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The Splitting Relation for Kothe Spaces

Jorg Krone and Dietmar Vogt

Bergische Universitit, Gesamthochschule Wuppertal, Fachbereich Mathematik,
GauBstr. 20, D-5600 Wuppertal 1, Federal Republic of Germany

In the present note we will give a complete characterization in terms of the
defining matrices of those pairs (1(4), A(B)) of Kothe spaces, for which every
exact sequence 0— A(B)— G —A(4)—0 of Fréchet spaces splits. This can be
expressed by the equation Ext!(1(A4), A(B))=0, where Ext!(1(A4), *) is the first
derived functor of the functor L(A(A), ) acting from the category of Fréchet
spaces to the category of linear spaces (over the scalar field IK=R or C).
Hence we can also say that we will give a characterization of those pairs of
Kothe spaces, for which Ext' (A(4), 4(B))=0. From the general properties of the
Ext!-functor it follows that for these spaces and any exact sequence
A(B) - G-5 4(A) — 0 of Fréchet spaces g has a right inverse.

The condition, which is characteristic (called (S*) in this note), is the
condition (S%) defined in [14], §3 (cf. [13]), where it is shown to be necessary
for Ext' (E, F)=0 for any two Fréchet spaces E and F. We show that it is also
sufficient in the case of two Kothe spaces. We give also a proof for the
necessity in this case, since it is, in contrast to the general case, quite elementa-
ry.

General sufficient conditions for Ext! (E, F)=0 have been given by several
authors: condition (S) in [1], condition (S¥) in [14] and the condition in [5],
Theorem 4.1. The first two turn out not to be necessary, since (S¥) and (S%) are
in general inequivalent (see [4]). An example is contained in §3.

In §2 we show that (S*) also determines the topological properties of the
space L,(A(A), A(B)). It is shown that this space is bornological (or barrelled) if
and only if (A(4), A(B)) satisfy (S*). This result is in strong connection with a
classical result of Grothendieck ([3], II, §4, n° 3 Theorem 15 (f)). In fact our
proof can be used to considerably simplify the proof of Grothendieck. (S*) also
simplifies his condition. In 3.1 the equivalence is shown.

In §3 also we discuss the relation between (S*), (ST) and the condition given
in [12] for L(A(B), A(4))=LB(A(B), A(A)). This can be used to give an example
separating (S*) and (SY).

Preliminaries. We use the common notation for locally convex spaces (see [6,
11]). For sequence spaces see also [2], for concepts of homological algebra

[10].
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A=(a, ,),nen and B=(b; ,); ven always denote infinite matrices which satisfy
supa, ,>0, 0<a, ,<a,,,, for all v, n, resp. an analoguous condition for B
n

(K6the matrices). We define

AA)={x=(x,,%,,...): ||x||,,=z Ix;la; , < + oo for all k}

J
AR (A)={x=(xy, x5, ...): ||x||k=sqp |x;la; , < + oo for all k}.
J

Equipped with the seminorms || |, these are Fréchet spaces. If A has the form
a; ,=e’*, where p, /'r, re{O + oo} and a=(a,ay,...), a;/ + o0, then A,(a)
=A(A) is called power series space, of finite (resp. infinite) type for r=0 (resp. r
=+ 00). We put:

lx(A)={x=(x1,X2,. Jillxll Z= lela—1—<+oofor some k}

J gk

where %= + oo for a>0. Equipped with the inductive limit topology of the

|l |_4 this is a (DF)-space.

A step space of A(A) is a space of the form {(xn(j);: x€A(A)} for some strictly
increasing sequence (n(j)); in NN, i.e. A(4) with A= =(ayj), k)] "

By b, we denote the sequence (b; ). We put J={jeN:b; >0} and
define

b)) ={x=(xpjes,: Ixlx=Y Ix;la;,<+o0}.
Jjedk

We define Ext! (1(A), *) as the first derived functor of the functor L(A(A), *).
From [13], Theorem 1.6 (which obviously holds also for E=(A), since Corol-
lary 1.2 is true then) or [14], Theorem 1.2 we get the following concrete
representation:

Ext' (A(A), A(B))=[] L(A(4), I'(b,))/B(A(A), B)
where k

B(A(A), B)={(A,),eL(A(A), I*(b,)): there exists (B,‘)ke]_[ L(A(A), I* (b))
such that 4,=p, koBk+l —B, for all k}.

