU, p. 101] and strongly
generates L, (u, X). It also holds if X=L,(v), v a finite measure, since then
L, (4, X) is isometrically isomorphic to L, (u x v), and 2.3(d) applies. The general
case remains open. The most obvious way to prove it would be to establish
the converse of 2.5, but this is barred by the Example 2.6.
It is convenient here to introduce a generalization of the SWCG property.

3.1. Definition. Let X be a Banach space, and let Y= X* be a closed norming
subspace (ie., [x|=sup{|f(x)|: feB(Y)} for all xeX). Then X is strongly
a(X, Y)-compactly generated if there is an absolutely convex ¢(X, Y)-compact
subset K of X such that for every o(X, Y)-compact subset L of X and ¢>0,
LcnK+éB(X)for somen. [

The analogue of 1.3 for o(X, Y)-compactness is valid: embed X in Y* in
the canonical way, and proceed as in [D2, p. 227]. Also, if Y has the additional
property that the absolutely convex hull of a o(X, Y)-compact set is relatively
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o(X, Y)-compact, then the proof of 2.1 goes through to characterize (¥, X)-
metrizability of B(Y). Finally, the proof of 2.5 shows that if Y is a norming
subspace of X*, and X is strongly o(X, Y)-compactly generated, then X is
o(X, Y)-sequentially complete.

We now consider the norming subspace of L, (u, X)* given by L (u, X*),
the Banach space of (equivalence classes of) essentially bounded Bochner measur-
able functions from S into X*. Note that L (u, X*) is the entire dual space
of L;(u, X) if and only if X* has the Radon-Nikodym property with respect
to (S, Z, u) [Ba]. Let ' =1(Ly, (4, X*), L, (i, X)) and 6’ =0 (L, (1, X), L, (1, X*)).
The absolutely convex hull of a o’-compact set is relatively ¢'-compact in
L, (u, X) [BH2]. Every o’-compact set is an Eberlein compact [BS].

3.2. Theorem. Let X be a Banach space, and let (S, Z, p) be a finite measure
space. Then the following conditions are equivalent :

(@) L,(u, X) is strongly o'-compactly generated

(b) (B(Ly, (1, X*), 7’) is metrizable

(c) Either X is reflexive, or X is SWCG and (S, Z, y) is purely atomic.

Proof. (a) <> (b): This is proved as in 2.1.

()= (a): If (S, X, ) is purely atomic, then L,(u, X) is a countable /,-sum of
the SWCG space X, hence SWCG, by 2.9. Moreover, L, (4, X)* and L (u, X*)
can both be identified with a countable / -sum of X*, so the weak and ¢’
topologies coincide. As mentioned above, L,(u, X) is SWCG for X reflexive,
and again the weak and ¢’ topologies coincide. [J

Before proceeding with the proof that (a) = (c), we note the following unpub-
lished result of Batt and Hiermeyer [BH1]. The proof is included here with
their kind permission.

3.3. Lemma [BH1]. Let X be a Banach space, and let (S, X, y) be a finite measure
space. Then L, (u, X) is o’-sequentially complete if and only if X is weakly sequen-
tially complete and has the Radon-Nikodym property with respect to (S, X, u).

Proof. Necessity: Since (X, weak) embeds as a closed subspace of (L, (u, X), ¢’),
it is weakly sequentially complete. Suppose X fails the RNP with respect to
(S, Z, p). According to [BH?2, Prop. 2.4], there is a u-continuous vector measure
m: X — X of bounded variation, an increasing sequence (r,) of finite X-partitions
of S, and a TeL(L,(p, X), ¢o) such that T(K) is not relatively weakly compact
in ¢y, where K={h,= Y u(A)"'m(A4)x,:neN}, and Ted,(co, (n,). Then
Aemn,

[BH2, Th. 2.1] shows that K is not relatively ¢’-compact.

By the u-continuity and bounded variation of m, K is bounded and uniformly
integrable. The definition of the sequence (h,) reveals that for each AeUm,,
and x*e X*, (h,, x* ® 1> is a Cauchy sequence of scalars. Let f§ be the g-algebra
generated by Ur,,, and let Ez(h,) denote the conditional expectation of h, with
respect to B. The Egoroff-type argument suggested on p. 411 of [BH2] shows
that

lim [<E,,, (h,)— Ep(h,), g>|=0

m—
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uniformly with respect to n, for each ge L (1, X*). This and the preceding shows
that (h,) is a ¢’-Cauchy sequence, so it is ¢’-convergent, by hypothesis. This
contradicts the fact that K is not relatively o’-compact.
For the converse implication suppose that (f,) is a ¢’-Cauchy sequence. By
[Din, p. 374, Th. 1], (f,) is bounded, uniformly integrable, and { [ f,du; neN}
A

is conditionally weakly compact, hence relatively weakly compact by hypothesis
for all AeX. Because X has the RNP with respect to (S, Z, u), (f,) is relatively
a’-compact according to [Din, p. 375, Th. 2]. Thus (f,) is ¢’-convergent.

