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Here the second sum is taken over distinct indices (i, ], k, I) such that i <j, k<l
and i<k, and the third sum is taken over distinct indices (i, j, k, [) such that i <j
and k<I. Note that (7.5) makes sense only when n=4: aside from using four
indices, we also need n—3 in the denominator! This equation shows that
r,_,(n)=1. On the other hand, we can show that, for 2<k<n—2, the forms f;
are “wilder” than f,_, in that M, f(x,,...,x,) is still not sos; thus, r(n)=2
and r(n)=2 for n=4. For n=4, an explicit computation shows that
M2 f,(xy5 ..., X,) is sos, and so r,(4)=2, r(4)=2. We close with the following:

(7.6) Question. Determine r,(n) and r(n) for =5 and 2Zk<n-2.
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Note Added in Proof (June 1987)

Stated in another form, our determination of P, (n 2 3) in (5.2) amounts to the fact that the symmetric cubic
aY x}+BY xtx;4+vY x,x;x, is psd for x; 20 iff

Y y y
—B+i)+k __) k*- == k=1,2,...,n.
*) (a ﬁ+3)+ (ﬂ gt 6_0 for 2,...,n

Inthespecial case when n= 3, thishas beenproved earlier by J.F. Rigby (Univ. Beograd. Publ. Elektrotehn.
Fak. Sci. Mat. Fiz. No. 412-460 (1973), pp. 217-226). Thus our, complete result on F, can be viewed as a
generalization of Rigby’s result from 3 variables to any number of variables. Incomparing our results with
Rigby’s (Theorem 2, loc. cit.), note that the first three conditions in (+) are: a2 0, x+p=0,and a+28
+7y/320.
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