Here p,, , . denotes the restriction map x — x|, for xel'(b,,,). Ext! (1(4), A(B))
=0 if and only if every exact sequence

0-4(4)-»G—-A(B)—0

of Fréchet spaces splits. It is also equivalent to more general lifting and
extension properties (see [14] Theorem 1.8). It implies moreover (see [14],
Proposition 1.6) that every exact sequence

A(A) >G> A(B)—0



The Splitting Relation for Kthe Spaces 389

splits, that means: every surjective continuous linear map from a Fréchet space
G onto A(B), the kernel of which is a quotient of 1(4), has a right inverse.
From the above representation we derive the following

Criterion. Ext'(1(4), A(B))=0 if and only if for every sequence A,eL(A(A),
I'(by), k=1,2, ..., we can find another sequence B,eL(A(A), I'(b)), k=1,2, ...,
such that (4,x);=(B, ,,x); —(B,x); for all jeJ,.

Notice that the representation and hence the criterion depends on B only
up to equivalence, where B is equivalent to B iff 1(B)=A(B).

By L,(E, F) we denote the space of continuous linear maps from E to F
with the topology of uniform convergence on bounded subsets of E, by
LB(E, F) the space of bounded linear maps from E to F, i.e. maps ¢ with o U
bounded for some open U.

We always make use of the following

’

Definition. For a, b, da’, b’ e[0, + o0): %_S_% <ab'<a'b.

1. In this section we consider fixed Kothe spaces A(A4) and A(B), where A
=(a,, )y, nen> B=(b; 1); ren are Kothe matrices. We define:

Definition. (1(A4), A(B)) satisfy condition (S*) iff we have:
(S*) Vu 3Inyg,k YK,m 3In, S Vv,j:

Q

bv,m <8 max (Z fz)
j, k i, K Jru

Js

We will prove the following theorem:
1.1. Theorem. Ext! (A(4), A(B))=0 if and only if (A(A), A(B)) satisfy condition
(S*).

The proof of the sufficiency part is given in Proposition 1.5, the proof of
the necessity part in Proposition 1.7.

We start by rewriting the condition in an apparently strengthened form (cf.
[14], 3.3):

1.2. Lemma. If (A(A), A(B)) satisfy (S*) then either A(A)=I' or (i(4), A(B))
satisfy the following condition:

(%) VYu 3Ing,k YK,m, R>0 3In,S Vv,j:

av,m < max (S av,n lav,no)

ke bix Rbj,

Proof. We assume that A(4)%['. We choose #,, k according to (S*) and

determine i, such that 5
inf{ﬂ"—: leN, a,,,ﬁ*O}:O.

A,

This is possible since 1(4) is not a Banach space. Hence we have with L_
={l:a, 5+0}:
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VK 3n,8 VieL,, jeN:

S (L G L)
A, i bj,K a4 b“‘

From this one derives by choosing ! =1I(¢) appropriately and putting C=§ %% .

ILm

VK,e>0 3C Vj: bi§max(CBI—, bi)
i K

Jk
We apply again (S*) with u=k and obtain k, n, such that:
VK,m 3In,S Vyv,j:

a,

bj, k

a, a
gSmax ( v.n vno>
bJK bJF

If additionally R>0 is given, we apply the previous with szﬁ and obtain

assuming n=n,, C>1:

Q

la
vm< C »n ¥, no
oo sman (s, 7 ).