Proof of 3.2. (a)=>(c): It is easy to see that X is a complemented subspace

of L, (4, X), under the ¢’ —o(X, X*) continuous projection f —»u—(lﬁ- {fdp, and
S
that the relative weak and o'-topologies coincide on X. Hence X must be SWCG.
Suppose X is not reflexive and p is not purely atomic. Then we can find
S’'eX such that (S, 2nS’, u|Z nS’) is purely non-atomic, and a sub—g-algebra
X2, of 2 n S such that (S, 2y, u| X,) is measure isomorphic to the measure algebra
for Lebesgue measure A on [0, 1]. Using a conditional expectation to define
a ¢’ — ¢’ continuous projection of L, (u, X) onto L, (4, X), we obtain that L, (4, X)
is strongly o’-compactly generated. Hence we may assume that (S, X, u) is the
Lebesgue measure algebra on [0, 1].
Let (r;) denote the sequence of Rademacher functions in L,[0, 1] [DU,
p. 103]. Since X is weakly sequentially complete (by 2.5) but not reflexive, the
Rosenthal I; Theorem guarantees the existence of y>0 and a sequence (e,)

n
Zaiei

i=1

Let w, be the least ordinal having the cardinality of the continuum, and let

{N,: a<w,} be the collection of all infinite subsets of N. Let N,={n, ;}, where

N, ;<n, ;. for all j. Let K,={r;®e,, ,: jeN}U{0}. Then K, is a bounded,

uniformly integrable subset of L, (1, X). We show it is relatively o’-compact.
For each Lebesgue measurable set A, define an operator I,: L, (u, X)—> X

by I.(f)= [ fdp. Then I, is 6'— (X, X*) continuous. Let {4(, j): 0<i<2/—1}

A

n
27 Y |a;| for every sequence of scalars {ay, ..., a,}.

i=1

in B(X) such that

be the partition of [0, 1] associated with r;. A short calculation shows that
Ly 0(rj®e,, )=0 whenever j>j, and 0<i<2o—1. 1)

Thus 1,(K,) is weakly compact in X for each a and each A of the form A(, j,).
Now using 1.3 and the uniform integrability of each K,, the same holds for
every Lebesgue measurable subset 4 of [0, 1]. According to the remarks after
3.1, L (4, X) is o’-sequentially complete, and so X has the RNP, by 3.3 (see
[DU, V.3.8]). Thus each K, is relatively o’-compact, by [BH2, Th. 2.1, Cor. 2.5].

By hypothesis, there is a ¢’-compact subset K, of L;(u, X) such that for
all e>0 and a<w,, there is a positive integer m(a, &) with K,cm(o, €) K,
+e¢-B(Ly (4, X)). Let D,,={a<w,.: K,=mK,+(y/4) B}. For jeN, let P={te[0, 1]:
r;(t)>0}. We claim that there exist m, jeN such that Ip (U{K,: a€D,})={}e,, :
aeD,}U{0} is infinite. If not, let n,=max{n, ,: aeD,}+1 (or 1, if D,=9),
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and for m>1 let n,,=max{n,,_, n, ;: 1 <j<m, aeD,,} +1. Then {n,} is an infi-
nite subset of N, so it is N,, for some ay<w,. The construction reveals that
o, belongs to no D,,. Since [0, w))=UD,, this is a contradiction.

Now choose m, j as claimed above, and let {}e,, :aeD,}={4}e,}, where
ny<n,<.... Since |I,[£1, {}e,}=mlp (Ko)+(y/4) B(X). For all k, choose
b.e(y/2) B(X) so that e, —b,e2mIp (Ko). The sequence e, —b, is then equivalent
to the unit vector basis of [, since

r P P
Zak(enk_bk) = Zakenk = Zak by
k=1 k=1 k=1
r y 2 y &
=y Z |ak|_§ Z |ak|=5 Z lal.
k=1 k=1 k=1

for every sequence of scalars {4y, ..., a,}. This contradicts the weak compactness
of I (K,), and the proof is complete.

4. Open Questions

(A) Must a WCG subspace of an SWCG space again be SWCG? Specifically,
must every subspace of a separable SWCG space again be SWCG? This is
of particular interest for the space L, [0, 1].

(B) Must a separable, weakly sequentially complete space which contains [,
hereditarily be SWCG?

(C) If X is SWCG, must L, (u, X) be SWCG?
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