

Werk

Titel: Bibliography.

Jahr: 1987

PURL: https://resolver.sub.uni-goettingen.de/purl?266833020_0195|log62

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen M.D. Choi et al.

Here the second sum is taken over distinct indices (i, j, k, l) such that i < j, k < l and i < k, and the third sum is taken over distinct indices (i, j, k, l) such that i < j and k < l. Note that (7.5) makes sense only when $n \ge 4$: aside from using four indices, we also need n-3 in the denominator! This equation shows that $r_{n-1}(n)=1$. On the other hand, we can show that, for $2 \le k \le n-2$, the forms f_k are "wilder" than f_{n-1} in that $M_2 \cdot f_k(x_1, ..., x_n)$ is still not sos; thus, $r_k(n) \ge 2$ and $r(n) \ge 2$ for $n \ge 4$. For n = 4, an explicit computation shows that $M_2^2 \cdot f_2(x_1, ..., x_4)$ is sos, and so $r_2(4) = 2$. We close with the following:

(7.6) **Question.** Determine $r_k(n)$ and r(n) for $n \ge 5$ and $2 \le k \le n-2$.

Bibliography

- [CL₁] Choi, M.D., Lam, T.Y.: An old question of Hilbert. In: Proceedings of the Quadratic Form Conference 1976 (ed. G. Orzech), pp. 385-405. Queen's Papers in Pure and Applied Mathematics, vol. 46, Kingston, Ont., Queen's University
- [CL₂] Choi, M.D., Lam, T.Y.: Extremal positive semidefinite forms. Math. Ann. 231, 1-18 (1977)
- [CLR₁] Choi, M.D., Lam, T.Y., Reznick, B.: A combinatorial theory for sums of squares. In preparation, see Abstracts A.M.S. 783-12-30
- [CLR₂] Choi, M.D., Lam, T.Y., Reznick, B.: Symmetric quartic forms. In preparation, see Abstracts A.M.S. 736-10-21
- [Co] Coxeter, H.M.S.: The Lehmus inequality. Aequationes Math. 28, 4-12 (1985)
- [D] Delzell, C.N.: Case distinctions are necessary for representing polynomials as sums of squares. Proc. Herbrand Sympos. Log. Colloq. '81, 87-103 (1982)
- [HLP] Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge: Cambridge Univ. Press
- [H] Hilbert, D.: Über die Darstellung definiter Formen als Summe von Formenquadraten. Math. Ann. 32, 342-350 (1888)
- [Ho] Hobson, E.W.: A Treatise on Plane and Advanced Trigonometry. 7th ed., New York: Dover Publications 1928
- [L] Lam, T.Y.: An introduction to real algebra. Rocky Mt. J. Math. 14, 767-814 (1984)
- [Re] Reznick, B.: Extremal psd forms with few terms. Duke Math. J. 45, 363-374 (1978)
- [Ro] Robinson, R.M.: Some definite polynomials which are not sums of squares of real polynomials. In: Sel. Quest. of Alg. and Logic, pp. 264-282, Acad. Sci. USSR, 1973 (see abstract in Notices AMS 16, 554 (1969)
- [U] Ursell, H.D.: Inequalities between sums of powers. Proc. Lond. Math. Soc. (3) 9, 432-450 (1959)

Received December 2, 1985; in final form November 17, 1986

Note Added in Proof (June 1987)

Stated in another form, our determination of $P_n(n \ge 3)$ in (5.2) amounts to the fact that the symmetric cubic $\alpha \sum x_i^3 + \beta \sum x_i^2 x_j + \gamma \sum x_i x_j x_k$ is psd for $x_i \ge 0$ iff

(*)
$$\left(\alpha - \beta + \frac{\gamma}{3}\right) + k\left(\beta - \frac{\gamma}{2}\right) + k^2 \cdot \frac{\gamma}{6} \ge 0 \quad \text{for } k = 1, 2, \dots, n.$$

In the special case when n=3, this has been proved earlier by J.F. Rigby (Univ. Beograd. Publ. Elektrotehn. Fak. Sci. Mat. Fiz. No. 412-460 (1973), pp. 217-226). Thus our, complete result on P_n can be viewed as a generalization of Rigby's result from 3 variables to any number of variables. In comparing our results with Rigby's (Theorem 2, loc. cit.), note that the first three conditions in (*) are: $\alpha \ge 0$, $\alpha + \beta \ge 0$, and $\alpha + 2\beta + \gamma/3 \ge 0$.