Js
The next lemma serves merely for simplification:

1.3. Lemma. If (A(A), A(B)) satisfy (S*), then we may without restriction of
generality assume that there is a sequence ny(k) in N such that:

Vk,m,R>0 3n,S Vv,j:

a a la
v, m §max (S v, n — v,no(k—l)).
bj,k bj k+1 R bj k-1

Proof. We can determine a function g: N — N, g(u)> , such that for any u the
choice of k=g(u) is in accordance with (S*). We put h(1)=1, h(k+1)=g(h(k))
and replace the matrix B=(b, ,); , by the equivalent matrix B=(b b)) k-

14. Lemma. If (4(A), A(B)) satisfy the condition in 1.3, then for any sequences
(m(K)y, (Cy)y there exists sequences (n(k)),, (S(k)), such that n(k) is strictly
increasing and for all k,v,j we have:

(i C kQy, m(k)—S ay, n(iy

(i) k v, n(k)<max (Sk+1av.n(k+l) 9-k Sk-—lav,n(k—l))
. .
j,k jok+1 bji-1

Proof. We determine n(k), S, inductively. We put n(1)=max (m(1), ny(1)), S,
=C, and n(2)=max (m(2), n0(2)) §,=C,. Let n(l),...,n(k) and S, ..., S, be
determmed and assume (i'): n(])>max(m(]), no(), S;2C; for j=1,...,k. We
k

apply Lemma 1.3 to k,m=n(k), R=2"S and obtain n=d(k+1), S=5,,,,

k—1
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such that

a i a. = S _q1 a —
(1) v, n(k) émax (Sk+1 v, fi(k+ 1) , 2—k k—1 “v,no(k 1)).
Jrk Jrk+1 Sk bLk—l

We put nk+1l)=max(fi(k+1), mk+1), nok+1), nk)+1). S,
=max(C,, ,, Si Sx, ). Hence we have (i') for k+1. From (1) and (i) we obtain
(ii). (') for k implies (i).

We can now prove the sufficiency part of 1.1 which is the main result of
this section.

1.5. Proposition. If (A(A4), A(B)) satisfies (S*) then Ext! (1(4), A(B))=0.

Proof. If A(A)=I', then we are ready, since I' is projective. Hence, according to
Lemma 1.2 we may assume that (1(4), A(B)) satisfy (S*),.

We use the representation of Ext' (1(4), A(B)) explained in the preliminary
section. Let A,eL(A(A), I'(by), k=1,2,.... For every k we have C,, m(k) such
that

l4xll, = C, ”x”m(k)
for all xeA(A).

We choose sequences according to Lemma 1.4. Changing A into an equiva-
lent matrix (namely (S,a; ,); ) We may assume:

(@) N Axxlle< [l -

oy Gy a, —kQyk_1 .

(ii) "‘§max( okl p-k v ) for all v,j.
bj.k bj,k+1 bj,k—l

We claim that:

a . : .. a a .
- gb""‘“, jeJ, implies b""§ v+l jeJ,  forall 12k
. . . a.
Jnk Jk+1 gl Jl+1
a

1)

)

a, . ) .. a 4y
nkgo-k k=1 2<i<k, jeJ; implies <nig2~t_wi=1
bj, bji_y

We have to prove this only for I=k+1 (resp. I=k—1). Then it follows
immediately from (i) applied to k+1 (resp. k—1) instead of k, since by
assumption the max is attained at the first (resp. second) term.

For A, we have a matrix representation

Jvv

Ax=Q 19X )jes,  for x=(x,,x,,...)€A(A).

Since by (i) (e, = v-th unit vector):

Z |t3"_‘)vlbj,k= Age, = ”ev“k=av,k
JjeJk

we can represent the matrix in the form:

a .
=29 >k for jeJ,,
ik
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where
LRS!
We put 9, =A% =0 for j¢J,.
We define
t_([k)v for jEJk, :v,kégv,k-n
£, + =[ ik Pjk+1
L2 0 otherwise

k), — _ 4(k k),
K0 =,
For x=(x,,x,, ...)eA(A4) we put:
k),
A:":(Z t(j,)v+xv jeN
v
- — k,_
A x=(} t(;)v Xy)jen
v
We obtain for >k

||Ak+x||1 =ij,,|2t§’,";+xv|
7 v

a
2k |,
Jk

k
ST byl
Iy

4,1
<X by lAR) 72 1x,|
BV

il
=Y a,,lx,|=lxl,
and for I<k
lAg x]l,= Z bj,llz t&',"v'_xvl

ey

- Ay i
S T by lAR) 22 Ix
v jed; ik
<2 % byl
v, jedi Jl
<27,

av,l

x|

In both cases the second estimate comes from (1) or (2) respectively (notifce
that (2) gives even the factor 2-*~*-D-k=2-.) »+ 5— indicates summation
over the non zero terms of £+, 1%, ~. ‘

In particular we obtain that A;TEL(A(A), A(B)) for all keN. Obviously A;
defines a map in L(4(A4), I'(b,)) for all keN. We put for xeA(A4):

k-1 o
Bx=3 Afx—Y A;x
I=1 v=k

This defines by restriction to J, a map B,eL(4(4), I* (by). The series con-
verges because of the previous estimate.
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We obtain _
By 11Xy, —Bix=(A¢ x+ A; x),; = A, x.

From the proof of 1.5 we draw the following:

1.6. Corollary. If (S*) is satisfied, then for every equicontinuous set M 1 = L(A(A),
[T (D) =T] L(A(4), I'(b,)) there is an equicontinuous set M, < L(A(A), [TE®Y)
k k k

=I;[ L(A(A), I'(by)) such that for any (A,), €M, there is (BJkeM, with B, x|,
—B,x=A,x for all k.

The necessity part of Theorem 1.1 is contained in [14], Theorem 3.9. Since,
however, in the case of Kothe spaces there is an elementary proof, we include
it here.

1.7. Proposition. If Ext' (A(4), A(B))=0 then (A(A), A(B)) satisfy (S*).

Proof. 1If A(A) does not have a continuous norm, then it contains w as a
complemented subspace, hence Ext!(w, A(B))=0. From [13], Lemma 3.2 we
then know, that the A(B)/ker| || is a Banach space for any continuous semi-
norm | || on A(B). This means that eiter A(B)=I' or A(B)~(IY)N. In both cases
(S*) is trivially satisfied.

So we assume now that A(4) admits a continuous norm. In this case we
may assume that a, ,, >0 for all v, meN.

Let (S*) not be satisfied. This means:

3u Vng,k IK,m Vn, S 3v,j:

a a,. a
—b“'”' > S max (bv"',——"’"°).
Jk i K bj.u

We may assume u=1. We apply the above to k and ny=k—1. Then we
obtain sequences K(k), my(k), which may be assumed strictly increasing, such
that

(1) Vkn,S 3v,j:

a a a,
—vmok) - ¢ max (b_vL’ _;)k_l)
ik JKw Yt

By an equivalent change of matrices we may assume my(k)=k, K(k)=k+1. By
the assumption on the matrix (a,,) a jeN chosen according to (1) is auto-
matically even in J,.

So we can find double indexed sequences v(k, n) in N, j(k,n) in J , such that
for v=v(k, n), j=j(k, n):

a a a, x—
v,k>2;|_max( v,n " v, k l).
bi,k b.i,k+l bi,l

By choosing the sequences inductively in k for fixed k and by applying (1)
in each step with large enough S>2" we can achieve that v(k, ny)*v(k, n,) or
J(k,ny)#j(k, n,) for n, #n,.
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We put 1

(Akx)j=ﬂ Z Ak, m), kXv(k, n)
P = e
for jeJ,. An empty sum is counted as 0. Obviously this defines a map
A,eL(A(A), I' (b,). Assume we have maps B,eL(A(A), I'(b,) such that

By, x|;,—B=4,
for all keN.
B, corresponds to a matrix (t);., (see proof of 1.5) with

)< C, %y, mik)
, VI=
J ik

for all veN, jeJ, with appropriate C,, m(k).
We fix v=v(k, n), j=j(k, n)eJ,. For 1<I<k we have

Do a0
a,—b =t; V=1,
il

where ¢,=1 or £=0 and ¢, =1. Addition yields:

K

G k1) )
Z & =tj,v _ti,v'
=1

b;,

If moreover k>m(1) we obtain

av,k av,l av,m(k+1) av,m(l)
b =< b +Ciig b +C, b
Jk I=1Yj1 Jk+1 i1
a a, ,_
ngax ( v,m(k+l), v, k l)
bj,k+1 bj,l

with some C= C(k). For 2">max (C, m(k + 1)) this yields a contradiction.

2. It is a surprising fact that the condition (S*), which we found as solution
of the “splitting problem” resembles very much to a condition which Grothen-
dieck obtained, when he investigated topological properties of tensor products
of (F)- and (DF)-spaces (see [3], II, §4). In fact, we will show in §3 directly,
that they are equivalent. The connection is cleared up in [15] in an abstract
context. Motivated by all this we will now turn to an investigation of the
topological properties of the space L,(4(A), A(B)). We will prove the following
theorem which is an analogue to Grothendieck [3], II, §4, n°3, Theorem 15.
The proof however and the condition are much more transparent. We assume
A(A) to be a Schwartz-space.

2.1. Theorem. The following are equivalent:

(1) (A(A), A(B)) satisfy condition (S*)

(2) L,(A(A), A(B)) is bornological

(3) Ly(A(A), A(B)) is barrelled (quasi-barrelled )

(4)  The strong dual of Ly(A(A), A(B)) is sequentially complete.
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Proof. First of all we note that for any complete locally convex space X we
have the following implications

X bornological = X barrelled = X quasi-barrelled = X » sequentially

complete.

Hence we only have to show (1) = (2), (4) = (1). This is the content of the
following two propositions. For the first one cf. [15].

2.2. Proposition. If (A(A), A(B)) satisfy (S*), then X := L, (A(A), A(B)) is bornologi-
cal.

Proof. If 2(A)=I" then we are ready since then X is a Fréchet space. Hence,
according to Lemma 1.2 we may assume that (4(4), 1(B)) satisfy ($%),.

Let McX be an absolutely convex set which absorbs all bounded
(=equicontinuous) subsets in X = L,(4(4), A(B)). We claim that there is a k such
that M absorbs all sets B, ,.:={peX: |ox|, < x|} for m=1,2,....

Assume, that this is not the case. Then there is a sequence m(k) such that
M does not absorb B, ,, for all k. We may assume (by changing A4 and B into
equivalent matrices) that m(k)=k and 4 and B satisfy condition (i) in the
proof of Proposition 1.5. Then the construction in the proof of Proposition 1.5
tells us that we can split up any geB, , as p=¢* + ¢~ where ¢*eB,, for all
I2k, ¢~ €B,, for all I<k. Hence

By y < m B, ,+ ﬂ B,,
Izk I<k

Since the first set on the right hand is bounded, M does not absorb () By,
I<k

for all k. Choose ¢.e() B,,, ¢,¢kM for all k. Then {g,:k=1,2,...} is
I<k

equicontinuous, hence absorbed by M, which is a contradiction.
Put M=()mp(MnB,,), where p, is the canonical map X — L,(4(4),

I'(b,). Then M absorbs all bounded sets in L,(A(A), I'(b,)). Since A(A) is a
Schwartz-space L,(A(4), I'(b,) is separable. Moreover it is isomorphic to the
dual of the Fréchet space A(A)®,,c0 (or even A(A)™ for some m). Hence it is
bornological (see [6], p.403), and therefore M is a neighbourhood of zero. So
M=p;-'M is a neighbourhood of zero.

The converse direction is an adaptation of the proof of [13], Proposition 4.4
to the present situation, where we can avoid the complicated construction of a
biorthogonal sequence. Again we put X = L,(1(A4), A(B)).

2.3. Proposition. If X » is sequentially complete then (A(A), A(B)) satisfy (S*).

Proof. If A(A) does not have a continuous norm, then it contains w as a

complemented subspace and by assumption we know that (Ly(w, A(B))), is

sequentially complete. Let || | be a continuous seminorm on A(B) and put E

=A(B)/ker || ||. Then L,(®, E)~@ E algebraically. The topology is given by the
N

norms (@ x,||,=sup ||xl,, where || ||, is a fundamental system of norms on E.
k k

The strong dual of this space is again sequentially complete. This implies that
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E is a Banach space. Concluding as in the proof of 1.7 we see that (S*) is
satisfied.

So we may assume that A(4) has a continuous norm and therefore that
a, »,>0 for all v,m. Assuming now that (S*) is not satisfied we proceed as in the
proof of Proposition 1.7 and choose v(k,n)eN, j(k,n)eJ; such that for v
= V(k, n)s .]=.’(k’ n):

a a a, k—
v.k>2n max ( v,n , v, k 1).
bj,k bj,k+1 bj,l

We consider the series:

b.
J(k, n)
2 ite.m ® €yih,ny

kn Gy, n)
n2k

where f; (resp. e,) are the canonical unit vectors in A(BY (resp. A(4)). We have
to show that it is a Cauchy series in X,

Let B={peX: |¢x|,<C, 1%l ) for all k} be a bounded set in X. peB can
be represented by a matrix (t;,\) with |t; |b; < Cya, g for all j,v,k. We
obtain with /=m(1) and m=: max (m(I+1),):

b.
(ksn), k
Z n L2 l<f:i(k,n)’ @ ev(k.n)>|

kn  Qy,n),k
nzk

- z nb.i(k.n).k |t l
a J(k,n), v(k, n)
k,n v(k,n), k

n2k
e o] n b a
J(k,n), k vik,n),k—1
é Z Z n Cl b
n=1k=l+1 vk m,k jtk,n) 1
oo}

' Z bj(k, n),k C Ay(k,n),n
+ ¥ n 1

+1
k=1n=m Qyk, n),k bj(h,n).k+1
+ finite sum

<SG, ¥ w22 G ik ¥ 020,

n=1 n=1

Since the first estimate was termwise and the sums converge, the first series
converges uniformly for peB.

Assume that the series converges to some element ye X', Let f, (resp. & ;) be
the canonical unit vectors in A(A4)’ (resp. A(B)).

Consider
av(k, n), k

‘Pk,n=b vike,m) @ €, mEX.

J(k,n), k

Let U={¢: ¢ B<U,}, B bounded in A(4), U,={xe(B): x|l,<1} be a neigh-
bourhood of zero in X. Then {0y :n=1,2,..}cAU for some A>0. But
{¥ @y > =n. Hence y is not bounded on any neighbourhood of zero in X,
which is a contradiction.

Remark. Let X be any locally convex space with A(4),®,4(B)<>X 3 L, (A(A),
A(B)), where 1,, 1, are continuous maps and 1,01, is the natural inclusion. The
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previous proof shows that if X is sequentially complete, then (i(4), A(B))
satisfy (S*).

3. We want now to compare condition (S*) directly with Grothendieck’s
condition. We first describe his result. We put P=l"(A)®,,/1(B). Then P can be
considered as a space of infinite matrices. The dual P’ can be identified with
the space of all matrices belonging to bounded linear maps from A(B) to 1*(A).
By P* we denote the K&the dual of P, ie. the space of all matrices v=(v; ;); ;

such that ) lu; ;v;, jl<+oo for all u=(u; ;); €P. A7(A) denotes the set of all
ij

nonnegativé real sequences in A*(4). We can put the essential part (with
respect to our considerations) of [3], II, §4, n° 3, Theorem 15 into the follow-
ing form:
3.1. Theorem (Grothendieck). The following are equivalent

(@) P is bornological

(b) P is barrelled

(c) P'=P*

(d) Vn, 3m, Vm, leA®(4) IR>0 Vi, j:

1 a;
iL,m < i, mo .
<R max (A.b. D )

i%,m Djno
We will now show:
3.2 Proposition. Condition 3.1 (d) and (S*) are equivalent.

Proof. Since obviously we can write (S*) in the following form

Vny Imyzn, Ym 3In,R>0 Vyv,j:

ai,m éR max (:i,n ; ‘;i,mo)
Jymo Jim Yj,mo
it is easy to see that (5*) implies 3.1 (d).

For the converse direction we first choose ng, my>n, and assume that
there exists i such that a; m,=0. We choose m; >m, such that 4; m, >0 and A
such that 4,>0. Then for all mzm, and jeJ, we have b, < AR b mo-
Consequently A(B)=(I')N or A(B)~I' and (S%) is trivially satisfied. i%,m

Hence we assume that @, ,>0 for all i and m. We assume n,<m, and m
fixed in accordance with 3.1 (d).

Assume, that there does not exist n and R according to (S*). Then we can
find sequences i(n)eNN, Jj(n)eJ,,, such that

a. a. a.
i(n), m >n-max ( i(n),n , bz(n),mo)'

J(n),mo i(m),m ¥ j(n),no

As in the proofs of 1.7 and 2.3 we may assume that n —i(n) is injective. We
put
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] for i=i(n)

1= ai(n),n
0 otherwise.

Then A€ (A) yields a contradiction to 3.1 (d).

Now [12], Proposition 7.3 says that L(A(B), A(A))=LB(A(B), A(A)) (at least
under reasonable assumptions) should imply Grothendieck’s condition, hence
(5*). We give a direct proof. First we restate [12], Satz 1.5 under slightly
changed assumptions.

3.3. Theorem. The following are equivalent :
(1) L(A(B), 4(4))=LB(A(B), 1(4))

(2) for every sequence K(N) there exists L such that Jor each m we have N,

and C with

av,m av,N

<C max
bj.L N=1,..,No bj,K(N)

Sfor all v, j.

The proof of (1)=(2) is exactly as in [12]. For the converse we have to
represent the matrix of a map in L(A(B), A(4)) in an analogous way as in the
proof of 2.3 and then to proceed as in [12].

We obtain by use of this characterization:

34. Proposiﬁon. If L(A(B), (A))=LB(A(B), A(A)) then (i(A), A(B)) satisfy (S*).

Proof. Assume, that they do not satisfy (S*). Then we have u and for every N a
k(N) such that for all n and S there exist v,j with

a a a
—;)"“N)>Smax (*""' ) b”'”).
N KN Oju

We may assume u<K(1)<K(2)<....
We apply condition 3.2 (2) to the sequence K(N). We obtain L such that
(for m=K(L)) we have N, and C with

a a
Zv, K(L) é C max —WN_

bjc N=1,...No Dj k)
a a
é C max (V,—No, b"”‘)
LK) Yjp

for all v,j. This is a contradiction.
The following condition was used in [1] and [14] as a sufficient condition
for Ext! (A(A4), A(B))=0.

(8) 3ny Yu 3k VK,m 3InS Vv,j:

a a a
bv.m §Smax (bv,n’ bv.no).
ik LK Yjp
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We recall that A(B) has property () (or is of type (d,)) if the following
holds:

Vp 3q Vk 3C>0 VjeN: b; b < Cb} .

Any power series space of finite type satisfies (Q). In fact (Q) implies that A(B)
is a quotient of such spaces (s. [16]).

We quote from [13] (in a slightly modified form):

3.5 Lemma. If A(B) has property (Q), then (ST) implies L(A(B), A(A))=LB(A(B),
A(A)).

From [9] (or [4]) we know that there are power series spaces A,(x) with
Ext' (4, (), 4,(«))=0. Take eg a,=2*. But (A;(®), A,()) certainly does not
satisfy (S¥) because on account of Lemma 3.4 this would imply that the
identical map in A, («) is bounded. For a systematic treatment of (S*) and (S¥)
in the context of power series and L s-spaces see [4].

It should finally be remarked that in [8] it is shown that (S¥) implies that
either L(A(B), 4(A))=LB(A(B), A(A)) or A(4) and A(B) have a common step
space. If A(4) or A(B) has property (DN), the conditions (8*) and (S}) coincide.
This means that then the situation described in 3.4 is “perturbed” only by
spaces A(4) with Ext' (A(4), A(4))=0. So it is interesting to characterize those
A(A). In fact, the space (s) is one of them. Such a characterization (under the
assumption that A(4) has property (DN)) has been given in [7]. It would be
interesting to give a general characterization.
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